Usefulness of LED lightings in cereal breeding on example of wheat, barley and oat seedlings
Abstract
Keywords: greenhouse, light emitting diodes, cost-effectiveness, Triticum aestivum, Hordeum vulgare, Avena sativa
DOI: 10.25165/j.ijabe.20191206.3646
Citation: Stefański P, Siedlarz P, Matysik P, Rybka K. Usefulness of LED lightings in cereal breeding on example of wheat, barley and oat seedlings. Int J Agric & Biol Eng, 2019; 12(6): 32–37.
Keywords
Full Text:
PDFReferences
Ortiz R, Trethowan R, Ferrara G, Iwanaga M, Dodds J, Crouch J, et al. High yield potential, shuttle breeding, genetic diversity, and a new international wheat improvement strategy. Euphytica, 2007; 157(3): 365–384.
Tabaka P, Derlecki S. Analysis of electrical parameters of light sources used by household and municipal customers. Electrical Review, 2012; 88 (1b): 207–212.
Gruszecki W I, Zubik M, Luchowski R, Grudzinski W, Gryczynski Z, Gryczynski I. Spectroscopy of photosynthetic pigment-protein complex LHCII. Acta Physica Polonica A, 2012; 121(2): 397–400.
Owen W G, Lopez R G: End-of-production supplemental lighting with red and blue light-emitting diodes (LEDs) influences red pigmentation of four lettuce varieties. HortScience, 2015; 50(5): 676–684. https://ag.purdue.edu/hla/Publication%620Library/Lopez/HortScience_650-675_676_684_May2015.pdf.
Heber J. Nobel Prize 2014: Akasaki, Amano & Nakamura. Nat Phys, 2014; 10(11): 791–791. http://www.nature.com/nphys/journal/v710/ n711/full/nphys3147.html.
Nanishi Y: Nobel Prize in Physics: The birth of the blue LED. Nat Photon 2014, 8(12): 884–886. http://hortsci.ashspublications.org/ content/849/885/589.abstract.
Darko E, Heydarizadeh P, Schoefs B, Sabzalian M R. Photosynthesis
under artificial light: The shift in primary and secondary metabolism. Philosophical Transactions of the Royal Society B: Biological Sciences, 2014; 369(1640): 20130243. http://dx.doi.org/20130210.20131098/ rstb.20132013.20130243.
Yeh N, Chung J-P. High-brightness LEDs—Energy efficient lighting sources and their potential in indoor plant cultivation. Renewable and Sustainable Energy Reviews, 2009; 13(8): 2175–2180.
Shimada A, Taniguchi Y. Red and blue pulse timing control for pulse width modulation light dimming of light emitting diodes for plant cultivation. Journal of Photochemistry and Photobiology B: Biology, 2011; 104(3): 399–404.
Pocock T. Light-emitting diodes and the modulation of specialty crops: light sensing and signaling networks in plants. HortScience, 2015; 50(9): 1281–1284. http://hortsci.ashspublications.org/content/1250/1289/ 1281.abstract.
Goins G D, Yorio N C, Sanwo M M, Brown C S. Photomorphogenesis, photosynthesis, and seed yield of wheat plants grown under red light-emitting diodes (LEDs) with and without supplemental blue lighting. Journal of Experimental Botany, 1997; 48(7): 1407–1413.
Song J X, Meng Q W, Du W f, He D x. Effects of light quality on growth abd development of cucamber seedlinggs in con trolled environment. Int J Agric & Biol Eng, 2017; 10(3): 312–318.
Kong S, Okajima K. Diverse photoreceptors and light responses in plants. J Plant Res, 2016; 129(2): 111–114.
Mitchell C A. Academic research perspective of leds for the horticulture industry. HortScience, 2015; 50(9): 1293–1296.
Elvidge C D, Keith D M, Tuttle B T, Baugh K E. Spectral identification of lighting type and character. Sensors, 2010; 10: 3961–3988.
Gaston K J, Visser M E, Hölker F. The biological impacts of artificial
light at night: the research challenge. Philosophical Transactions of the Royal Society B: Biological Sciences, 2015; 370(1667): 20140133.
Ou J, Liu X, Li X, Li M, Li W. Evaluation of NPP-VIIRS nighttime light data for mapping global fossil fuel combustion CO(2) Emissions: A comparison with DMSP-OLS nighttime light data. PLoS ONE, 2015; 10(9): e0138310. http://journals.plos.org/plosone/article?id= 0138310.0131371/journal.pone.0138310.
Pattinson C L, Allan A C, Staton S L, Thorpe K J, Smith S S. Environmental light exposure is associated with increased body mass in children. PLoS ONE, 2016; 11(1): e0143578.
Randall W C, Lopez R G. Comparison of supplemental lighting from high-pressure sodium lamps and light-emitting diodes during bedding plant seedling production. HortScience, 2014; 49(5): 589–595.
Ahmad M, Grancher N, Heil M, Black R C, Giovani B, Galland P, et al. Action spectrum for cryptochrome-dependent hypocotyl growth inhibition in arabidopsis. Plant Physiology, 2002; 129(2): 774–785.
Golovatskaya I, Karnachuk R. Role of gereen light in physiological activity of plants. Russian Journal of Plant Physiology, 2015; 62(6): 727–740.
Son K-H, Oh M-M. Growth, photosynthetic and antioxidant parameters of two lettuce cultivars as affected by red, green, and blue light-emitting diodes. Hortic Environ Biotechnol, 2015; 56(5): 639–653.
Christophe A, Moulia B, Varlet-Grancher C. Quantitative contributions of blue light and PAR to the photocontrol of plant morphogenesis in Trifolium repens (L.). Journal of Experimental Botany, 2006; 57(10): 2379–2390.
Cope K R, Bugbee B. Spectral effects of three types of white light-emitting diodes on plant growth and development: absolute versus relative amounts of blue light. HortScience, 2013; 48(4): 504–509.
Copyright (c) 2019
This work is licensed under a Creative Commons Attribution 4.0 International License.