### Optimal design of velocity sensor for open channel flow using CFD

#### Abstract

Keywords: computational fluid dynamics, flow measurement, sensors, flow velocity, open channel

DOI: 10.3965/j.ijabe.20171003.2147

Citation: Dvorak J S, Zhang N Q. Optimal design of velocity sensor for open channel flow using CFD. Int J Agric & Biol Eng, 2017; 10(3): 130–142.

#### Keywords

#### References

Camnasio E, Orsi E. Calibration method of current meters.

J Hydraul Eng, 2011; 137(3): 386–97.

Muste M, Vermeyen T, Hotchkiss R, Oberg K. Acoustic velocimetry for riverine environments. J Hydraul Eng, 2007; 133(12): 1297–8.

Rehmel M. Application of acoustic Doppler velocimeters for streamflow measurements. J Hydraul Eng, 2007; 133(12): 1433–8.

Song Z,Wu T,Xu F,Li R. A simple formula for predicting settling velocity of sediment particles. Water Science and Engineering, 2008; 1(1): 37–43.

Reis S, Seto E, Northcross A, Quinn N W T, Convertino M, Jones R L, et al. Integrating modelling and smart sensors for environmental and human health. Environmental Modelling & Software, 2015; 74: 238–46.

Wong B P, Kerkez B. Real-time environmental sensor data: An application to water quality using web services. Environmental Modelling & Software, 2016; 84: 505–17.

Luo H, Li G, Peng W, Song J, Bai Q. Real-time remote monitoring system for aquaculture water quality. Int J of Agric & Biol Eng, 2015; 8(6): 136–143.

Jin N, Ma R, Lv Y, Lou X. A novel design of water environment monitoring system based on WSN. International Conference on Computer Design and Applications, IEEE, 2010; V2-593-V2-597.

Gartia M R, Braunschweig B, Chang T-W, Moinzadeh P, Minsker B S, Agha G, et al. The microelectronic wireless nitrate sensor network for environmental water monitoring. Journal of Environmental Monitoring, 2012; 14(12): 3068–75.

Mueller D S, Abad J D, Garcia C M, Gartner J W, Garcia M H, Oberg K A. Errors in acoustic Doppler profiler velocity measurements caused by flow disturbance. J Hydraul Eng, 2007; 133(12): 1411–20.

Tokyay T, Constantinescu G, Gonzalez-Casto J A. Investigation of two elemental error sources in boat-mounted acoustic Doppler current profiler measurements by large eddy simulations. J Hydraul Eng, 2009; 135(11): 875–87.

Levesque V A, Oberg K A. Computing discharge using the index velocity method. Techniques and Methods 3–A23. Reston, Va.: U.S. Geological Survey, 2012.

Bigham D. Calibration and testing of a wireless suspended sediment sensor. MS Thesis. Manhattan, Kans.: Kansas State University, 2012.

Zhang N, Dvorak J S, Zhang Y. A correlation-based optical flowmeter for enclosed flows. Transactions of the ASABE, 2013; 56(6): 1511–22.

Dvorak J S, Bryant L E. An optical sprayer nozzle flow rate sensor. Transactions of the ASABE, 2015; 58(2): 251–259.

Dvorak J S, Stombaugh T S, Wan Y. Nozzle Sensor for In-System Chemical Concentration Monitoring, 2016; 59(5): 1089–1099.

ANSYS. ANSYS FLUENT Users Guide. Release 13.0. Canonsburg, Pa. 2010.

Launder B E, Spalding D B. Lectures in mathematical models of turbulence. New York,: Academic Press; 1972. p 169.

Shih T H, Liou W W, Shabbir A, Yang Z, Zhu J. A new k-ϵ eddy viscosity model for high reynolds number turbulent flows. Computers & Fluids, 1995; 24(3): 227–38.

ANSYS. ANSYS FLUENT Theory Guide. Release 13.0. Canonsburg, Pa.2010.

Wolfshtein M. The velocity and temperature distribution in one-dimensional flow with turbulence augmentation and pressure gradient. Int J Heat Mass Tran, 1969; 12(3): 301–18.

Jongen T. Simulation and modeling of turbulent incompressible fluid flows: École polytechnique fédérale de Lausanne; 1998.

Menter F R. Two-equation eddy-viscosity turbulence models for engineering applications. AIAA Journal, 1994; 32(8): 1598–605.

Fourniotis N T, Toleris N E, Dimas A A, Demetracopoulos A C. Numerical computation of turbulence development in flow over sand dunes. Advances in Water Resources and Hydraulic Engineering. Berlin Heidelberg: Springer; 2009. pp. 843–8.

Blasius H. Grenzschichten in Flüssigkeiten mit kleiner Reibung. Organ für angewantde mathematik, 1908; 56: 1–38.

Blasius H. Das Ähnlichkeitsgesetz bei Reibungsvorgängen in Flüssigkeiten: Springer; 1913.

Kármán T V. Über laminare und turbulente Reibung. ZAMM‐Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik, 1921; 1(4): 233–52.

This work is licensed under a Creative Commons Attribution 3.0 License.