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Abstract: A smart sprayer comprises a detection system and a chemical spraying system. In this study, the development status 
and challenges of the detection systems of smart sprayers are discussed along with perspectives on these technologies.  The 
detection system of a smart sprayer is used to collect information on target areas and make spraying decisions.  The spraying 
system controls sprayer operation.  Various sensing technologies, such as machine vision, spectral analysis, and remote 
sensing, are used in target detection.  In image processing, morphological features are employed to segment characteristics 
such as shape, structure, color, and pattern.  In spectral analysis, the characteristics of reflectance and multispectral images are 
applied in crop detection.  For the remote sensing application, vegetation indices and hyperspectral images are used to provide 
information on crop management.  Other sensors, such as thermography, ultrasonic, laser, and X-ray sensors, are also used in 
the detection system and mentioned in the review.  On the basis of this review, challenges and perspectives are suggested.  
The findings of this study may aid the understanding of smart sprayer systems and provide feasible methods for improving 
efficiency in chemical applications. 
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1  Introduction  

Weed control, disease infection, and insect damage 
are significant issues in agricultural crop production. 
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Weeds compete with crop plants for moisture, 
nutrients,and sunlight.  If uncontrolled, disease infection 
and insect damage have detrimental effects on crop yield 
and quality.  A number of studies have documented the 
yield loss associated with weeds, disease, and insect 
infestations[1].  Shrefler et al.[2] found that competition 
from spiny amaranth (Amaranthus spinosus L.) in lettuce 
fields reduced head weight and quality. Martelli et al.[3] 
reported that nearly 60% of the total losses in grape 
production worldwide are due to virus diseases.  Yang[4] 
indicated that the widespread Greenburg outbreak occurs 
every five to seven years with considerable yield losses.  

The use of chemicals has contributed to weed control 

and prevention of biotic stresses such as diseases and 

insect infestation.  However, many surveys and 

experiments revealed that excessive use of pesticides, 

fungicides, and herbicides resulted in waste, chemical 

residues in foods and emission into the air and soil.  
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Dependence on chemicals imposes potential adverse 

effects on human health and the environment[5-10], and 

growing concern has emerged regarding the increasing 

number of issues associated with inefficient chemical 

use[11,12]. 

Three general spraying patterns are currently used 
(Figure 1): broadcast, band, and targeted spraying.  The 
traditional method of broadcast spraying is characterized 
by considerable inefficiency because an entire area is 
sprayed regardless of whether there are targets or 
non-targets presented in the area.  This approach has 
resulted in up to 60%-70% of off-target losses[13].  To 
reduce waste and environmental pollution stemming from 
off-target losses, band and targeted spraying methods 
were developed.  In band spraying, only selected regions 
are treated.  Experimental results in the field showed 

that band application and mechanical practice can reduce 
chemical use and impose minimal environmental 
effects[14-16].  The target spraying system involves the 
detection of damaged or infected plots or plants in the 
field, and features real-time control of sprayer operation.  
Brown et al.[17] compared the ground deposits and runoff 
resulting from targeted spraying with those from 
conventional broadcasting spraying in dormant orchards.  
Their results showed that targeted spraying achieved a 
41% reduction in ground deposition and reduced 
pesticide concentration in surface water runoff by 44%.  
The target spraying system is a precise method for 
reducing unnecessary chemical spraying that may affect 
environmentally sensitive areas, humans, and 
non-targeted crops. 

 
Figure 1  Three general spraying patterns: Broadcast, band and targeted spraying 

 
Traditional target spraying is manually carried out 

with a hand-held pump.  With the development of 
sensing techniques and mechanical cultivation, the “smart 
sprayer” was developed to satisfy the requirements for 
automatic spraying.  The smart sprayer is an integrated 
system of target detection sensors, analytical methods, 
atomizing spray devices, and control systems.  The 
smart sprayer contributes the following advantages to 
sustainable agriculture: (1) real-time detection of crop 
growth; (2) targeted analysis and decision making 
regarding chemical sprays; and (3) precise operation and 
reduction of manual labor through optimized tools.  It is 
an efficient approach to solve the issues of chemical 
waste reduction and product quality enhancement.  

In this study, the smart sprayer based on the detection 
technique was discussed.  The target detection and spray 
control systems were analyzed.  The results showed that 

in this system, various sensing techniques, such as 
machine vision, spectral analysis, and remote sensing, are 
applied.  These are widely used in plant recognition and 
classification.  The general applications and 
development status of the smart sprayer were also 
described.  On the basis of the summary of related 
research, challenges and perspectives were suggested.  

