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Nondestructive discrimination of moldy pear core based on the recurrence

plots of vibration acoustic signals and deep convolutional neural networks
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Abstract: Moldy core is a serious internal defect in pears. Since there is no significant difference in appearance between the
healthy pears and those with mild moldy core, it is still a great challenge for the early detection of moldy pear core. This study
transformed the vibration acoustic signals (VA signal) of pears into recurrence plots and Markov transition field to enable
image-based classification of moldy cores. In addition to traditional machine-learning baselines (Random Forest and k-Nearest
Neighbors) trained on LBP-extracted texture features from RP/MTF, the deep models were constructed and compared, which
include ResNet-101, DenseNet-121, SqueezeNet, Vision Transformer (ViT), and an improved SqueezeNet (ISqueezeNet).
Hyperparameters were tuned via Bayesian optimization over optimizer type, learning rate, batch size, and L2 weight decay,
yielding model-specific optimal settings. Under these configurations, the ISqueezeNet achieved the highest test accuracy of
93.05%, with class-wise accuracies of 89.28% (healthy), 96.15% (slight), and 94.44% (moderate and severe). Comparisons
with lightweight networks (MobileNetV1 and ShuffleNetV2) further showed that ISqueezeNet attains superior accuracy with
favorable parameter efficiency and inference speed. Grad-CAM visualizations confirmed that the model focuses on lesion-
relevant regions, supporting interpretability and practical reliability. These results indicate that the proposed approach is
promising for early, nondestructive detection of moldy pear cores.
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1 Introduction

Korla pear (Pyrus bretschneideri Rehd) is popular with
worldwide consumers due to its rich nutritional components and
juicy texture!. However, fresh pears are susceptible to postharvest
diseases caused by pathogenic infections during growth and storage,
which increases the risk of quality loss and export rate drop. Moldy
core is one of the most serious pathological diseases found in pear
fruit®. As a typical internal disease, the development of a moldy
core begins with the pear kernel followed by the pulp eroding
outward. Early development of the pears infected with moldy core
has no visible external symptoms and they are difficult to
distinguish from healthy pears in appearance. Due to the severe
infectivity of moldy core, the diseased pears will further decay and
face the risk of infection for the whole consignment of healthy
pears, leading to serious economic losses'*. Noteworthy, when the
moldy pear core is mixed into the healthy fruit at the deep
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processing stage, the moldy tissue with many toxins could exceed
the prescribed limit of mycotoxins in derived products such as pear
juice, pear sauce, pear cans, etc., posing potential food safety
hazards®. Traditionally, the pears with moldy core are detected by
destructive sampling combined with visual inspection by trained
personnel, followed by overall assessment®. However, these
methods are time-consuming and laborious and suffer from
drawbacks of inefficiency and subjectivity!”. Thus, it would be of
practical significance to develop a rapid and nondestructive
detection technique for moldy pear core, so as to remove the
diseased pears from the postharvest storage and marketing chain.
With the advent of emerging technologies, much literature has
been published on non-destructive detection of internal diseases in
fruit using X-ray technology®™’, near-infrared spectroscopy!*'?,
hyperspectral imaging!*'“, electronic nose!"*'*. Compared with other
nondestructive detection technologies, the vibro-acoustic method is
increasingly adopted to evaluate fruit quality attributes due to its
simplicity, speed, and low-cost”. However, there are few studies on
VA methods for discriminating moldy pear core. Notably, the
feasibility of using the acoustic vibration technique for identifying
internal disease in fruit has been demonstrated by some researchers.
Zhang et al.'"! applied the acoustic vibration method to realize an
overall recognition accuracy of 86.4% for discriminating mild-
browning pears. Han et al.'® used this method to detect moldy
kernels of in-shell hickory nuts with 91.67% discrimination
accuracy. For these reported studies, most of the researchers mainly
focused on using traditional machine learning algorithms. The
effectiveness of these algorithms relied largely on the extraction and
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selection of features that can reflect disease information. While
these handcrafted features required the knowledge and experience
of domain experts, which has a negative effect on the improvement
of discrimination performance and generalization ability of the
classification model"”..

