Analyses of energy use and greenhouse gas emissions (GHG) in watermelon production

Cihan Demir

Abstract


The aim of this research is to conduct an energy use efficiency and greenhouse gas (GHG) emission analysis in watermelon production that took place in Kırklareli Province of Turkey during the 2021 production season. This research contains calculations of Energy use efficiency, specific energy, energy productivity and net energy, energy input types, GHG emissions and GHG ratio. Survey, observation and data calculations are related to the 2021 production season. The data used in the research were collected from 30 different (accessible) farms through face-to-face surveys with full count method. EI and EO were calculated as 15698.99 MJ/hm2 and 104784.91 MJ/hm2, respectively. In relation to production inputs, 24.29% of the energy inputs consisted of chemical fertilizers energy (3813.34 MJ/hm2), 20.04% consisted of transportation energy (3146.19 MJ/hm2), 10.63% consisted of diesel fuel energy (1668.52 MJ/hm2), 7.44% consisted of human labour energy (1168.09 MJ/hm2), 6.50% consisted of plant energy (1021.02 MJ/hm2), 5.76% consisted of electricity energy (904.50 MJ/hm2), 5.18% consisted of machinery energy (813.44 MJ/hm2), 3.36% consisted of irrigation water energy (527.63 MJ/hm2), 2.85% consisted of organic fertilizer energy (446.72 MJ/hm2), 2.40% consisted of farmyard manure energy (376.62 MJ/hm2) and 0.67% consisted of chemicals energy (105.67 MJ/hm2). Energy use efficiency, specific energy, energy productivity and net energy were calculated as 6.67, 0.28 MJ/kg, 3.51 kg/MJ and 89085.91 MJ/hm2, respectively. The utilized total energy input in production was grouped as 27.19% direct energy, 72.81% indirect energy, 22.55% renewable energy and 77.45% non-renewable. Total GHG emissions and GHG ratio were determined as 492.82 kg CO2-eq/hm2, 0.01 kg CO2-eq/kg, respectively.
Keywords: energy use, GHG analysis, GHG ratio, Turkey, watermelon
DOI: 10.25165/j.ijabe.20231605.7918

Citation: Demir C. Analyses of energy use and greenhouse gas emissions (GHG) in watermelon production. Int J Agric & Biol Eng, 2023; 16(5): 221-225.

Keywords


energy use, GHG analysis, GHG ratio, Turkey, watermelon

Full Text:

PDF

References


Schneider U A, Smith P. Energy intensities and greenhouse gas emission mitigation in global agriculture. Energy Effic, 2009; 2: 195-206.

Jenkins J, Nordhaus T, Shellenberger, M. Energy emergence rebound and backfire as emergent phenomena: a Review of the Literature. Break-through institute, February, Oakland. 2011; Available from: http://thebreakthrough.org/blog/Energy_Emergence.pdf Accessed on [2013-02-15]

Khan M A, Khan M Z, Zaman K, Naz L. Global estimates of energy consumption and greenhouse gas emissions. Renewable and Sustainable Energy Reviews. 2014; 29: 336-344.

WorldBank. Changes in CO2 emissions from energy use: a multicountry decomposition analysis. Extractive Industries for Development Series #11, October 2009. Oil, Gas, and Mining Policy Division Working Paper, WorldBank Washington, D.C.

Aras V. Kavun-karpuz yetiştiriciliği. TAYEK (Tarımsal Araştırma Yayım ve Eğitim Koordinasyonu) 2009 yılı Bahçe Bitkileri Grubu Bilgi Alışveriş Toplantısı Bildirileri Kitabı. Ege Tarımsal Araştırma Enstitüsü Müdürlüğü 2009; Yayın No: 135. 26-28 Mayıs, Salihli-Manisa, 20-30. (in Turkish).

Anonym. T.C. Tarım ve Orman Bakanlığı, Ulusal Gıda Kompozisyon Veri Tabanı. 2019; Available from: https://www.turkomp.gov.tr/food-190 Accessed on [2019-09-02]

Beşirli G, Sönmez İ, Albayrak B, Polat Z, Aras V, Şimşek M. Karpuzda (Citrullus lanatus) organik tohum üretim olanaklarının araştırılması. Uluslararası Anadolu Ziraat Mühendisliği Bilimleri Dergisi. 2019; 4: 37-42 (in Turkish).

