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Abstract: Moldy core is a serious internal defect in pears. Since there is no significant difference in appearance between the
healthy pears and those with mild moldy core, it is still a great challenge for the early detection of moldy pear core. This study
transformed  the  vibration  acoustic  signals  (VA  signal)  of  pears  into  recurrence  plots  and  Markov  transition  field  to  enable
image-based classification of moldy cores. In addition to traditional machine-learning baselines (Random Forest and k-Nearest
Neighbors) trained on LBP-extracted texture features from RP/MTF, the deep models were constructed and compared, which
include  ResNet-101,  DenseNet-121,  SqueezeNet,  Vision  Transformer  (ViT),  and  an  improved  SqueezeNet  (ISqueezeNet).
Hyperparameters  were  tuned  via  Bayesian  optimization  over  optimizer  type,  learning  rate,  batch  size,  and  L2  weight  decay,
yielding  model-specific  optimal  settings.  Under  these  configurations,  the  ISqueezeNet  achieved  the  highest  test  accuracy  of
93.05%,  with  class-wise  accuracies  of  89.28%  (healthy),  96.15%  (slight),  and  94.44%  (moderate  and  severe).  Comparisons
with lightweight networks (MobileNetV1 and ShuffleNetV2) further showed that ISqueezeNet attains superior accuracy with
favorable  parameter  efficiency  and  inference  speed.  Grad-CAM  visualizations  confirmed  that  the  model  focuses  on  lesion-
relevant  regions,  supporting  interpretability  and  practical  reliability.  These  results  indicate  that  the  proposed  approach  is
promising for early, nondestructive detection of moldy pear cores.
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 1    Introduction
Korla  pear  (Pyrus  bretschneideri  Rehd)  is  popular  with

worldwide  consumers  due  to  its  rich  nutritional  components  and
juicy texture[1].  However,  fresh pears  are  susceptible  to  postharvest
diseases caused by pathogenic infections during growth and storage,
which increases the risk of quality loss and export rate drop. Moldy
core is one of the most serious pathological diseases found in pear
fruit[2].  As  a  typical  internal  disease,  the  development  of  a  moldy
core  begins  with  the  pear  kernel  followed  by  the  pulp  eroding
outward.  Early development  of  the pears  infected with moldy core
has  no  visible  external  symptoms  and  they  are  difficult  to
distinguish  from  healthy  pears  in  appearance[3].  Due  to  the  severe
infectivity of moldy core, the diseased pears will further decay and
face  the  risk  of  infection  for  the  whole  consignment  of  healthy
pears,  leading  to  serious  economic  losses[4].  Noteworthy,  when  the
moldy  pear  core  is  mixed  into  the  healthy  fruit  at  the  deep

processing  stage,  the  moldy  tissue  with  many  toxins  could  exceed
the prescribed limit of mycotoxins in derived products such as pear
juice,  pear  sauce,  pear  cans,  etc.,  posing  potential  food  safety
hazards[5].  Traditionally,  the pears  with moldy core are  detected by
destructive  sampling  combined  with  visual  inspection  by  trained
personnel,  followed  by  overall  assessment[6].  However,  these
methods  are  time-consuming  and  laborious  and  suffer  from
drawbacks of  inefficiency and subjectivity[1,7].  Thus,  it  would be of
practical  significance  to  develop  a  rapid  and  nondestructive
detection  technique  for  moldy  pear  core,  so  as  to  remove  the
diseased pears from the postharvest storage and marketing chain.

With the advent of emerging technologies, much literature has
been published on non-destructive  detection of  internal  diseases  in
fruit  using  X-ray  technology[8,9],  near-infrared  spectroscopy[10-12],
hyperspectral imaging[13,14], electronic nose[15,16]. Compared with other
nondestructive detection technologies, the vibro-acoustic method is
increasingly  adopted  to  evaluate  fruit  quality  attributes  due  to  its
simplicity, speed, and low-cost[7]. However, there are few studies on
VA  methods  for  discriminating  moldy  pear  core.  Notably,  the
feasibility  of  using  the  acoustic  vibration  technique  for  identifying
internal disease in fruit has been demonstrated by some researchers.
Zhang  et  al.[17]  applied  the  acoustic  vibration  method  to  realize  an
overall  recognition  accuracy  of  86.4%  for  discriminating  mild-
browning  pears.  Han  et  al.[18]  used  this  method  to  detect  moldy
kernels  of  in-shell  hickory  nuts  with  91.67%  discrimination
accuracy. For these reported studies, most of the researchers mainly
focused  on  using  traditional  machine  learning  algorithms.  The
effectiveness of these algorithms relied largely on the extraction and
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selection  of  features  that  can  reflect  disease  information.  While
these  handcrafted  features  required  the  knowledge  and  experience
of domain experts, which has a negative effect on the improvement
of  discrimination  performance  and  generalization  ability  of  the
classification model[19].