2  Smart spraying system 

Slaughter et al.[18] observed that a general-purpose 
autonomous robotic weed control system has four core 
technologies: sensing technology for detection (machine 
vision and hyperspectral imaging), global positioning 
system for guidance (Real-time Kinematic Global 
Positioning System), variable rate application techniques, 
and robotics for spraying execution (micro-spray, cutting, 
thermal, and electrocution).  A smart spraying system 
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should consist of a detection system and a chemical 
spraying system (Figure 2).  A detection system 
integrates target detection sensors, data processing, and 
decision making systems, while a spraying system 
includes a spraying control unit and sprayer (nozzle).  
The detection system of smart sprayers is used to detect 
information on target areas and make spraying decisions.  
The spraying system controls sprayer operation.  Upon 
acquisition of information, the nozzles are activated to 
spray chemicals over the target area. 

 
Figure 2  Smart spraying system based on sensing technology 

 
2.1  Detection system 

A detection system, benefits from sensing 
technologies, includes image sensors, spectrometers, 
remote sensing devices, thermographs, and laser sensors, 
among others (Figure 3).  Typically, these technologies 
are developed on the basis of spectroscopy.  The 
analysis of spectral characteristics reveals that green 
plants typically display low reflectance in the visible 
region because of their strong absorptance by 
photosynthetic and accessory plant pigments.  By 
contrast, little absorptance is achieved by subcellular 
particles or pigments in the near-infrared (NIR) region. 
Spectral technology can be used to detect plant 
patches[19-21].  Three main methods are applied: image 
analysis with a camera/filter, spectrophotometric 
measurement, and remote sensing. 

 
Figure 3  Target detection sensors 

In weed detection, the elimination of weeds between 
crop rows is achieved through machine vision, which 
distinguishes weeds from the soil background[22-24].  
Ahmed et al.[25] applied biological morphology 
algorithms to segment the shape and structure of weeds in 
the field.  The shapes of weeds were classified by edge 
segmentation and more than 94% classification accuracy 
was obtained from 140 images.  Burks et al.[26] analyzed 
the visual texture features of weed images.  The color 
co-occurrence method used by the authors generated a 
classification accuracy of 93% among five weed species 
and soil types.  Prion et al.[27] found that the combination 
of filters that were centered at 450 nm, 550 nm and 700 
nm was sufficient for discriminating weeds from carrots 
at an accuracy of 72%. 

The detection system is also used in disease and 
insect detection.  To detect the yellow rust disease of 
winter wheat, Moshou et al.[28] measured canopy spectral 
reflectance.  Neural networks were used to classify 
infected and healthy leaves, and classification accuracy 
reached 99%.  The combined measurement of 
hyperspectral (450-900 nm) and fluorescence images 
worked effectively in discriminating a disease from a 
healthy plant[29].  Yang et al.[4] applied remote sensing 
techniques to detect stress in wheat caused by aphid 
infestation.  Ratio-based vegetation indices (based on 
800/450 nm and 950/450 nm) were found useful in 
differentiating stresses in wheat caused by two aphid 
species.  Sankaran et al.[30] focused on the application of 
mid-infrared spectroscopy to detect Huanglongbing in 
citrus leaves.  The spectral peak in the 9 000-10 500 nm 
region was found distinctly different in healthy and 
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huanglongbing-infected leaf samples.  All the results 
from the aforementioned studies can aid decision making 
for chemical spraying in the field. 
2.2  Spraying system  

To efficiently execute chemical spraying, the spray 
system was improved by using spraying techniques and 
variable control as bases.  Air-blast and electrostatic 
techniques are currently applied in the sprayer[31,32].  
Because the air-blast sprayer carries chemicals to the 
target via a large fan, it causes substantial pollution with 
pesticide-laden drift and mist.  The electrostatic 
technique was developed on the basis of the principle that 
like charges repel and unlike charges attract.  An 
electrostatic sprayer rectifies the problem of pesticide 
deposition and consequently reduces waste discharged 
into the ecosystem[33,34].  Furthermore, a tunnel sprayer 
combines the electrostatic technique with the recycle 
hood to spray in rows. Most of the drift and mist are 
recycled by deposition along the wall of the hood.  The 
electrostatic method provides an efficient way to reduce 
pesticide use[35,36].  