Anonym T C. Tarım ve Orman Bakanlığı, Strateji Geliştirme Başkanlığı TEPGE, Tarım Ürünleri Piyasaları, Karpuz. Ocak 2022; (Çöteli, F. Tuğba). https://arastirma.tarimorman.gov.tr/tepge/Belgeler Accessed on [2022-05-18]

FAO. Food and Agriculture Organization of the United Nations 2022; Accessed on [2022-01-07]

Anonym. Turkey Republic, Turkish Statistical Institute. https://biruni.tuik.gov.tr/medas/ 2022; Accessed on [2022-03-31]

Canakci M, Topakci M, Akinci I, Ozmerzi A. Energy use pattern of some field crops and vegetable production: Case study for Antalya Region, Turkey. Energy Convers Manag, 2005; 46: 655-666.

Namdari M. Energy use and cost analysis of watermelon production under different farming technologies in Iran. International Journal of Environmental Sciences, 2011; 1(6): 1144-1153.

Moraditochaee M, Azarpour E, Bozorgi H R. Estimate energy, energy balance and economic indices of watered farming watermelon production in North of Iran. J. Bio. & Env. Sci, 2013; 3(12): 59-66.

Baran M F, Gökdoğan, O. Energy input-output analysis in watermelon and melon production: A case study for Kırklareli Province. Anadolu J Agr Sci, 2014; 29(3): 217-224.

Moradi R, Moghaddam P R, Mansoori H. Energy use and economical analysis of seedy watermelon production for different irrigation systems in Iran. Energy Reports, 2015; 1: 36-42.

Mohammadi-Barsari A, Firouzi S, Aminpanah H. Energy-use pattern and carbon footprint of rain-fed watermelon production in Iran. Information Processing in Agriculture, 2016; 3: 69-75.

Nabavi-Pelesaraei A, Abdi R, Rafiee S, Bagheri I. Determination of efficient and inefficient units for watermelon production-a case study: Guilan province of Iran. Journal of the Saudi Society of Agricultural Sciences, 2016; 15: 162-170.

Oladimeji YU, Abdulsalam Z. Efficiency of watermelon (Citrullus lanatus Thunb.) production technologies in North Central Nigeria. FUOYE Journal of Engineering and Technology, 2017; 2(2): 29-32.

Rostami S, Lotfalian M, Samani B H, Ghasemi-Varnamkhasti M. Energy flows modeling and economic evaluation of watermelon production in Fars province of Iran. International Journal of Agricultural Management and Development, 2018; 8(1): 65-79.

Sharifi M. Energy inputs - Yield relationship and cost analysis of melon production in Khorasan Razavi province of Iran. Engineering in Agriculture, Environment and Food, 2018; 11( 3): 109-113.

Celik Y, Peker K, Oğuz C. Comparative analysis of energy efficiency in organic and conventional gardening systems: A case study of black carrot (Daucus carota L.) production in Turkey. Philipp Agric Scientist. 2010; 93(2): 224-231.

Özgöz E, Altuntaş E, Asiltürk, M. Effects of soil tillage on energy use in potato farming in Central Anatolia of Turkey. Energy, 2017; 141: 1517-1523.

Gokdogan O, Bagdatli M C, Erdogan O. The determination with geographic information systems (GIS) mapping of the energy use efficiency of potato production areas in Turkey: A study in Nevsehir province. Fresenius Environ Bull, 2018; 27(12A): 8917-8927.

Mandal K G, Saha K P, Ghosh P K, Hati K M, Bandyopadhyay K K. Bioenergy and economic analysis of soybean based crop production systems in Central India. Biomass and Bioenergy, 2002; 23: 337-345.

Kazemi H, Shahbyki M, Baghbani S. Energy analysis for faba bean production: a case study in Golestan province, Iran. Sustain Prod Consump, 2015; 3: 15-20.

Sağlam N, Çetin N. Organik tarım ve geleneksel tarım sistemlerinde sera gazı emisyonu. International Eurasian Conference on Science, Engineering and Technology, Ankara, Turkey, 2012; November 22-23, 1987-1997 (in Turkish).

Gokdogan O, Erdogan O, Oguz H I. Determination of the energy input-output analysis and economic efficiency of pumpkin seed (Cucubita pepo L.) production in Turkey: A case study of Nevsehir province. Fresenius Environ Bull, 2020; 29(9): 7452-7459.