To  address  these  challenges,  deep  learning  has  been  proposed
and successfully employed in various fields. A strong advantage of
deep learning is feature learning. It can adaptively learn and extract
deeper and more discriminative feature information from raw data.
At present, deep learning has gradually become a powerful tool for
feature  mining  in  existing  studies[20-22].  Despite  this,  there  are  still
few  reports  on  the  multi-classification  discrimination  of  deep
learning  algorithms  represented  by  deep  convolutional  neural
networks  in  recognition  of  internal  infections  of  fruits  and
vegetables.  Cai  et  al.[23]  established  a  general  CNN  model  for  the
classification  of  citrus  species  with  a  detection  accuracy  of  95%.
Ünal et al.[24] demonstrated that the deep learning network had high
accuracy for  fruit  and vegetable  classification applications.  Shin et
al.[25]  optimized  and  evaluated  several  well-established  learners,
which  proved  that  deep  convolutional  neural  networks  had  great
potential in image processing.

In  recent  years,  one  of  the  development  trends  in  the  field  of
signal  processing  is  the  combination  of  signal  visualization  and
deep  learning.  Seo  and  Nam[26]  converted  the  wireless  signals  into
recurrence  plots  (RP)  and  fed  them  into  a  CNN  network  for
discrimination  with  99%  classification  accuracy.  It  has  been
observed that the recurrence plots have the ability to fully describe
the  energy  distribution  of  VA  signal.  This  method  has  been
successfully implemented in various studies related to machine fault
diagnosis[27-28]. Compared  with  traditional  handcrafted  features,  RP-
based representations provide a more comprehensive description of
nonlinear  and  dynamic  characteristics  in  signals,  reducing
dependence  on  expert  knowledge  and  improving  generalization.
Currently, there are relatively few studies on the utilization of deep
learning  combined  with  the  recurrence  plots  of  acoustic  vibration
signals for discriminating internal diseases in fruits.

The goal of this research was to identify moldy pear core using
VA  method  and  deep  learning.  Specific  objectives  were  to:  (1)
Develop a moldy pear core detection device based on piezoelectric

transducers  that  can  rapidly  acquire  VA  signals;  (2)  Convert  VA
signals  into  recurrence  plots  and  establish  classification  models
using deep learning algorithms for identifying the moldy pear core.
(3)  Evaluate  the  classification  performance  of  the  established
models and determine the best discrimination algorithm.

 2    Materials and methods
 2.1    Sample preparation

The Korla pears were selected as experimental subjects and all
samples  were  purchased  from  fruit  wholesale  market  on  Dikou
Road,  Jinan,  China.  The  samples  without  physical  defects  were
stored  in  a  refrigerator  compartment  (0°C  and  RH:  85%-90%).
Since  there  was  no  visible  difference  between  healthy  and  slight
moldy-core  pears,  it  was  difficult  to  procure  the  diseased  samples
that  met  the  requirements  in  supermarket.  Thus,  the  pears  with
different  extents  of  moldy  core  were  artificially  prepared  by
referring to the method mentioned by Zhang et al.[2]. The basic steps
of  diseased  sample  preparation  were  as  follows:  (1)  According  to
Koch’s  postulates,  five  lesion  tissues  were  cut  from  the  core  of
naturally diseased pears and cultured on the PDA medium. (2) Pour
an  appropriate  amount  of  sterile  water  into  the Alternaria  culture
dish.  After  stirring,  filtering,  and counting,  the spore concentration
was  adjusted  to  2.0×108/mL  of  bacterial  suspension  for  later  use.
(3)  Using  the  wound  inoculation  method,  0.05  mL  of  composite
bacterial suspension was injected from the calyx into the core of the
pears. (4) The injected samples were stored in the conditions of an
intelligent artificial climate chamber (25°C and 95% RH). After 3 d,
the  moldy  tissue  of  the  treated  samples  was  generated  in  the
inoculated  core  area.  The  prepared  samples  were  subjected  to  VA
test  to  collect  the  VA  signals  of  pears  with  varying  extents  of
moldy core.
 2.2    VA signals collection and preprocessing of pears