With the creation of the automatic control system and 
variable-rate herbicide application systems that are based 
on direct injection equipment, were developed to enable 
real-time spraying with fewer chemicals[37,38].  Smith 
and Thomson[39] developed a direct injection system to 
control pesticide concentration.  Pulse width modulation 
technology was also applied in variable-rate field 
sprayers and proved to be an effective method for weed 
control spraying[40,41].  Bui[42] presented a VariTarget 
nozzle with controllable flow rate and droplet size.  The 
nozzle combines a variable-area pre-orifice and a 
variable-area spray orifice, and is used with pressure 
regulators or an automatic rate controller. 

3  Key techniques applied in the detection 
system of a smart sprayer  

As previous studies described, target detection is 
fundamental to the smart spraying system for precise 
agricultural production.  In the development of smart 
spraying systems, sensing technology has been 
emphasized as an effective method for collecting 
information in the field and facilitating decision making 

regarding precise field operations[43-45].  The applied 
techniques in target detection are focused on machine 
vision, spectral analysis, and remote image processing, 
among others.  Single or multiple sensors are applied in 
smart spraying systems for special requirements: (1) 
target detection and measurement; (2) species recognition 
and classification; and (3) detection and evaluation of 
plant disease or level of pest damage. 
3.1  Machine vision 

Ground-based machine vision has been applied in 
target detection.  In image processing, morphological 
features are used to segment external appearance such as 
shape, structure, color and pattern, as well as the form 
and structure of internal components[46].  The shape 
features of leaves have been successfully used in plant 
recognition and classification[47-52]. 
3.1.1  Application in weed control 

Pérez et al.[22] proposed color and shape analysis for 
weed detection in cereal fields.  The green and red 
channels of color images were used to build the image 
index (normalized difference index, NDI) to discriminate 
between vegetation and background.  The shape 
segmentation was analyzed to distinguish between crops 
and weeds.  The performance of the weed detection 
algorithms were assessed by comparing the results from 
visual surveying.  The results showed that the 
correlation improved from 75% to 85% when shape 
analysis was used.  Ghazali et al.[53] developed an 
intelligent real-time system for automatic weeding 
strategy in oil palm plantations.  Three image processing 
algorithms were used to identify and discriminate the 
weed types.  These are grey level co-occurrence matrix, 
fast Fourier transform, and scale-invariant feature 
transform.  The results for tested offline images showed 
that scale-invariant feature transform achieved 99.5% and 
99.8% accurate classification rates for narrow and broad 
weed recognition, respectively.  The classification rates 
recorded for grey level co-occurrence matrix were 81% 
and 81.5%, and those for fast Fourier transform were 
89.2% and 91%.  

Tian et al.[54,55] developed a precision chemical 
application system guided by machine vision.  As shown 
in Figure 4, multiple cameras are used to collect images 
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in the field.  Each image is first segmented with an 
environmentally adaptive segmentation algorithm, which 
specifies the boundaries of a region in the hue, saturation, 
and intensity (HSI) color space.  The crop rows are 
identified and the inter-row area is used for the 
measurement of weed infestation conditions.  The 
inter-row weeds are separated from crop plants. Weed 
numbers in each unit area and average weed size are used 
as basis for making spraying decisions.  The test results 
for the system showed that it can save herbicide by 48% 
with 0.5% weed coverage as the control zone 

threshold.    

 
Figure 4  Sprayer system based on machine vision 

 
3.1.2  Application in disease detection 

Camargo and Smith[56] studied a machine vision 
system for the identification of the visual symptoms of 
plant disease.  The diseased regions shown in the digital 
images of cotton crops were enhanced and segmented.  
A set of shape and appearance features were extracted: (1) 
Eight parameters were used to describe the shape features, 
including solidity, extent, major and minor axis lengths, 
eccentricity, centroid, diameter, and area of the diseased 
region.  (2) The co-occurrence matrix was applied to 
calculate image texture.  (3) The dimensions were 
measured using the fractal dimension method.  (4) The 
lacunarity was calculated using the gliding box algorithm, 
and associated with patterns of spatial dispersion.  In 
addition, grey levels, grey histogram discrimination and a 
Fourier descriptor were considered.  A machine learning 
method based on a support vector machine algorithm 
(SVM) was used to build the classification model.  
Groups of candidate features were used as input for the 
classifier.  The classification results indicated that the 
highest classification rate (83%) was achieved for group 
texture, while the lowest was achieved for the features 
making up the group shape (55%).  When all the 
features were used, however, a classification accuracy of 
90% was reached.  