To address these challenges, deep learning has been proposed
and successfully employed in various fields. A strong advantage of
deep learning is feature learning. It can adaptively learn and extract
deeper and more discriminative feature information from raw data.
At present, deep learning has gradually become a powerful tool for
feature mining in existing studies™*. Despite this, there are still
few reports on the multi-classification discrimination of deep
learning algorithms represented by deep convolutional neural
networks in recognition of internal infections of fruits and
vegetables. Cai et al.”” established a general CNN model for the
classification of citrus species with a detection accuracy of 95%.
Unal et al.* demonstrated that the deep learning network had high
accuracy for fruit and vegetable classification applications. Shin et
al.” optimized and evaluated several well-established learners,
which proved that deep convolutional neural networks had great
potential in image processing.

In recent years, one of the development trends in the field of
signal processing is the combination of signal visualization and
deep learning. Seo and Nam™ converted the wireless signals into
recurrence plots (RP) and fed them into a CNN network for
discrimination with 99% classification accuracy. It has been
observed that the recurrence plots have the ability to fully describe
the energy distribution of VA signal. This method has been
successfully implemented in various studies related to machine fault
diagnosis®*. Compared with traditional handcrafted features, RP-
based representations provide a more comprehensive description of
nonlinear and dynamic characteristics in signals, reducing
dependence on expert knowledge and improving generalization.
Currently, there are relatively few studies on the utilization of deep
learning combined with the recurrence plots of acoustic vibration
signals for discriminating internal diseases in fruits.

The goal of this research was to identify moldy pear core using
VA method and deep learning. Specific objectives were to: (1)
Develop a moldy pear core detection device based on piezoelectric

Vibration control and dynamic signal analyzer

Inputting
Vas Vein Vo

Outputting original half-sinusoid pulse signal V;

transducers that can rapidly acquire VA signals; (2) Convert VA
signals into recurrence plots and establish classification models
using deep learning algorithms for identifying the moldy pear core.
(3) Evaluate the classification performance of the established
models and determine the best discrimination algorithm.

2 Materials and methods

2.1 Sample preparation

The Korla pears were selected as experimental subjects and all
samples were purchased from fruit wholesale market on Dikou
Road, Jinan, China. The samples without physical defects were
stored in a refrigerator compartment (0°C and RH: 85%-90%).
Since there was no visible difference between healthy and slight
moldy-core pears, it was difficult to procure the diseased samples
that met the requirements in supermarket. Thus, the pears with
different extents of moldy core were artificially prepared by
referring to the method mentioned by Zhang et al."”’. The basic steps
of diseased sample preparation were as follows: (1) According to
Koch’s postulates, five lesion tissues were cut from the core of
naturally diseased pears and cultured on the PDA medium. (2) Pour
an appropriate amount of sterile water into the Alternaria culture
dish. After stirring, filtering, and counting, the spore concentration
was adjusted to 2.0x10%/mL of bacterial suspension for later use.
(3) Using the wound inoculation method, 0.05 mL of composite
bacterial suspension was injected from the calyx into the core of the
pears. (4) The injected samples were stored in the conditions of an
intelligent artificial climate chamber (25°C and 95% RH). After 3 d,
the moldy tissue of the treated samples was generated in the
inoculated core area. The prepared samples were subjected to VA
test to collect the VA signals of pears with varying extents of
moldy core.
2.2 VAsignals collection and preprocessing of pears

The VA signal testing system was used to collect the VA
response signals from pears with different extents of moldy core. As
shown in Figure 1, the system consisted of four components: a
vibration control and dynamic signal analyzer, a voltage amplifier, a
test bench with three identical piezoelectric sensors, a computer
with the SA 1804B2 software. Referring to Li et al.””), a half-sine
pulse signal V; with a peak voltage of 2.5 V and a time history of

The software system of vibration
measurement, analysis and reporting

Voltage amplifier

Acquiring response signal Vg,

y Acquiring amplified impulsive excitation signal 7,

Acquiring response signal Vg,

Figure 1

Outputting excitation signal 7, of 80 V

Nondestructive detection system based on the VA method for moldy pear core
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0.16 s was recorded as the excitation signal. To enhance the signal
excitation and improve anti-interference ability, the ATA-2000
voltage amplifier (Aigtek Electronic Technology Co., Ltd., Xi’an,
China) was used to linearly amplify the original 2.5 V' signal V; into
an excitation signal ¥, with a peak voltage of 80 V. The amplified
excitation signal ¥, was output to the excitation sensor in contact
with the equator of the pear samples. Subsequently, the response
signals V, and Vg, were sensed and collected by the piezoelectric
sensors in contact with the equator and calyx on the other side of the
pear. Ultimately, the V,, Vg, and Vg, signals were collected by the
vibration control and dynamic signal analyzer.