Pishgar-Komleh S H, Omid M, Heidari M D. On the study of energy use and GHG (greenhouse gas) emissions in greenhouse cucumber production in Yazd province. Energy, 2013; 59: 63-71.

Arın S, Akdemir, B. Tekirdağ’da soğan üretimi mekanizasyonunun enerji bilançosu yaklaşımı ile incelenmesi. 3th Uluslararası Tarımsal Mekanizasyon ve Enerji Sempozyumu. İzmir, Türkiye, 1987; 195-201 (in Turkish).

Ozbek O, Gokdogan O, Baran M F. Investigation on energy use efficiency and greenhouse gas emissions (GHG) of onion cultivation. Fresenius Environ Bull, 2021; 30(2): 1125-1133.

Barut Z B, Ertekin C, Karaagac H A. Tillage effects on energy use for corn silage in Mediterranean coastal of Turkey. Energy, 2011; 36: 5466-5475.

Baran M F, Gökdoğan O. Comparison of energy use efficiency of different tillage methods on the secondary crop corn silage production. Fresenius Environ Bull, 2016; 25: 3808-3814.

Kamburoğlu Çebi Ü, Aydın B, Çakır R, Altıntaş S. Örtü altı baş salata (Lactuca sativa cv Salinas) üretiminin enerji kullanım etkinliği ve ekonomik analizi. Türk Tarım ve Doğa Bilimleri Dergisi, 2017; 4(4): 426-433 (in Turkish).

Ozkan B, Kurklu A, Akcaoz H. An input-output energy analysis in greenhouse vegetable production: A case study for Antalya region of Turkey. Biomass Bioenergy, 2004; 26: 89-95.

Oğuz H I, Gökdoğan O, Baran M F. Determination of energy balance in organic wolfberry (Lycium barbarum L.) production in Turkey. Erwerbs-Obstbau, 2019; 61: 61-66.

Koçtürk O M, Engindeniz S. Energy and cost analysis of sultana grape growing: A case study of Manisa, west Turkey. African Journal of Agricultural Research. 2009; 4(10): 938-943.

Baran M F, Lüle F, Gökdoğan O. Energy input-output analysis of organic grape production: A case study from Adiyaman province. Erwerbs-Obstbau. 2017; 59: 275-279.

Rafiee S, Avval S H M, Mohammadi A. Modeling and sensitivity analysis of energy inputs for apple production in Iran. Energy, 2010; 35: 3301-3306.

Gokdogan O, Baran M F. Determination of energy use efficiency of some apple (Malus x domestica) production in Turkey: a case study of Eğirdir region. Erwerbs-Obstbau, 2017; 59: 13-18.

Guzman G I, Alonso A M. A comparison of energy use in conventional and organic olive oil production in Spain. Agricultural Systems, 2008; 98: 167-176.

Gökdoğan O, Erdoğan O. Evaluation of energy balance in organic olive (Olea europaea L.) production in Turkey. Erwerbs-Obstbau, 2018; 60(1): 47-52.

Dilay Y, Gokdogan O. Determining the energy utilization and greenhouse gas emissions (GHG) of quinoa production. Fresenius Environ Bull, 2021; 30(6B): 7713-7722.

Akdemir S, Calavaris C, Gemtos T. Energy balance of sunflower production. Agronomy Research, 2017; 15(4): 1463-1473.

Bayhan Y.İkinci ürün ayçiçeği üretiminde farklı toprak işleme ve doğrudan ekim yöntemlerinin enerji kullanım etkinliğinin karşılaştırılması. Tekirdağ Ziraat Fakültesi Dergisi, 2016; 13(2): 102-109 (in Turkish).

Gökdoğan O, Seydosoğlu S, Kökten K, Bengu A S, Baran M F. Energy input-output analysis of guar (Cyamopsis tetragonoloba) and lupin (Lupinus albus L.) production in Turkey. Legume Research, 2017; 40(3): 526-531.

Yilmaz H, Gokdogan O, Ozer S. Energy use efficiency and economic analysis of black cumin production in Turkey. Fresenius Environ Bull, 2021; 30(10): 11395-11401.

Tipi T, Çetin B, Vardar A. An analysis of energy use and input costs for wheat production in Turkey. Journal of Food, Agriculture & Environment, 2009; 7(2): 352-356.

Marakoglu T, Carman K. Energy balance of direct seeding applications used in wheat production in middle Anatolia. Afr J Agric Res, 2010; 5(10): 988-992.