To verify the need for fungicide application in the 
early stage of rust infection, Cui et al.[57] detected 
soybean rust by image processing.  A manual 
threshold-setting method based on the hue, saturation, 
and intensity color model was originally developed for 
segmenting infected areas from plant leaves.  Two 
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disease diagnostic parameters, ratio of infected area and 
rust color index, were extracted.  They were used as 
symptom indicators for quantifying rust severity.  To 
automatically segment the infected region, the centroid of 
leaf color distribution in the polar coordinate system was 
investigated.  Leaf images with various levels of rust 
severity were collected and analyzed.  Validation results 
showed that the threshold-setting method was capable of 
detecting soybean rust severity under laboratory 
conditions, whereas the centroid-locating method 
presented potential for field application. 
3.2  Spectral analysis  

The spectral characteristics of vegetation are powerful 
parameters used to estimate biomass or vegetation vigor.  
The general applied wavelength of green vegetation is 
referred from the visible (400-700 nm) to the NIR 
spectrum (700-2 500 nm).  The analyses of spectral 
characteristics are a rapid, nondestructive technique for 
crop feature selection and classification.  
3.2.1  Analysis of spectral characteristics  

Spectral characteristics can describe the pigments and 
biochemical components in plants.  Studying these 
features is an effective method of identifying plant 
species and health status.  A number of studies have 
documented plant detection using spectral 
techniques[58,59].  

To guide fungicide application in grapevines, Naidu 
et al.[60] discussed the spectral characteristics of grape 
with grapevine leafroll disease (GLD).  The differences 
in spectral characteristics between healthy and infected 
leaves were found at the green (near 550 nm), short-wave 
NIR (near 900 nm), and NIR (near 1 600 and 2 200 nm) 
peaks.  Stepwise discriminant analysis was applied to 
evaluate the wavelengths and vegetation indices for GLD 
detection.  Wavelengths (531, 570, 752 nm, etc.) and 
vegetation indices (normalized difference vegetation 
index, NDVI), red-edge vegetation stress index (RVSI), 
photochemical reflectance index (PRI), etc., were 
selected to measure the reflectance changes of 
GLD-infected leaves.  The classification results showed 
that the multiple variables produced higher accuracy than 
the single variable did.  The classification, in which 
RVSI was used for all infected leaves, resulted in an 

accuracy of 0.72.  When RVSI was combined with the 
reflectance in the blue band (470-490 nm) and 526 nm 
wavelength, the accuracy increased to 0.78.  Similarly, 
the highest classification accuracy for non-symptomatic 
leaves (752 nm) was 0.71 when a single variable was 
used.  The same variable, combined with the NIR band 
(765-830 nm), 970 and 684 nm wavelengths, and PRI, 
generated a classification accuracy of 0.75.  The spectral 
reflectance technique presents promising potential for 
GLD detection.  

Xu et al.[61] measured the spectral characteristics of 
tomato leaves damaged by leaf miners.  Tomato leaf 
damage was classified into five scales using the severity 
levels observed on the surfaces of the plant leaves as 
bases.  The analysis showed clear differences in spectral 
reflectance at various levels of infestation. Spectral 
reflectance significantly decreased with increasing 
severity level at the short NIR wavelengths (800-1 100 
nm), but increased with rising severity level in the 
individual bands of 1 450 and 1 900 nm.  A high 
correlation coefficient was observed between the severity 
level and sensitive bands of 1 450 and 1 900 nm.  Jones 
et al.[62] diagnosed bacterial spot on tomato using the 
spectral technique.  A laboratory spectrophotometer was 
used to collect the diffused reflectance of infected leaf 
samples.  The correlation coefficient spectrum, PLS 
regression, and an SMLR procedure were used to identify 
important wavelengths.  The selected wavelengths (395, 
630, 633-635, 750-760 nm, etc.) were used to construct 
predictive models by PLS and SMLR.  The results 
showed that the PLS model predicted disease in the 
validation dataset with an R2 of 0.77, and the SMLR 
model yielded the best prediction with an R2 of 0.82. 