2.3 Pear moldy-core degree measurement

Moldy core pear

Original image

Healthy pear ( * \(—bg‘

\
A

< S

Original image

B channel image

B channel image

To measure the extent of moldy core, the pear samples were cut
horizontally along the equator after the acoustic vibration testing.
The cross-section of pears was photographed with a camera. The
cross-section images were processed by the specific procedure as
shown in Figure 2. The RGB three-channel components of the pear
color photos were extracted and then the B channel images were
segmented using the edge detection and segmentation method. The
moldy-core region in the B channel images was extracted using the
8-connected region labeling algorithm. Finally, the ratio value of the
moldy-core area S| to the pear cross-sectional area S, was defined as

the disease extent S of moldy-core in pears.

Moldy core aera S, S5, The extent

[— of moldy

pear core S
Cross-sectional area S,
Moldy core aera
S,=0 ]
The extent
S, » of moldy
pear core
S5=0
L —

Cross-sectional area S,

Figure 2 Diagrammatic sketch of the calculation procedure for the extent of moldy pear core.

2.4 Conversion of VA signal
2.4.1 Recurrence plot

Recurrence plot (RP) was an important method for feature
enhancement that can transform the one-dimensional signals into
two-dimensional images. Thus, the VA signals of both healthy pears
and pears with different extents of moldy-core were subjected to the
recurrence plot transformation. The Taken embedding theorem was
used to reconstruct the original VA signals in phase space. The
principle is as shown in Equation (1):

X} @ =1,2,...,N) (1)

where 7 and m present the delay coefficient and embedded

Xi = {Xi Xisrs - .-

dimension, N = (m—1) 7, X; is the vector of x; after mapping in phase
space. The recursive matrix R;; is calculated as follows:

R; =6(e-|X;- Xl 2)
where, ¢ is the distance threshold between two points in phase
space, ||-|| is the Euclidean distance, 6(x) is the Heaviside function.
The calculation equation of 4(x) is as follows:

o= "0 3)
X) =
0, x<0

In recurrence plot, the embedding dimension m, the delay
coefficient 7, and the distance threshold e are three key parameters.

When m is small, the reconstructed phase space may overlap or
even self-intersect, leading to significant discrepancies between the
reconstructed phase space and the original signal. A larger m
increases computational complexity and amplifies the noise in the
signal. The delay coefficient 7 determines the amount of information
retained in the reconstructed phase space. Smaller values of 7 result
in excessive correlation between the delayed coordinates, causing
the phase space trajectory to concentrate around the main diagonal.
Conversely, a larger 7 can lead to the mutual correlation between the
delayed coordinates becoming independent, making the phase space
trajectory more dispersed. Currently, there is no adaptive algorithm
to select an optimal threshold for €. Therefore, in this study, € was
empirically set to 5% of the maximum phase space diameter. The
study thus explored the effects of m and 7 on the discrimination
ability of different signals. Based on the preliminary experiment, the
optimal spectral parameters were determined as m=3 and =2. The
original VA signal was then transformed into a recurrence plot of
size 224x224 or 227x227, which was used as input to different
CNN models for constructing a classification model for moldy pear
cores.
242 MTF

Markov Transition Field (MTF) was an image coding method
that converts a one-dimensional signal into a two-dimensional
image by embedding the temporal dynamics of state transitions. In
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this approach, the original VA sequence is first discretized into Q
quantile-based bins, and each point is assigned to one of the discrete
states. A first-order Markov transition matrix # is then constructed,
where each entry w; indicates the probability of transitioning from
state 7 to state j:

Number of transitions from state i to state j
Wi =

0
> wy=1 (4)

j=1

Total number of transitions from state i

Unlike recurrence plots, which capture spatial proximity in
phase space, the MTF preserves sequential dependencies by
mapping the transition probabilities back to the temporal domain.
The resulting field is defined as:

MTF,, =w,,,. xy€[l,T] &)

where, T is the signal length; and g,, g, are the quantized states at
times x and y. The resolution of the field is mainly determined by
quantization number Q. A very small O may lose fine-grained
information, while an excessively large Q can introduce redundancy
and noise. In this study, Q is set to 8.
2.5 Establishment of machine learning models
2.5.1 LBP feature extraction
Local Binary Pattern (LBP) is a widely used texture descriptor
that transforms local structural information of an image into binary
codes, thereby providing a compact and discriminative
representation. The basic idea of LBP is to compare each pixel with
its neighboring pixels within a defined window. If the neighbor
intensity is greater than or equal to the center pixel, the
corresponding position is assigned a value of 1; otherwise, it is
assigned 0. The resulting binary sequence is then converted into a
decimal number to represent the local texture pattern.
Mathematically, the LBP operator for a pixel at position (x, y) can
be expressed as:
P-1
LBP(x3) = > 5(,- )2 ©6)
P=0
where, g. denotes the gray value of the center pixel, g, is the gray
value of the p-th neighbor, P is the number of sampling points on a
circle of radius R, and the function s(x) is defined as:

B 1, x>0 R
s = 0, x<0

The parameters P and R jointly determine the resolution and
scale of the LBP operator. A larger P captures more detailed
neighborhood information, while a larger R extends the receptive
field to encode broader spatial structures. In this study, LBP is used
to extract texture features of RP and MTF for subsequent machine
learning model training and testing.

2.5.2 Classifier construction and training

In this study, two widely used machine learning classifiers,
Random Forest (RF) and k-Nearest Neighbors (KNN), were
employed in this study to evaluate the classification performance of
the extracted features. RF is an ensemble learning method that
integrates multiple decision trees based on bootstrap aggregation
and random feature selection. By constructing a large number of
decision trees and combining their outputs through majority voting,
RF effectively reduces variance and improves classification
stability. The corresponding basic principle can be described as
follows:

1 T
§=argmax -y T(h(x)=0) (8)

t=1

where, § is the predicted class label, 7" is the number of decision
trees, A,(-)denotes the prediction of the 7-th tree, and I(-) is the
indicator function.

KNN is a non-parametric classification algorithm that predicts
the category of a test sample according to the majority class among
its k£ nearest neighbors in the feature space. The principle can be
expressed as:

k
$ = argmax Z]I(yi =¢) )
i=1
where, ¥ is the predicted class label, k is the number of nearest
neighbors, y; is the label of the i-th nearest neighbor, and I() is the
indicator function.
2.6 Establishment of deep classification models
In this study, the deep convolutional neural networks (including
ResNet-101, DenseNet-121, SqueezeNet, Vision Transformer and
ISqueezeNet) were used to construct the classification models of
moldy pear core. The basic properties and configurations of these
networks, such as image input size, depth, size, and parameter
count, are listed in Table 1.

Table 1 Basic properties and configurations of the deep
convolutional neural networks

Networks Image dimension Depth Size/MB Parameters (x10°)
Squeeze Net 227%227 18 4.6 1.2
ResNet-101 224x224 101 455 44.6

DenseNet-121 224x224 121 32 7.98
Vision Transformer 224x224 12 88 5.7
ISqueezeNet 227227 18 0.18 0.05

2.6.1 Vision transformer

Vision Transformer (ViT) is a transformer-based neural
network architecture that applies the self-attention mechanism to
image recognition tasks. The network structure of ViT is shown in
Figure 3a. The patch embedding module was the basic unit of ViT,
in which the input image was divided into a sequence of fixed-size
patches and linearly projected into embeddings with position
information. These patch embeddings, together with a learnable
stacked
Transformer encoder layers, each composed of multi-head self-

classification token, were then fed into multiple

attention and feed-forward networks. Finally, the representation was
passed through a fully connected layer to generate the class
prediction.
2.6.2 ResNet-101

ResNet-101 with residual block can effectively address
problems related to gradient disappearance and explosion“”. The
specific structure of ResNet-101 network is shown in Figure 3b.
The ResNet-101 comprised a 7x7 convolutional layer, an average
pooling layer, and 4 stages. Each stage contains the residual blocks
consisting of two 3x3 convolutional layers, the batch normalization,
and the ReLU activation function.
2.6.3 DenseNet-121

