Root-YOLOv7: Multi-scale adaptive object detection and grading of root-knot nematode disease
Abstract
Key words: object detection; YOLOv7; root-knot nematode disease; deep learning; disease grading
DOI: 10.25165/j.ijabe.20251802.9414
Citation: Zhao Y, Zhao H H, Xiong H T, Zhang F, Lu C, Li J. Root-YOLOv7: Multi-scale adaptive object detection and grading of root-knot nematode disease. Int J Agric & Biol Eng, 2025; 18(2): 259–268.
Keywords
Full Text:
PDFReferences
Lapajne J, Knapič M, Žibrat U. Comparison of selected dimensionality reduction methods for detection of root-knot nematode infestations in potato tubers using hyperspectral imaging. Sensors (Basel), 2022; 22(1): 367.
Haque F, Thimmanagari M, Chiang Y W. Ultrasound assisted cyanotoxin extraction for nematode inhibition in soil. Ultrason Sonochem, 2022; 89: 106120.
Atkinson H J, Lilley C J, Urwin P E. Strategies for transgenic nematode control in developed and developing world crops. Curr Opin Biotechnol, 2012; 23(2): 251–256.
Park E, Kim Y-S, Faqeerzada M A, Kim M S, Baek I, Cho B-K. Hyperspectral reflectance imaging for nondestructive evaluation of root rot in Korean ginseng (Panax ginseng Meyer). Front Plant Sci, 2023; 14: 1109060.
Abade A, Ferreira P A, Vidal F D. Plant diseases recognition on images using convolutional neural networks: A systematic review. Comput Electron Agric, 2021; 185: 106125.
Hu X L, Liu Y, Zhao Z X, Liu J T, Yang X T, Sun C H, et al. Real-time detection of uneaten feed pellets in underwater images for aquaculture using an improved YOLO-V4 network. Comput Electron Agric, 2021; 185: 10613.
Ma G J, Xu S P, Yang T, Du Z B, Zhu L M, Ding H, et al. A transfer learning-based method for personalized state of health estimation of lithium-ion batteries. IEEE Trans Neural Networks Learn Syst, 2024; 35(1): 759–769.
Tian L L, Wang Z D, Liu W B, Cheng Y H, Alsaadi F E, Liu X H. An improved generative adversarial network with modified loss function for crack detection in electromagnetic nondestructive testing. Complex Intell Syst, 2022; 8(1): 467–476.
Yi X, Walia E, Babyn P. Generative adversarial network in medical imaging: A review. Med Image Anal, 2019; 58: 101552.
Deng L M, Li J, Han Z Z. Online defect detection and automatic grading of carrots using computer vision combined with deep learning methods. LWT-Food Science and Technology, 2021; 149: 111832.
Xiong H T, Xiao Y, Zhao H P, Xuan K, Zhao Y, Li J. AD-YOLOv5: An object detection approach for key parts of sika deer based on deep learning. Comput Electron Agric, 2024; 217: 108610.
Bohnenkamp D, Behmann J, Paulus S, Steiner U, Mahlein A K. A hyperspectral library of foliar diseases of wheat. Phytopathology, 2021; 111(9): 1583–1593.
Gomez-Caro S, Mendoza-Vargas L A, Ramirez-Gil J G, Burbano-David D, Soto-Suarez M, Melgarejo L M. Close-Range Thermography and reflectance spectroscopy support in vitro and in vivo characterization of colletotrichum spp. isolates from mango fruits. Plant Disease, 2022; 106(9): 2355–2369.
Mohammadpoor M, Nooghabi M G, Ahmedi Z. An intelligent technique for grape fanleaf virus detection. Int J Interact Multimedia Artif Intell, 2020; 6(1): 62–67.
Almadhor A, Rauf H T, Lali M I U, Damasevicius R, Alouffi B, Alharbi A. AI-driven framework for recognition of guava plant diseases through machine learning from DSLR camera sensor based high resolution imagery. Sensors. 2021; 21(11). doi: 10.3390/s21113830.
Ostovar A, Talbot B, Puliti S, Astrup R, Ringdahl O. Detection and classification of Root and Butt-Rot (RBR) in Stumps of Norway Spruce using RGB images and machine learning. Sensors (Basel), 2019; 19(7). doi: 10.3390/s19071579.
Huang W X, Huo Y, Yang S C, Liu M J, Li H, Zhang M. Detection of Laodelphax striatellus (small brown planthopper) based on improved YOLOv5. Comput Electron Agric, 2023; 206: 107657.
Li K, Zhang L, Li B, Li S, Ma J. Attention-optimized DeepLab V3 + for automatic estimation of cucumber disease severity. Plant Methods, 2022; 18(1): 109.
Wang F Y, Rao Y, Luo Q, Jin X, Jiang Z H, Zhang W, et al. Practical cucumber leaf disease recognition using improved Swin Transformer and small sample size. Comput Electron Agric, 2022; 199: 107163.
Wang T W, Zhao L G, Li B H, Liu X W, Xu W K, Li J. Recognition and counting of typical apple pests based on deep learning. Ecol Inf, 2022; 68. doi: 10.1016/j.ecoinf.2022.101556.
Liu J, Wang X W, Miao W Q, Liu G X. Tomato Pest Recognition Algorithm Based on Improved YOLOv4. Front Plant Sci, 2022; 13. doi: 10.3389/fpls.2022.814681.
Qi J T, Liu X N, Liu K, Xu F R, Guo H, Tian X L, et al. An improved YOLOv5 model based on visual attention mechanism: Application to recognition of tomato virus disease. Comput Electron Agric, 2022; 194: 106780.