Rumpf et al.[63] applied hyperspectral data to detect 
leaf spot disease, sugarbeet rust, and powdery mildew on 
sugarbeet leaves. Nine spectral vegetation indices [NDVI, 
ratio vegetation index (RVI), etc.], related to 
physiological parameters, were used as features for 
automatic classification.  A support vector machine 
algorithm was used to classify early differentiation 
between healthy and infected plants.  The discrimination 
results showed a classification accuracy of up to 97%.  
The multiple classifications of healthy leaves and 
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diseased leaves, showing symptoms characteristic of the 
three diseases, achieved a classification accuracy higher 
than 86%.  Moshou et al.[28] investigated the differences 
in spectral reflectance between healthy and diseased 
wheat plants [infected by early-stage Puccinia striiformis 
(yellow rust)].  The authors built classification models 
based separately on quadratic discrimination and 
self-organizing maps (SOMs).  As a result, classification 
performance increased from 95% to higher than 99%.  
These results were encouraging for the development of a 
cost-effective optical device for recognizing yellow rust 
at an early stage. 

In weed management, Vrindts et al.[64] measured the 
canopy reflectance of maize, sugarbeet, and seven weed 
species at 400-2 000 nm.  The spectral characteristics 
were also analyzed.  Six wavelengths (555, 675, 815, 1 
265, 1 455, and 1 665 nm) at characteristic points in the 
spectrum were selected to derive the RVI.  The 
STEPDISC and DISCRIM procedures in SAS were 
applied in the discrimination of crops (maize and 
sugarbeet) from weeds.  The classification result showed 
that crop and weeds could be recognized at an accuracy 
of higher than 97%.  More than 90% of sugarbeet and 
weeds could be identified correctly using a line 
spectrograph (480-820 nm) in classifying the plants.  
With the application of the spectral technique, the 
WeedSeeker sensor module was developed to detect the 
presence of weeds by measuring the reflectance of weeds 
and bare ground.  The module serves as a useful tool for 
locating weeds[65].  Using the same theory, Wang et al.[66] 
designed an optical weed sensor to classify wheat, bare 
soil, and weeds, for which classification rates of 100%, 
100%, and 71.6%, respectively, were obtained.  
3.2.2  Multi-spectral image processing 

Aside from imaging objects in the visible region 
(400-700 nm), some multispectral images, discussed in 
terms of the visible and NIR bands, are widely applied in 
plant detection[67].  Moushou et al.[29] detected yellow 
rust disease in winter wheat by the fusion of 
hyperspectral and multispectral image data.  
Hyperspectral reflection images of healthy and infected 
plants were taken with an imaging spectrograph under 
field and ambient lighting conditions.  Multispectral 

fluorescence images of the same plants were taken 
simultaneously using UV-blue excitation.  The fraction 
of pixels in one image, recognized as diseased, was set as 
the final fluorescence disease variable called the lesion 
index.  A spectral reflection method, based on only three 
wavebands (680 nm, 725 nm, and 750 nm), was 
developed to discriminate diseased from healthy plants, 
with an overall error of 11.3%.  The fluorescence-based 
method was less accurate, with an overall discrimination 
error of 16.5%.  However, a 94.5% discrimination rate 
was obtained using the fused images.  Data fusion was 
also performed using an SOM neural network, which 
decreased the overall classification error to 1%.  The 
experimental results clearly demonstrated that the data 
fusion from different optical sensors exhibited 
tremendous potential for the development of 
tractor-mounted disease detection systems. 

Cui et al.[68] detected soybean rust infection and 
severity.  Both a portable spectrometer and a 
multispectral CCD camera were used to collect spectral 
information of different rust severity from the leaves.  
Vegetation indices were used to investigate the possibility 
of detecting rust infection; these include the NDVI, green 
NDVI, RVI, difference vegetation index (DVI), and so on.  
The results indicated that DVI showed positive 
correlation with rust severity.  The infected region in the 
leaf was segmented by manual threshold.  Three image 
parameters were defined as the ratio of infected area, 
lesion color index, and rust severity index.  The severity 
of infection was evaluated.  The results showed that the 
rust severity index positively correlated with the severity 
of rust infection.  The research also demonstrated that 
the multispectral imaging method enabled laboratory- 
scale quantitative detection of soybean rust. 

Slaughter et al.[69] used multispectral images (384- 
810 nm) to distinguish lettuce plants from weeds.  The 
images were collected using a temperature-controlled 
camera equipped with a transmission grating lens and 
blue filter.  The RVI and NDVI were evaluated to 
distinguish between weeds and crops.  The RVI, 
obtained at 644 and 810 nm, resulted in a 57% 
classification rate, while the NDVI, obtained at 640 and 
810 nm, showed a classification rate of 60%.  Then a set 
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of different wavebands were used in related indices.  
The multiple indices (12 for RVI and 65 for NDVI) 
indicated an average classification accuracy of 90.3% in 
150 plants.  The same system was applied in a tomato 
field[70], and correctly recognized 95% of tomato foliage 
and more than 84% of four weed species (black 
nightshade, lamb squarter, red root pigweed, and 
purslane). 