DenseNet-121 is a deep neural network architecture based on
dense connections. The densely connected structure was realized by
connecting the outputs of all previous layers between each layer.
DenseNet-121 has been shown to be suitable for mining deep
features related to classification®. As shown in Figure 3c, the
DenseNet-121 can be described as consisting of multiple densely
connected dense blocks. The feature maps between dense blocks
were connected through transition layers to control the size of the
feature maps.
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Figure 3 Flow chart of the construction of classification model for identifying the pear with moldy core

2.6.4 SqueezeNet

SqueezeNet is a lightweight neural network architecture that
can not only reduce computational load but also maintain good
computational performance. The network structure of SqueezeNet is
shown in Figure 3d. The fire module was the basic unit of
SqueezeNet, which was composed with the squeeze layer using 1x1
convolution kernels and the expand layer with a mixture of 1x1 and
3x3 convolution kernels.
2.6.5 ISqueezeNet

Depthwise separable convolution, as a key technology in
convolutional neural networks, has achieved remarkable results in
the field of computer vision in recent years. Inspired by this, the
traditional convolution of the Fire module in SqueezeNet was
replaced by a depth-wise separable convolution in this study. As
shown in Figure 3e, the deep separable convolution divided the
traditional convolution operation of the convolution kernel into two
parts: depthwise convolution and pointwise convolution. For the
depthwise convolution, M convolution kernels of size kxk were
used to convolve the feature maps input from each channel and
obtain M feature maps. Subsequently, the point-wise convolution
was performed on the feature maps obtained by the depth
convolution. A 1x1 convolution kernel was used to linearly
combine the feature maps on each channel to generate the final
feature maps. Through the above two steps, the depth-wise
separable convolution can learn spatial features and channel
features, and reduce the computational complexity.

2.7 Hyperparameter optimization methods

The model training environment used in the experiment was a
Windows 10 64-bit operating system. The graphics card was an
Nvidia 4060Ti GPU with 16 G video memory. The hardware
configuration CPU was an Intel (R) Core (TM) i9-13900HX with a
2.20 GHz main frequency and 32 GB memory. The Python
programming language was implemented in PyCharm software.
During training, Bayesian optimization was used to automatically
adjust the hyperparameters of the model. The search parameters
included the initial learning rate (ranging from le-5 to le-2), batch
size (32, 64, and 128), L2 regularization coefficient (1e-6 to le-3),
and (Adam, SGD).
2.8

optimizer
Model performance evaluation
To evaluate the classification performance of four models, the
accuracy, Precision, Recall, and F, were utilized as evaluation
metrics and calculated by the confusion matrix analysis. The
specific calculation formulas are as follows:

TP+ TN
Accuracy = L L N (10)
TP+ TN +FP+FN
TP
Recall = ——— (11)
TP+FN
TP
Recall = ——— 12
T TP EN (12)

recision X recall
F, =2 x PECSon X recas

(13)

precision + recall
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3 Results and discussion

3.1 Analysis of RP images of VA response signals

Figure 4 shows the typical VA responses signal curves of
healthy pears and pears with varying extents of moldy core. It can
be found that there was no significant differentiation in the VA
signal curves of the three categories of pears at the first peak of
approximately 0.018 s. In the following peaks, the difference in
signal peak values between healthy pears and slight moldy-core
pears was very small. With the severity of lesion tissue intensified,
the energy of the signal curves of moderate and severe moldy-core

40

pears gradually decreased. Nevertheless, the corresponding peak
value was significantly higher than that of the healthy and slight
moldy-core pears. Therefore, it was still difficult to extract the
effective characteristics from VA curves to establish the
classification model of moldy pear core. However, the RP and MTF
converted from VA signals of the three-class pears were notably
different in visualized texture distribution. To demonstrate the
effectiveness of the RP and MTF for discriminating the moldy pear
core, the recurrence plots of three-class pears were sent into the

deep learning algorithm for model training and classification.