The  VA  signal  testing  system  was  used  to  collect  the  VA
response signals from pears with different extents of moldy core. As
shown  in  Figure  1,  the  system  consisted  of  four  components:  a
vibration control and dynamic signal analyzer, a voltage amplifier, a
test  bench  with  three  identical  piezoelectric  sensors,  a  computer
with  the  SA 1804B2  software.  Referring  to  Li  et  al.[29],  a  half-sine
pulse  signal VE with a  peak voltage of  2.5 V and a  time history of
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Figure 1    Nondestructive detection system based on the VA method for moldy pear core
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0.16 s was recorded as the excitation signal. To enhance the signal
excitation  and  improve  anti-interference  ability,  the  ATA-2000
voltage  amplifier  (Aigtek  Electronic  Technology  Co.,  Ltd.,  Xi’an,
China) was used to linearly amplify the original 2.5 V signal VE into
an excitation signal VA with a peak voltage of 80 V.  The amplified
excitation  signal VA was  output  to  the  excitation  sensor  in  contact
with  the  equator  of  the  pear  samples.  Subsequently,  the  response
signals VR1 and VR2 were sensed and collected by the piezoelectric
sensors in contact with the equator and calyx on the other side of the
pear. Ultimately, the VA, VR1, and VR2 signals were collected by the
vibration control and dynamic signal analyzer.
 2.3    Pear moldy-core degree measurement

To measure the extent of moldy core, the pear samples were cut
horizontally  along  the  equator  after  the  acoustic  vibration  testing.
The  cross-section  of  pears  was  photographed  with  a  camera.  The
cross-section  images  were  processed  by  the  specific  procedure  as
shown in Figure 2. The RGB three-channel components of the pear
color  photos  were  extracted  and  then  the  B  channel  images  were
segmented using the edge detection and segmentation method. The
moldy-core region in the B channel images was extracted using the
8-connected region labeling algorithm. Finally, the ratio value of the
moldy-core area S1 to the pear cross-sectional area S2 was defined as
the disease extent S of moldy-core in pears.
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Figure 2    Diagrammatic sketch of the calculation procedure for the extent of moldy pear core.
 

 2.4    Conversion of VA signal
 2.4.1    Recurrence plot

Recurrence  plot  (RP)  was  an  important  method  for  feature
enhancement  that  can  transform  the  one-dimensional  signals  into
two-dimensional images. Thus, the VA signals of both healthy pears
and pears with different extents of moldy-core were subjected to the
recurrence plot transformation. The Taken embedding theorem was
used  to  reconstruct  the  original  VA  signals  in  phase  space.  The
principle is as shown in Equation (1):

Xi = {xi, xi+τ, . . . , xi+(m−1)τ}(i = 1,2, . . . ,N) (1)

where  τ  and  m  present  the  delay  coefficient  and  embedded
dimension, N = (m–1) τ, Xi is the vector of xi after mapping in phase
space. The recursive matrix Rij is calculated as follows:

Ri j = θ(ε−∥Xi −X j∥) (2)

∥·∥
where,  ε  is  the  distance  threshold  between  two  points  in  phase
space,   is the Euclidean distance, θ(x) is the Heaviside function.
The calculation equation of θ(x) is as follows:

θ (x) =

®
1, x > 0

0, x ≤ 0
(3)

ϵ

In  recurrence  plot,  the  embedding  dimension  m,  the  delay
coefficient τ, and the distance threshold   are three key parameters.