Piron et al.[71] applied the multispectral stereoscopic 
vision system to detect in-row weeds.  The multispectral 
images were measured with the filters centered at 450 nm, 
550 nm, and 700 nm.  The manual segmentation 
between crops and weeds was carried out in three steps: 
(1) ground-plant segmentation resulting in a clean plant 
mask for each multispectral image; (2) segmentation 
between crops and weeds by manual creation of crude 
masks over the multispectral images; and (3) the creation 
of clean plant masks for each class (crops and weeds) by 
a logical AND operation on the corresponding masks 
from the first two steps.  The plant height (h) and 
number of days after sowing were calculated on the basis 
of stereoscopic information.  The multispectral and 
stereoscopic data were combined to distinguish the 
in-row weeds from carrots.  The results showed a 
classification accuracy of 86%. 
3.3  Remote sensing 

Remote sensors can acquire large-scale object 
information by aerial photography, satellite imaging, and 
ground-based data collection.  The analysis of spectral 
characteristics and vegetation indices are generally 
applied in the data processing.  Such analyses have been 
used effectively in monitoring the incidence of a number 
of plant disease infections[72-74]. 

Grisham et al.[75] applied hyperspectral remote 
sensing to detect sugarcane yellow leaf virus (SCYLV) 
infection in asymptomatic leaves.  The SCYLV was 
predicted with an accuracy of 73% using resubstitution 
and cross-validation.  The spectral analysis revealed that 
the discrimination wavelengths were in the ultraviolet 
(220-320 nm), blue (400-500 nm), green (500-590 nm), 
red (590-650 nm), and NIR (740-850 nm) ranges.  The 
SCYLV infection influenced the concentration of several 

leaf pigments, including violaxanthin, β-carotene, 

neoxanthin, and chlorophyll a. Pigment data and the 
discriminant function derived with resubstitution were 
also used to predict SCYLV infection, with an accuracy 
of 80% and cross-validation yielded 71% accuracy.  

Qin and Zhang[76] examined the applicability of the 
broadband high spatial resolution Airborne Data 
Acquisition and Registration (ADAR) system in remote 
sensing data to detect rice sheath blight.  On the basis of 
the field symptom measurements, a comprehensive field 
disease index (DI) was constructed to measure infection 
severity.  The direct digital number, band ratio indices, 
and standard difference indices were used to examine 
possible correlations between field and image data.  The 
correlation coefficient (above 0.62) indicated that 
broadband remote sensing imagery has the capability to 
identify rice disease.  However, the lightly diseased 
plants were difficult to separate from the healthy plants. 
For the same purpose, Huang et al.[77] evaluated the 
applicability and accuracy of hyperspectral imagery in 
quantifying the DI of yellow rust (biotrophic Puccinia 
striiformis) in wheat (Triticum aestivum L.).  The 
airborne hyperspectral images of the site were acquired 
over two successive seasons.  According to the data 
analysis, the PRI exhibited a significantly negative linear 
relationship with DI (R2 = 0.91).  Figure 5 shows the 
potential of PRI for quantifying yellow rust infection 
levels in winter wheat. 

To avoid insects damage and manage citrus pests, Du 
et al.[78] combined multispectral remote sensing and 
variable rate technology with environmental modeling.  
An airborne multispectral technique was developed to 
identify tree health problems in a citrus grove.  An 
unsupervised linear unmixing method was applied to 
classify grove images and quantify symptom severity for 
appropriate infection control.  The environmental model 
(PRZM-3) was applied to estimate environmental effects.  
The results indicated that the developed system reduced 
nonpoint source pollution by 92%.  Luedeling et al.[79] 
evaluated the feasibility of detecting spider mite damage 
in orchards.  The visible and NIR reflectance of peach 
canopy were measured. Normalized difference indices 
were evaluated for correlation with mite damage.  The 
results showed that index values were linearly correlated 
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with mite damage (R2
 = 0.47), allowing for the 

identification of mite hotspots.  These studies 
demonstrated the potential of remote sensing application 

in detecting plant growth status and precision spraying 
control. 