¥
ERTAvAWAY;

— Healthy pear
30+ N o Slight moldy-core pear
N — — Moderate and severe
20+ 0 molde-core pear
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Time/s

Figure 4 The RP and MTF converted from the typical VA signals of the three types of pears

3.2 Training and parameter optimization results of different
classification models
3.2.1 Training results of machine learning models

LBP-RP and LBP-MTF texture features were employed as
inputs to construct RF and KNN classification models, respectively.
The corresponding classification results are summarized in Table 2.
A comparative analysis indicated that models trained with LBP-RP
texture features achieved superior overall classification accuracy
compared with those trained on LBP-MTF features, suggesting that
RP provides a more discriminative representation of temporal
dynamic information. Specifically, the RF and KNN models based
on LBP-RP features attained overall accuracies of 95.65% and
98.33%, respectively, whereas the RF and KNN models based on
LBP-MTF features achieved 92.67% and 96.52%, respectively.
These findings confirm that LBP-RP features can more effectively
capture the texture distribution patterns of signals after phase-space
mapping. Consequently, this highlights the importance of selecting
appropriate feature representations to enhance classification
performance in the nondestructive detection of moldy pears. Based
on these results, the subsequent analysis focused on the two
classifiers trained with LBP-RP texture features.

Table 2 Different model classification results of LBP-RP and
LBP-MTF features on training set

Networks Input features Overall accuracy/%
LBP-RP 95.65
RF
LBP-MTF 92.67
LBP-RP 98.33
KNN
LBP-MTF 96.52

3.2.2 Training results of deep learning models

The transformed RP and MTF were selected as input variables
for the classification model. In this study, five classification models,
namely ResNet-101, DenseNet-121, SqueezeNet, [SqueezeNet and
ViT were constructed to validate the effectiveness of RP and MTF

in the discrimination of moldy pear core. During the training
process, the uniform sampling algorithm was utilized to randomly
divide sample set into the training set and test set. Table 3 illustrates
the sample set division results of different categories of pears. The
pears with varying moldy-core extents were classified into three
types: healthy (S = 0%), slight moldy-core (0 < S < 10%), and
moderate and severe moldy core (S > 10%). The train set consisted
of 288 samples including 112 healthy pears, 104 slight moldy-core
pears and 72 moderate and severe moldy-core pears. The test set
consisted of 72 samples including 28 healthy pears, 26 slight moldy-
core pears and 18 moderate and severe moldy-core pears.

Table 3 Sample set division results of different categories

of pears
Classes Moldy-core extents  Total ~ Training set  Test set
Healthy 0 140 112 28
Slight <10% 130 104 26
Moderate and severe >10% 90 72 18

Hyperparameter optimization was a key step for the ViT,
ResNet-101, DenseNet-121, SqueezeNet, and ISqueezeNet
classification models. To accomplish this task, Bayesian
optimization was employed to search the space of optimizer type,
learning rate, batch size, and L2 regularization coefficient. The
optimization results indicated that ISqueezeNet and DenseNet-121
achieved their best performance with the Adam optimizer (learning
rate of 1x10°*, batch size of 64, and L2 coefficients of 5x10* and
1x107 respectively), while SqueezeNet converged best with Adam
using a smaller learning rate of 5x10°7, a batch size of 32, and an L2
coefficient of 1x10°. In contrast, ResNet-101 achieved the highest
accuracy with the SGD optimizer (learning rate of 1x107, batch size
of 128, and L2 coefficient of 1x10), whereas ViT obtained optimal
performance with the Adam optimizer (learning rate of 3x10°7,
batch size of 64, and L2 coefficient of 1x10™*). Under these model-
specific optimal configurations, the final training accuracies of the
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five models with RP input reached 100%, 97.22%, 99.65%,
94.44%, and 99.65%, respectively. When MTF features were used
as input, the corresponding training accuracies were 97.22%,
94.44%, 100%, 94.44%, and 99.65%. The training curves of the five
models with both RP and MTF inputs are presented in Figure 5.

100
80
§
Z 601
g
3
2 401 — ISqueezeNet
— DenseNet-121
— SqueezeNet
20 1 — ResNet-101
— ViT
0 . . . )
0 10 20 30 40 50
Epoch
a. MTF

Although both inputs yielded high accuracies, models trained with
RP features achieved overall more stable and slightly superior
performance. Therefore, RP features were selected as the input for

subsequent analysis.
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Figure 5 Training performance of five models under RP and MTF inputs

3.3 Visualization analysis of deep features

To verify the effects of deep feature extraction of the
convolutional layer, the t-SNE algorithm was utilized to visualize
the deep features extracted from the output of the second-last layer
of the five networks. Figure 6 shows the cluster visualization results
using the t-SNE. It can be found that there are few overlapping
regions among the three clusters and the sample points of three-

class pears were closely clustered in each model. Obviously, the
low-level original RP images in the input layer were converted into
high-level features layer by layer, which can improve the robustness
of discrimination model. The feature visualization results indicated
that the trained models have excellent feature learning capacity and
can capture effective moldy-core features from the original RP
images adaptively.
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Figure 6 Feature visualization through t-SNE for the convolution layer in four models

