Phase-feeding strategy for Chlorella vulgaris to enhance biomass and lipid productivity

Chang Haixing, Liao Qiang, Fu Qian, Huang Yun, Xia Ao, Zheng Yaping, Sun Yahui, Zhu Xun

Abstract


A phase-feeding strategy of nutrients based on requirements of Chlorella vulgaris in different physiological phases was examined to maximize the biomass and lipid productivity. This strategy includes reduction of duration in adaption phase (stage-I), enhancement of biomass in growth phase (stage-II) and improvement of lipid productivity in stationary phase (stage-III). The duration of microalgae in adaption phase was reduced from 52 h to 34 h at nitrogen and phosphorus feeding rates of 5.11 mg/(L·d) and 0.54 mg/(L·d), whereas the maximum biomass concentration during growth phase was improved to (4.03±0.25) g/L at nitrogen and phosphorus feeding rates of 20.04 mg/(L·d) and 4.21 mg/(L·d). In stationary and decline phases, a maximum lipid productivity of 132.30 mg/(L·d) was achieved when nutrients supply was stopped at 128 h, which was 28.86 mg/(L·d) higher than that when nutrients supply was stopped at 104 h. This multi-phase cultivation could be a promising strategy for simultaneous enhancement of microalgae biomass and lipid productivity.
Keywords: cultivation strategy, lipid productivity, microalgae, nutrients regulation
DOI: 10.3965/j.ijabe.20171002.2735

Citation: Chang H X, Liao Q, Fu Q, Huang Y, Xia A, Zheng Y P, et al. Phase-feeding strategy for Chlorella vulgaris to enhance biomass and lipid productivity. Int J Agric & Biol Eng, 2017; 10(2): 205–215.

Keywords


cultivation strategy, lipid productivity, microalgae, nutrients regulation

References


Chen M, Tang H, Ma H, Holland T C, Ng K Y, Salley S O. Effect of nutrients on growth and lipid accumulation in the green algae Dunaliella tertiolecta. Bioresour. Technol., 2011; 102: 1649–1655.

Pancha I, Chokshi K, Maurya F R, Trivedi K, Patidar S K, Ghosh A, et al. Salinity induced oxidative stress enhanced biofuel production potential of microalgae Scenedesmus sp. CCNM 1077. Bioresour. Technol., 2015; 189: 341–348.

Chisti Y. Biodiesel from microalgae. Biotechnol. Adv., 2007; 25(3): 294–306.

Tan C H, Show P L, Chang J-S, Ling T C, Lan J C-W. Novel approaches of producing bioenergies from microalgae: A recent review. Biotechnol. Adv., 2015; 33(6): 1219–1227.

Xia L, Ge H, Zhou X, Zhang D, Hu C. Photoautotrophic outdoor two-stage cultivation for oleaginous microalgae Scenedesmus obtusus XJ-15. Bioresour. Technol., 2013; 144: 261–267.

Griffiths M J, Harrison S T L. Lipid productivity as a key characteristic for choosing algal species for biodiesel production. J. Appl. Phycol., 2009; 21(5): 493–507.

Rodolfi L, Chini Zittelli G, Bassi N, Padovani G, Biondi N, Bonini G, et al. Microalgae for oil: strain selection, induction of lipid synthesis and outdoor mass cultivation in a low-cost photobioreactor. Biotechnol. Bioeng., 2009; 102(1): 100–112.

Chang H-X, Fu Q, Huang Y, Xia A, Liao Q, Zhu X, et al. An annular photobioreactor with ion-exchange-membrane for non-touch microalgae cultivation with wastewater. Bioresour. Technol., 2016; 219: 668–676.

Chu F F, Chu P N, Shen X F, Lam P K, Zeng R J. Effect of phosphorus on biodiesel production from Scenedesmus obliquus under nitrogen-deficiency stress. Bioresour. Technol., 2014; 152: 241–246.

Mattos E R, Singh M, Cabrera M L, Das K C, Biorefining Carbon Cycling P. Effects of inoculum physiological stage on the growth characteristics of Chlorella sorokiniana cultivated under different CO2 concentrations. Appl. Biochem. Biotechnol., 2012; 168(3): 519–530.

Roleda M Y, Slocombe S P, Leakey R J G, Day J G, Bell E M, Stanley M S. Effects of temperature and nutrient regimes on biomass and lipid production by six oleaginous microalgae in batch culture employing a two-phase cultivation strategy. Bioresour. Technol., 2013; 129: 439–449.

Arumugam M, Agarwal A, Arya M C, Ahmed Z. Influence of nitrogen sources on biomass productivity of microalgae Scenedesmus bijugatus. Bioresour. Technol., 2013; 131: 246–249.