Qing X, Wang Y H, Lu X Q, Li H B, Wang X, Li H M, et al. NemaRec: A deep learning-based web application for nematode image identification and ecological indices calculation. Eur J Soil Biol, 2022; 110. doi: 10.1016/j.ejsobi.2022.103408.
Sharma V, Tripathi A K, Mittal H. DLMC-Net: Deeper lightweight multi-class classification model for plant leaf disease detection. Ecol Inf, 2023; 75. doi: 10.1016/j.ecoinf.2023.102025.
Wang C S, Sun S D, Zhao C J, Mao Z C, Wu H R, Teng G F. A detection model for cucumber root-knot nematodes based on modified YOLOv5-CMS. Agronomy-Basel. 2022; 12(10). doi: 10.3390/agronomy12102555.
Shorten C, Khoshgoftaar T M. A survey on image data augmentation for deep learning. Journal of Big Data, 2019; 6(1). doi: 10.1186/s40537-019-0197-0.
Gai W, Liu Y, Zhang J, Jing G. An improved Tiny YOLOv3 for real-time object detection. Systems Science & Control Engineering, 2021; 9(1): 314–321.
Zeng N, Wu P, Wang Z, Li H, Liu W, Liu X. A Small-Sized Object Detection Oriented Multi-Scale Feature Fusion Approach With Application to Defect Detection. IEEE Trans Instrum Meas, 2022; 71: 1–14.
Wang C-Y, Bochkovskiy A, Liao H Y M . YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors. IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2022; pp.7464–7475.
Soeb M J A, Jubayer M F, Tarin T A, Al Mamun M R, Ruhad F M, Parven A, et al. Tea leaf disease detection and identification based on YOLOv7 (YOLO-T). Sci Rep. 2023; 13(1). doi: 10.1038/s41598-023-33270-4.
Bochkovskiy A , Wang C-Y, Liao H Y M. YOLOv4: Optimal speed and accuracy of object detection. arXiv - CS - Computer Vision and Pattern Recognition, 2020. doi: 10.48550/arXiv.2004.10934.
Chen Y, Shu H C, Xu W J, Yang Z Y, Hong Z H, Dong M S. Transformer text recognition with deep learning algorithm. Comput Commun. 2021; 178: 153–60. doi: 10.1016/j.comcom.2021.04.031.
Chen X, Yuan M J H, Yang Q, Yao H Y, Wang H Y. Underwater-YCC: Underwater target detection optimization algorithm based on YOLOv7. J Mar Sci Eng. 2023; 11(5). doi: 10.3390/jmse11050995.
Tong Z J, Chen Y H, Xu Z W, Yu R. Wise-IoU: Bounding box regression loss with dynamic focusing mechanism. arXiv - CS - Computer Vision and Pattern Recognition, 2023. doi: 10.48550/arXiv-2301.10051.
Huang H Q, Lan G W, Wei J, Zhong Z, Xu Z R, Li D B, et al. TLI-YOLOv5: A lightweight object detection framework for transmission line inspection by unmanned aerial vehicle. Electronics, 2023; 12(15). doi: 10.3390/electronics12153340.
Ren S, He K, Girshick R, Sun J. Faster R-CNN: Towards real-time object detection with region proposal networks. IEEE Trans Pattern Anal Mach Intell, 2017; 39(6): 1137–1149.
Lv W Y, Xu S L, Zhao Y A, Wang G Z, Wei J M, Cui C, Du Y N, et al. DETRs beat YOLOs on real-time object detection. arXiv - CS - Computer Vision and Pattern Recognition, 2023. doi: 10.48550/arxiv-2304.08069.
Roy A M, Bhaduri J. DenseSPH-YOLOv5: An automated damage detection model based on DenseNet and Swin-Transformer prediction head-enabled YOLOv5 with attention mechanism. Adv Eng Inf, 2023; 56. doi: 10.1016/j.aei.2023.102007.
Saydirasulovich S N, Abdusalomov A, Jamil M K, Nasimov R, Kozhamzharova D, Cho Y I. A YOLOv6-based improved fire detection approach for smart city environments. Sensors, 2023; 23(6): 3161.
Wang S Y, Wu D S, Zheng X Y. TBC-YOLOv7: a refined YOLOv7-based algorithm for tea bud grading detection. Front Plant Sci, 2023; 14. doi: 10.3389/fpls.2023.1223410.
Jiang H Y, Hu F, Fu X Q, Chen C R, Wang C, Tian L X, et al. YOLOv8-Peas: a lightweight drought tolerance method for peas based on seed germination vigor. Front Plant Sci, 2023; 14. doi: 10.3389/fpls.2023.1257947.
Yannong Xiao M W, Yanping Fu, Fantao Zeng. Comparison of grading methods for vegetable root knot nematode disease. Journal of Huazhong Agricultural University, 2000; 19(4): 336–338.
Althnian A, AlSaeed D, Al-Baity H, Samha A, Bin Dris A, Alzakari N, et al. Impact of dataset size on classification performance: an empirical evaluation in the medical domain. App.Sci-Basel, 2021; 11(2). doi: 10.3390/app11020796.
Xu W K, Zhao L G, Li J, Shang S Q, Ding X P, Wang T W. Detection and classification of tea buds based on deep learning. Comput Electron Agric, 2022; 192: 106547.
Copyright (c) 2025 International Journal of Agricultural and Biological Engineering

This work is licensed under a Creative Commons Attribution 4.0 International License.