ϵ ϵ

When  m  is  small,  the  reconstructed  phase  space  may  overlap  or
even self-intersect, leading to significant discrepancies between the
reconstructed  phase  space  and  the  original  signal.  A  larger  m
increases  computational  complexity  and  amplifies  the  noise  in  the
signal. The delay coefficient τ determines the amount of information
retained in the reconstructed phase space. Smaller values of τ result
in  excessive  correlation  between  the  delayed  coordinates,  causing
the phase space trajectory to concentrate around the main diagonal.
Conversely, a larger τ can lead to the mutual correlation between the
delayed coordinates becoming independent, making the phase space
trajectory more dispersed. Currently, there is no adaptive algorithm
to select an optimal threshold for  . Therefore, in this study,   was
empirically  set  to  5% of  the  maximum phase  space  diameter.  The
study  thus  explored  the  effects  of m  and  τ  on  the  discrimination
ability of different signals. Based on the preliminary experiment, the
optimal  spectral  parameters  were determined as m=3 and τ=2.  The
original  VA signal  was  then  transformed  into  a  recurrence  plot  of
size  224×224  or  227×227,  which  was  used  as  input  to  different
CNN models for constructing a classification model for moldy pear
cores.
 2.4.2    MTF

Markov  Transition  Field  (MTF)  was  an  image  coding  method
that  converts  a  one-dimensional  signal  into  a  two-dimensional
image by embedding the temporal dynamics of state transitions. In
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this  approach,  the  original  VA sequence  is  first  discretized  into Q
quantile-based bins, and each point is assigned to one of the discrete
states. A first-order Markov transition matrix W is then constructed,
where each entry wij  indicates the probability of transitioning from
state i to state j:

wi j =
Number of transitions from state i to state j

Total number of transitions from state i
,

Q∑
j=1

wi j = 1 (4)

Unlike  recurrence  plots,  which  capture  spatial  proximity  in
phase  space,  the  MTF  preserves  sequential  dependencies  by
mapping  the  transition  probabilities  back  to  the  temporal  domain.
The resulting field is defined as:

MTFx,y = wqxqy , x,y ∈ [1,T ] (5)
where, T  is  the  signal  length;  and qx, qy are  the  quantized states  at
times x  and y.  The  resolution  of  the  field  is  mainly  determined by
quantization  number  Q.  A  very  small  Q  may  lose  fine-grained
information, while an excessively large Q can introduce redundancy
and noise. In this study, Q is set to 8.
 2.5    Establishment of machine learning models
 2.5.1    LBP feature extraction

Local Binary Pattern (LBP) is a widely used texture descriptor
that transforms local structural information of an image into binary
codes,  thereby  providing  a  compact  and  discriminative
representation. The basic idea of LBP is to compare each pixel with
its  neighboring  pixels  within  a  defined  window.  If  the  neighbor
intensity  is  greater  than  or  equal  to  the  center  pixel,  the
corresponding  position  is  assigned  a  value  of  1;  otherwise,  it  is
assigned  0.  The  resulting  binary  sequence  is  then  converted  into  a
decimal  number  to  represent  the  local  texture  pattern.
Mathematically,  the LBP operator for a pixel  at  position (x, y)  can
be expressed as:

LBPP,R(x,y) =
P−1∑
P=0

s(gp −gc) ·2p (6)

where, gc denotes the gray value of  the center  pixel, gp  is  the gray
value of the p-th neighbor, P is the number of sampling points on a
circle of radius R, and the function s(x) is defined as:

s(x) =

®
1, x ≥ 0

0, x < 0
(7)

The  parameters P  and R  jointly  determine  the  resolution  and
scale  of  the  LBP  operator.  A  larger  P  captures  more  detailed
neighborhood  information,  while  a  larger R  extends  the  receptive
field to encode broader spatial structures. In this study, LBP is used
to extract  texture features of RP and MTF for subsequent machine
learning model training and testing.
 2.5.2    Classifier construction and training

In  this  study,  two  widely  used  machine  learning  classifiers,
Random  Forest  (RF)  and  k-Nearest  Neighbors  (KNN),  were
employed in this study to evaluate the classification performance of
the  extracted  features.  RF  is  an  ensemble  learning  method  that
integrates  multiple  decision  trees  based  on  bootstrap  aggregation
and  random  feature  selection.  By  constructing  a  large  number  of
decision trees and combining their outputs through majority voting,
RF  effectively  reduces  variance  and  improves  classification
stability.  The  corresponding  basic  principle  can  be  described  as
follows:

ŷ = argmax
c

1
T

T∑
t=1

I(ht(x) = c) (8)

ŷ
I(·)

where,    is  the  predicted  class  label, T  is  the  number  of  decision
trees,  ht(⋅)denotes  the  prediction  of  the  t-th  tree,  and    is  the
indicator function.