3.4 Verification and evaluation of classification performance
of models

To further verify the classification performance of the
constructed model, a test data set consisting of 72 samples was used
as input, including 28 healthy pears, 26 slight moldy-core pears, and

18 moderate and severe moldy-core pears. Figure 7 illustrates
the confusion matrices of the RF and KNN models. For the RF
model, 60 out of 72 were correctly classified,
corresponding to an overall discrimination accuracy of 83.33%.
Specifically, the recognition accuracies were 85.71% for healthy

samples


https://www.ijabe.org

December, 2025 Yang Y, et al.

Nondestructive discrimination of moldy pear core based on recurrence plots of vibration acoustic signals

Vol. 18 No. 6 237

pears, 76.92% for slight moldy-core pears, and 88.89% for
moderate and severe moldy-core pears.For the KNN model, 62 out
of 72 samples were correctly identified, yielding an overall
accuracy of 86.11%. The class-wise accuracies were 82.14% for
healthy pears, 92.31% for slight moldy-core pears, and 83.33% for
moderate and severe moldy-core pears.These results suggest that
both RF and KNN can effectively discriminate moldy pear cores to
a certain extent, with KNN showing better performance in
identifying slight moldy-core pears. Figure 8 depicts the confusion
matrix of four classification models for three-class pear samples on
the test set. Both ResNet-101 model and DenseNet-121 model can
correctly identify 61 out of 72 pears, with an overall discrimination
accuracy of 84.72%. The above results were even worse when the
SqueezeNet model was applied, with the overall discrimination

accuracy being as low as 80%, meaning that < 60 out of 72 fruits
were correctly classified. High misjudgment rate could be attributed
to the insignificant difference of vibro-acoustic signal curves
between the healthy and slight moldy-core fruit with similar.
Compared with the above-mentioned models, the ISqueezeNet
model exhibited a significant improvement in classification results.
As seen in Figure 9, the overall discrimination accuracy for
ISqueezeNet model reached 93.05%. Specifically, the
discrimination accuracy was 89.28%, 96.15%, and 94.44% for
healthy pears, slight moldy-core pears, and moderate and severe
moldy-core pears, respectively. The comparison of the
discrimination effects of above models indicated that the
ISqueezeNet model exhibited the superior performance for
discriminating moldy pear cores.
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Figure 8 Classification results of three types of pears in test set

Table 4 presented the performance evaluation results of the
ISqueezeNet model. The value of Precision, Recall, and F,
exceeded 92.7%, indicating that the ISqueezeNet model had higher

generalization ability for identifying moldy pear core. F score is
the weighted average of precision and recall. A higher F score
indicated that the model performs well in the classification task and
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has a higher discrimination ability for the minority class of early
moldy-core fruits. The F, score of the ISqueezeNet model for early
moldy pears core reached 92.59% for healthy pears, 94.33% for
slight moldy-core pears, and 91.89% for moderate and severe pears.
The results show that the ISqueezeNet model is quite robust for
identifying moldy pear core using vibro-acoustic testing method. It
can be concluded that the ISqueezeNet model developed in this
study can be employed to identify moldy pear cores with high
classification accuracy and generalization performance through a
homemade VA detection system.

23 ViT [ ResNet-101 B8 DensNet-121

[ SqueezeNet [ 1SqueezeNet
100 96.15

80

Accuracy/%
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Extent of moldy pear core
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Figure 9 The model discrimination results based on confusion
matrix analysis
At present, some scholars have studied the identification of
internal diseases of pears, and the detection accuracy can reach 95%
or above®**l. However, these studies only identify the presence or
absence of internal diseases of pears, and do not consider the early
diseases of fruits. Liu et al.”! converted one-dimensional acoustic

vibration multi-domain images (AVMDI), and used visual
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transformer (ViT) for feature extraction to construct