Yilmaz I, Akcaoz H, Ozkan B. An Analysis of energy use and input costs for cotton production in Turkey. Renewable Energy, 2005; 30: 145-155.

Semerci A, Baran M F, Gokdogan O, Celik A D. Determination of energy use efficiency of cotton production in Turkey: A case study from Hatay province. Fresenius Environ Bull, 2019; 27(4): 1829-1835.

Gökdoğan O Determination of input-output energy and economic analysis of lavender production in Turkey. J Agric & Biol Eng, 2016; 9(3): 154-161.

Akbolat D, Ekinci K, Demircan V. Carbon dioxide emissions depending on inputs used in the cultivation of some agricultural products. Fresenius Environ Bull, 2014; 23(3): 795-800.

Eren O, Gokdogan O, Baran, M F. Determination of greenhouse gas emissions (GHG) in the production of different plants in Turkey. Fresenius Environ Bull, 2019; 28(2A): 1158-1166.

Atılgan A, Köknaroğlu H. Cultural energy analysis on broilers reared in different capaticty poultry houses. Ital. J. Anim. Sci, 2006; 5: 393-400.

Kılıç İ. Analysis of the energy efficiency of poultry houses in the Bursa region of Turkey. Journal of Applied Animal Research, 2016; 44(1): 165-172.

Ozalp A, Yilmaz S, Ertekin C, Yilmaz I. Energy analysis and emissions of greenhouse gases of pomegranate production in Antalya province of Turkey. Erwerbs-Obstbau, 2018; 60: 321-329.

Külekçi M, Aksoy A. Input-output energy analysis in pistachio production in Turkey. Environmental Progress & Sustainable Energy, 2013; 32(1): 128-133.

Gökdoğan O, Baran M F, Eren Ö, Oğuz H İ. Determination of energy use efficiency and greenhouse gas (GHG) emissions of pistachio (Pistacia vera L.) production in Adıyaman province. Erwerbs-Obstbau, 2022; 64: 291-297.

Anonym. Kırklareli İl Özel İdaresi. http://www.kirklareliilozelidaresi.gov.tr/cografi-konumu 2022; (Accessed on: 4.3.2022).

Karagölge C, Peker K. Tarım ekonomisi araştırmalarında tabakalı örnekleme yönteminin kullanılması. Atatürk Üniversitesi, Ziraat Fakültesi Dergisi, 2002; 33(3): 313-316 (in Turkish).

Mohammadi A, Tabatabaeefar A, Shahin S, Rafiee S,Keyhani A. Energy use and economical analysis of potato production in Iran a case study: Ardabil Province. Energy Conversion and Management, 2008; 49: 3566-3570.

Mohammadi A, Rafiee S, Mohtasebi S S, Rafiee H. Energy inputs-yield relationship and cost analysis of kiwifruit production in Iran. Renewable Energy, 2010; 35: 1071-1075.

Singh H, Mishra D, Nahar N M., Ranjan M. Energy use pattern in production agriculture of a typical village in Arid Zone India (Part II). Energy Conversion Management, 2003; 44: 1053-1067.

Koçtürk O M., Engindeniz S. Energy and cost analysis of sultana grape growing: A case study of Manisa, west Turkey, Afr J Agric Res. 2009; 4(10): 938-943.

Hughes D J, West J S, Atkins S D, Gladders P, Jeger M J, Fitt B D. Effects of disease control by fungicides on greenhouse gas emissions by U.K. arable crop production. Pest Manag. Sci, 2011; 67: 1082-1092.

Karaağaç H A, Baran M F, Mart D, Bolat A, Eren Ö. Nohut üretiminde enerji kullanım etkinliği ve sera gazı (GHG) emisyonunun belirlenmesi (Adana ili örneği). Avrupa Bilim ve Teknoloji Dergisi, 2019; 16: 41-50 (in Turkish).

Houshyar E, Dalgaard T, Tarazgar M H, Jorgensen U. Energy input for tomato production what economy says, and what is good for the environment. Journal of Cleaner Production, 2015; 89: 99-109.

Khoshnevisan B, Shariati H M, Rafiee S, Mousazadeh H. Comparison of energy consumption and GHG emissions of open field and greenhouse strawberry production. Renewable and Sustainable Energy Reviews, 2014; 29: 316-324.