 
Figure 5  Classified disease index images derived from airborne images 

 

3.4  Others 
3.4.1  Thermography 

Thermal imaging, or infrared thermography imaging, 
is a type of infrared imaging technology.  The 
thermographic camera detects radiation in the infrared 
range of the electromagnetic spectrum (9 000–14 000 nm) 
and produces radiation images.  The surface temperature 
of leaves is a short-term phenomenon influenced by a 
variety of plant species, growth status, site-specific 
conditions, climatic factors, and the interactions among 
these variables.  Thermal imaging can monitor plant 
temperature distribution and plant energy[80].  Thus, it is 
expected to enable effective observation of plant disease 
symptoms and provide guidance for pesticide spraying 
control. 

In wheat fields, Lenthe et al.[81] used an infrared 
thermographic system to monitor the incidence and 
severity of disease induced by microclimatic conditions.  
Experiments were conducted on the detection and 
differentiation of leaf wetness at single-leaf and crop 
canopy scales under controlled conditions.  Although the 
results demonstrated the excellent potential of 
thermography for detecting plant health in terms of water 
status, its combination with other detectors was suggested 
to make up a precision detection system. 

Nicolas[82] developed a sensing system for optimizing 
data on fungicide application to the pathogen Septoria 
tritici in winter wheat.  The data were obtained in the 
optical (visible and NIR) and thermal infrared spectral 
range.  The sensors were suspended above plots that 
differed in terms of data on the candidate fungicide 
application to the wheat canopy, and constituted a range 
of different infestation levels.  The analysis of the 
relationship among the severity of the infestation, yield, 
and sensing data showed that the severity of S. tritici 
infestation was associated with a decrease in the NDVI 
and an increase in the canopy surface temperature.  In 
both optical and thermal ranges, the NDVI was more 
relevant to fungicide determination than to the thermal 
information.  However, the thermal infrared information 
increased the precision of the measurements.  Menesatti 
et al.[83] analyzed the potential of detecting the 
distribution of pesticide quality using infrared thermal 
images as bases.  The pesticide distribution quality was 
compared to the temperature differences observed in the 
thermal images in pre-treatment and post-treatment stages.  
According to the analysis, evaluating the quality of 
pesticide distribution from orchard sprayers is possible.  

Studies indicated that the application of thermal 
imaging was influenced by the interaction among plant 
water stress, nutritional content, and environmental 
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conditions.  More comprehensive researches should be 
devoted to this issue in the future. 
3.4.2  Ultrasonic, laser, and X-ray sensors  

Automatically measuring canopy characteristics or 
stem position is an essential step in orchard spraying 
management.  A variety of different sensors, such as 
ultrasonic, laser, and X-ray sensors, can be applied.  
Ultrasonic sensors generate high-frequency sound waves 
and evaluate the echo received by the sensor.  The 
calculated time interval between signal transmission and 
echo receipt can determine the distance of the sensor to 
an object.  These sensors are used to measure tree size 
and density, as well as control the spray system in 
orchards[84].  A 10-transducer ultrasonic system was 
used to measure the canopy volume of trees in an 
orchard[85,86].  The ultrasonic system measured volumes 
with an average prediction accuracy higher than 90% and 
a high correlation with manual measurements (R2 = 
0.95-0.99).  Schumann and Zaman[87] developed 
software for real-time ultrasonic mapping of tree canopy 
size.  The results indicated that the ultrasonic system is a 
reliable method for target site-specific management in 
orchards.  

A stem detection system, which uses a portable X-ray 
source, was developed for smart weed control in 
transplanted tomato fields.  The system projects an 
X-ray beam perpendicular to the crop row and parallel to 
the soil surface[88].  The main stem of a plant absorbs 
X-ray energy, decrease the intensity of the detected signal 
and enabling stem detection even under heavy leaf cover.  
The signal is used to control the operation of a pair of 
weed knives.  The detector consists of a linear array of 
photodiodes aligned perpendicular to the soil.  This 
configuration helps differentiate branches (which only 
some of the photodiodes are angled and blocked) and 

stems (which have the same vertical alignment) as arrays, 
thereby blocking all the photodiodes.  A field trial was 
conducted in a 15 m section of rows containing 39 tomato 
seedlings.  At a speed of 1.6 km/h, the detection system 
correctly identified all the 39 stems of upright plants. 