Table 4 Performance evaluation of the ISqueezeNet model

Performance evaluation

Moldy core degree —
Precision/% Recall/% F\/%
Healthy 96.15 89.28 92.59
Slight 92.59 96.15 94.33
Moderate and severe 89.47 94.44 91.89
Total 92.74 93.29 92.94

classification model of pear moldy-core. The recognition
accuracy of AVMDI-ViT model was 94.74% for slight moldy-core
apples. In comparison, the recognition accuracy of early moldy pear
core can reach 96.15% by the ISqueezeNet model in this work,
which was an improvement of 1.41%. Moreover, compared with
other models, ISqueezeNet effectively reduces the number of model
parameters and computational complexity through depth-wise
separable convolution, significantly improving the inference speed
and efficiency of model deployment while ensuring high accuracy.
3.5 Misclassification analysis based on Grad-CAM

To investigate the causes of misclassification, we employed
Grad-CAM to visualize the regions attended by the model during
decision-making (Figure 10). The heatmaps reveal that healthy and
slight samples exhibit highly similar high-response regions in both
spatial location and intensity, which makes them prone to
confusion. In addition, slight samples often show an expansion of
attention to larger areas and oversensitivity to local peaks, leading
to their misclassification as moderate and severe. Nevertheless, such
cases remain limited, and the overall attention patterns align well
with the true categories, underscoring the robustness and reliability

of the proposed method.
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Figure 10 Grad-CAM visualization of the model’s attention area
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3.6 Comparative analysis of the ISqueezeNet network model
and other lightweight network models

In this study, we conducted a comparative analysis between the
ISqueezeNet model and other popular lightweight network models,
including SqueezeNet, MobileNetV1, and ShuffleNetV2. This
analysis focuses on several key performance metrics: classification
accuracy, model size, FLOPs, and inference speed. The goal is to
highlight the advantages of ISqueezeNet, especially in terms of
maintaining high performance while reducing computational
complexity.

As shown in Table 5, ISqueezeNet shows the strongest
classification performance, with an overall classification accuracy
of 93.05%. In addition to the classification accuracy, as a
lightweight network, the ISqueezeNet model also demonstrates
good real-time deployment capabilities. The model achieves an
inference time of 0.009 s per sample, with a model size of 0.18 MB
and 0.06 GFLOPs FLOPs, which outperforms other lightweight

models. These indicators confirm that the ISqueezeNet model can
be deployed on embedded devices such as sorting lines, providing
efficient, high-accuracy detection without compromising processing
speed. The ability to balance high classification accuracy with low
resource consumption makes the ISqueezeNet model a viable
solution for real-time moldy pear core detection in production
settings.

Table 5 Classification results comparison of the network
models of the ISqueezeNet, SqueezeNet, MobileNetV1

and ShuffleNetV2
Networks DSC OA/%  Size/MB  FLOP/GFLOPs  Speed/s
SqueezeNet - 81.94 4.6 0.39 0.040
MobileNetV1 N 83.58 0.34 0.07 0.089
ShuffleNetV2 - 90.62 7.79 0.29 0.050
ISqueezeNet \ 93.05 0.18 0.06 0.009
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4 Conclusions

This work develops a nondestructive classification framework
for moldy pear cores by converting VA signals into recurrence-plot
andmarkov transition field and training both machine-learning and
deep-learning models. Machine-learning baselines (RF and KNN)
delivered reasonable performance, but deep architectures exhibited
stronger generalization. Among them, the proposed ISqueezeNet
achieved the best overall accuracy (93.05%) with balanced class-
wise performance. A systematic Bayesian optimization of
batch and L2
contributed to stable convergence and superior accuracy across
models. In head-to-head comparisons with ResNet-101, DenseNet-
121, SqueezeNet, ViT, and lightweight CNNs (MobileNetV1,
ShuffleNetV2), ISqueezeNet provided a favorable trade-off between
accuracy, parameter count, and inference speed. Grad-CAM

optimizer, learning rate, size, regularization

analyses showed consistent attention over disease-related regions,
enhancing interpretability and user trust. Taken together, these
findings substantiate the suitability of the proposed method for
accurate and efficient online detection of moldy cores in practical
sorting and quality-inspection scenarios. In future work, we will
incorporate naturally infected samples collected from different
regions and under varied storage conditions, enabling more realistic
evaluation of the proposed method and contributing to the
development of reliable non-destructive detection techniques.
Ultimately, this will support postharvest disease management and
promote food safety and quality assurance in the fruit industry.
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