Mani I, Kumar P, Panwar J S, Kant K. Variation in energy consumption in production of wheat-maize with varying altitudes in Hill Regions of Himachal Prades, India. Energy, 2007; 32: 2336-2339.

Karaağaç M A, Aykanat S, Cakır B, Eren Ö, Turgut M M, Barut Z B, Öztürk H H. Energy balance of wheat and maize crops production in Hacıali Undertaking. 11th International Congress on Mechanization and Energy in Agriculture Congress, 2011; 388-391.

Singh J M. On farm energy use pattern in different cropping systems in Haryana, India. International Institute of Management University of Flensburg, Sustainable Energy Systems and Management. Master of Science, Germany, 2002.

Kızılaslan H. Input-output energy analysis of cherries production in Tokat Province of Turkey. Applied Energy, 2009; 86: 1354-1358.

Yaldız O, Öztürk H H, Zeren Y, Başçetinçelik A. Energy usage in production of field crops in Turkey. 5th International Congress on Mechanization and Energy in Agriculture, Kuşadası, Turkey, 1993; 527-536 (in Turkish).

Demircan V, Ekinci K, Keener H M, Akbolat D, Ekinci Ç. Energy and economic analysis of sweet cherry production in Turkey: A case study from Isparta Province rovince. Energy Conversion and Management, 2006; 47: 1761-1769.

Ertekin C, Çanakcı M, Külcü R, Yaldız O. Energy use in legume cultivation in Turkey. XVIIth World Congress of the International Commission of Agricultural and Biosystems Engineering (CIGR). Québec, Canada, June, 2010; 13-17, 1-9.

Bilalis D, Kamariari P-E, Karkanis A, Efthimiadou A, Zorpas A, Kakabouki, I. Energy inputs, output and productivity in organic and conventional maize and tomato production, under Mediterranean Conditions. Not Bot Horti Agrobot, 2013; 41(1): 190-194.

Fluck R C, Baird C D. Agricultural Energetics. Connecticut: AVI, 1992.

Kitani, O. Energy for biological systems. In: The International Commission of Agricultural Engineering (ed) CIGR Handbook of Agricultural Engineering: Energy and Biomass Engineering, vol V (Ortiz-Ca˜navate J and Hernanz J L). American Society of Agricultural Engineers, 1999; 13-39.

Dyer J A, Desjardins R L. Carbon dioxide emissions associated with the manufacturing of tractors and farm machinery in Canada. Biosyst Eng. 2006; 93(1); 107-118.

Ekinci K, Demircan V, Atasay A, Karamursel D, Sarica D. Energy, economic and environmental analysis of organic and conventional apple production in Turkey. Erwerbs-Obstbau. 2020; 62: 1-12.

BioGrace-II. Harmonised calculations of biofuel greenhouse gas emissions in Europe. BioGrace, Utrecht, The Netherlands. 2015; http://www.biograce.net.

Eren Ö, Baran M F, Gökdoğan O. Determination of greenhouse gas emissions (GHG) in the production of different fruits in Turkey. Fresenius Environ Bull, 2019; 28(1): 464-472.

Lal R. Carbon emission from farm operations. Environment International, 2004; 30: 981-990.

Taghavifar H, Mardani A. Prognostication of energy consumption and greenhouse gas emissions analysis of apple production in West Azerbayjan in Iran using artificial neural network. J Clean Prod, 2015; 87: 159-167.

Meisterling K, Samaras C, Schweizer V. Decisions to reduce greenhouse gases from agriculture and product transport: LCA case study of organic and conventional wheat. J Clean Prod, 2009; 17(2): 222-230.

Gökduman E, Gökdoğan O, Yılmaz D. Determination of energy-economic balance and greenhouse gas (GHG) emissions of avocado (Persea americana Mill.) production in Turkey. Erwerbs-Obstbau, 2022; 64(4): 759-766.

Banaeian N, Namdari M. Effect of ownership on energy use efficiency in watermelon farms - A data envelopment analysis approach. International Journal of Renewable Energy Research, 2011; 1(3): 75-82.

Nabavi-Pelesaraei A, Sadeghzadeh A, Payman M H, Mobtaker H G. Energy flow modeling, economic and sensitivity analysis of eggplant production in Guilan province of Iran. Intl J Agri Crop Sci, 2013; 5(24): 3006-3015.




Copyright (c) 2023 International Journal of Agricultural and Biological Engineering

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

2023-2026 Copyright IJABE Editing and Publishing Office