Mujtaba G, Choi W, Lee C G, Lee K. Lipid production by Chlorella vulgaris after a shift from nutrient-rich to nitrogen starvation conditions. Bioresour. Technol., 2012; 123: 279–283.

Ra C H, Kang C-H, Kim N K, Lee C-G, Kim S-K. Cultivation of four microalgae for biomass and oil production using a two-stage culture strategy with salt stress. Renew. Energ., 2015; 80: 117–122.

Su C-H, Chien L-J, Gomes J, Lin Y-S, Yu Y-K, Liou J-S, et al. Factors affecting lipid accumulation by Nannochloropsis oculata in a two-stage cultivation process. J. Appl. Phycol., 2010; 23(5): 903–908.

Fu Q, Chang H-X, Huang Y, Liao Q, Zhu X, Xia A, et al. A novel self-adaptive microalgae photobioreactor using anion exchange membranes for continuous supply of nutrients. Bioresourc. Technol., 2016; 214: 629–636.

Cheng J, Huang Y, Feng J, Sun J, Zhou J, Cen K. Improving CO2 fixation efficiency by optimizing Chlorella PY-ZU1 culture conditions in squential bioreactors. Bioresour. Technol., 2013; 144: 321–327.

Vogels M, Zoeckler R, Stasiw D, Cerny L. P. F. Verhulst's “notice sur la loi que la populations suit dans son accroissement” from correspondence mathematique et physique. Ghent, vol. X, 1838. J. Biol. Phys., 1975; 3(4): 183–192.

Chang H-X, Huang Y, Fu Q, Liao Q, Zhu X. Kinetic characteristics and modeling of microalgae Chlorella vulgaris growth and CO2 biofixation considering the coupled effects of light intensity and dissolved inorganic carbon. Bioresour. Technol., 2016; 206: 231–238.

Bligh E G, Dyer W J. A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol., 1959; 37(8): 911–917.

Miao X L,Wu Q Y. Biodiesel production from heterotrophic microalgae oil. Bioresour. Technol., 2006; 97(6): 841–846.

Guo F, Wang H, Wang J, Zhou W, Gao L, Chen L, et al. Special biochemical responses to nitrogen deprivation of filamentous oleaginous microalgae Tribonema sp. Bioresour. Technol., 2014; 158: 19–4.

Chen W, Zhang Q, Dai S. Effects of nitrate on intracellular nitrite and growth of Microcystis aeruginosa. J. Appl. Phycol., 2009; 21(21): 701–706.

Beardall J, Roberts S, Raven J A. Regulation of inorganic carbon acquisition by phosphorus limitation in the green alha Chlorella emersonii. Can. J. Bot.-Rev. Canadienne De Botanique, 2005; 83(7): 859–864.

Wu H, Miao X. Biodiesel quality and biochemical changes of microalgae Chlorella pyrenoidosa and Scenedesmus obliquus in response to nitrate levels. Bioresour. Technol., 2014; 170: 421–427.

Feng D, Chen Z, Xue S, Zhang W. Increased lipid production of the marine oleaginous microalgae Isochrysis Zhangjiangensis (Chrysophyta) by nitrogen supplement. Bioresour. Technol., 2011; 102: 6710–6716.

Takagi M, Watanabe K, Yamaberi K, Yoshida T. Limited feeding of potassium nitrate for intercellular lipid and triglyceride accumulation of Nannochloris sp UTEX LB1999. Appl. Microbiol. Biotechnol., 2000; 54(1): 112–117.

Ho S H, Chen W M, Chang J S. Scenedesmus obliquus CNW-N as a potential candidate for CO2 mitigation and biodiesel production. Bioresour. Technol., 2010; 101(22): 8725–8730.

Singh B, Guldhe A, Rawat I, Bux F. Towards a sustainable approach for development of biodiesel from plant and microalgae. Renew. Sustain. Energ. Rev., 2014; 29(7): 216–245.

Hsieh C H, Wu W T. Cultivation of microalgae for oil production with a cultivation strategy of urea limitation. Bioresour. Technol., 2009; 100: 3921–3926.

Liang K, Zhang Q, Gu M, Cong W. Effects of phosphorus on lipid accumulation in freshwater microalgae Chlorella sp. J. Appl. Phycol., 2012; 25(1): 311–318.

Zheng Y P, Huang Y, Liao Q, Zhu X, Fu Q, Xia A. Effect of wettability on the growth of Scenedesmus obliquus biofilm attached on glass surface coated with polytetrafluoroethylene emulsion. Int. J. Hydrogen Energ., 2016; 41(46): 21728–21735.


Full Text: PDF

Creative Commons License
This work is licensed under a Creative Commons Attribution 3.0 License.