In addition, a laser scanning system was proven 
applicable to measure tree canopy height, width, and 
volume[89].  An increasing number of studies have 
reported that the combined system of lasers and other 
sensors can be applied in target detection and smart 
spraying control[90].  Nevertheless, such an integrated 
system is a non-selective sprayer with an ultrasonic, laser, 
or X-ray sensor control system.  It effectively functions 
only when tree canopy or stems are detected in the 
associated zone without any selection and precision 
evaluation.  Thus, building a target smart sprayer 
necessitates the combination of the integrated system 
with other target sensors. 
3.5  Summary of the detection techniques for the 
smart sprayer  

A smart spraying system is a targeted spraying system 
that features efficient chemical application and imposes 
minimal effects on the environment.  It is an effective 
technology that satisfies the requirements of precision 
agriculture.  The target detection and spraying control 
systems in smart sprayers have been discussed in the 
literature review section.  The detection system is used 
to determine information on target areas, and facilitates 
decision making regarding spraying.  The spraying 
system is used to control sprayer operation.  Various 
sensing techniques including machine vision, spectral 
analysis, remote sensing, and so on, are applied.  These 
are widely used in plant recognition and classification.  
Table 1 showed the summary of the detection techniques 
adopted for the smart spraying system. 

 

Table 1  Detection techniques for the smart sprayer 

No. Sensor Application  

1 Machine vision 
Application Weed detection, species classification, target recognition  

Evaluation It can be applied to satisfy various requirements.  The images are affected by environmental 
factors, such as light, target cover, and so on 

2 Spectral analysis 
Application Weed detection and classification, disease incidence, and insect damage evaluation 

Evaluation The spectral characteristics are different and change for different targets at different stages or 
conditions; the sensitive wavelength and vegetation index are complex issues 
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3 Remote sensing 
Application Target area detection, disease incidence, and insect damage detection 

Evaluation A good way to guide a helicopter sprayer.  It presents good detection accuracy, but limited by 
the costs.  In addition, it is inapplicable in small areas 

4 Thermal image 
Application Disease symptom and severity detection 

Evaluation Thermal images are influenced by the interaction among plant water stress, nutritional content, 
and environmental conditions 

5 Ultrasonic/laser/x-ray 

Application Object measurement and detection 

Evaluation Non-selective sprayer with a sensor control system functions effectively only when tree canopy 
or stems are detected in the associated zone. 

 

4  Conclusions 

Although considerable researches have been 
conducted on detection, most of these studies were 
carried out under ideal conditions.  Three major 
technical challenges, due to uncontrolled environmental 
conditions, are confronting sensor application in 
agricultural production:   

(1) Lighting conditions.  Lighting conditions are 
some of the most challenging issues in the field 
application of machine vision and spectral analysis.  
Plant reflectance can increase under intense sunlight, 
thereby pose difficulties in plant detection because of 
decreased differentiation among plant characteristics.  
Increased plant reflectance also distorts image colors.  
Thus, the data cannot be used for species classification 
under changing environments.  

(2) Leaf coverage.  Leaf coverage is an important 
aspect of crop recognition and discrimination, especially 
for machine vision.  Weeds that grow near crops or 
between rows of crops are difficult to measure and 
classify.  The information on canopy spectral reflectance 
may also lead to misclassification. 

(3) Growth status.  As indicated in numerous studies, 
plant disease or growth status can be detected by the color 
changes in plant images, spectral reflectance changes, or 
vegetation index characteristics of remote data.  
Different situations may affect the target; thus, the 
symptoms may also manifest differently. 

Despite these challenges, future developments are 
foreseeable to continue exhibiting trends of using 
detection techniques to improve spraying efficiency and 
reduce the environmental effects of agrochemical input. 
The findings of this study may aid the understanding of 

smart sprayer technology, and provide feasible methods 
for improving efficiency in chemical applications. 

(1) According to documented reports, multiple target 
features can be segmented from data derived by a single 
sensor.  For example, machine vision can be used to 
classify weeds and crops as plant infection or crop 
damage symptoms are segmented in the images.  To 
segment more information from a single sensor, real-time 
processing algorithms should be developed. 

(2) With regard to the limitations of a single sensor, 
multi-sensing information can serve as a supplement to 
improve detection accuracy.  With the development of 
sensing techniques, an integrated system with more than 
one or two detection sensors will be widely used.  As a 
result, data fusion for such devices should be developed.  

(3) Meanwhile, smart sprayers will be designed to 
satisfy unique specifications.  With the development of 
intensive agricultural methods, specialized mechanical or 
chemical sprayers will be created for different 
applications. 
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