KNN is  a  non-parametric  classification algorithm that  predicts
the category of a test sample according to the majority class among
its  k  nearest  neighbors  in  the  feature  space.  The  principle  can  be
expressed as:

ŷ = argmax
c

k∑
i=1

I(yi = c) (9)

ŷ
I(·)

where,    is  the  predicted  class  label,  k  is  the  number  of  nearest
neighbors, yi is the label of the i-th nearest neighbor, and   is the
indicator function.
 2.6    Establishment of deep classification models

In this study, the deep convolutional neural networks (including
ResNet-101,  DenseNet-121,  SqueezeNet,  Vision  Transformer  and
ISqueezeNet)  were  used  to  construct  the  classification  models  of
moldy  pear  core.  The  basic  properties  and  configurations  of  these
networks,  such  as  image  input  size,  depth,  size,  and  parameter
count, are listed in Table 1.
  

Table 1    Basic properties and configurations of the deep
convolutional neural networks

Networks Image dimension Depth Size/MB Parameters (×106)
Squeeze Net 227×227 18 4.6 1.2
ResNet-101 224×224 101 45.5 44.6
DenseNet-121 224×224 121 32 7.98

Vision Transformer 224×224 12 88 5.7
ISqueezeNet 227×227 18 0.18 0.05

 

 2.6.1    Vision transformer
Vision  Transformer  (ViT)  is  a  transformer-based  neural

network  architecture  that  applies  the  self-attention  mechanism  to
image recognition tasks. The network structure of ViT is shown in
Figure 3a. The patch embedding module was the basic unit of ViT,
in which the input image was divided into a sequence of fixed-size
patches  and  linearly  projected  into  embeddings  with  position
information.  These  patch  embeddings,  together  with  a  learnable
classification  token,  were  then  fed  into  multiple  stacked
Transformer  encoder  layers,  each  composed  of  multi-head  self-
attention and feed-forward networks. Finally, the representation was
passed  through  a  fully  connected  layer  to  generate  the  class
prediction.
 2.6.2    ResNet-101

ResNet-101  with  residual  block  can  effectively  address
problems  related  to  gradient  disappearance  and  explosion[30].  The
specific  structure  of  ResNet-101  network  is  shown  in  Figure  3b.
The  ResNet-101  comprised  a  7×7  convolutional  layer,  an  average
pooling layer, and 4 stages. Each stage contains the residual blocks
consisting of two 3×3 convolutional layers, the batch normalization,
and the ReLU activation function.
 2.6.3    DenseNet-121

DenseNet-121  is  a  deep  neural  network  architecture  based  on
dense connections. The densely connected structure was realized by
connecting  the  outputs  of  all  previous  layers  between  each  layer.
DenseNet-121  has  been  shown  to  be  suitable  for  mining  deep
features  related  to  classification[31].  As  shown  in  Figure  3c,  the
DenseNet-121  can  be  described  as  consisting  of  multiple  densely
connected  dense  blocks.  The  feature  maps  between  dense  blocks
were  connected  through  transition  layers  to  control  the  size  of  the
feature maps.
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Figure 3    Flow chart of the construction of classification model for identifying the pear with moldy core
 

 2.6.4    SqueezeNet
SqueezeNet  is  a  lightweight  neural  network  architecture  that

can  not  only  reduce  computational  load  but  also  maintain  good
computational performance. The network structure of SqueezeNet is
shown  in  Figure  3d.  The  fire  module  was  the  basic  unit  of
SqueezeNet, which was composed with the squeeze layer using 1x1
convolution kernels and the expand layer with a mixture of 1x1 and
3x3 convolution kernels.
 2.6.5    ISqueezeNet

Depthwise  separable  convolution,  as  a  key  technology  in
convolutional  neural  networks,  has  achieved  remarkable  results  in
the  field  of  computer  vision  in  recent  years.  Inspired  by  this,  the
traditional  convolution  of  the  Fire  module  in  SqueezeNet  was
replaced  by  a  depth-wise  separable  convolution  in  this  study.  As
shown  in  Figure  3e,  the  deep  separable  convolution  divided  the
traditional convolution operation of the convolution kernel into two
parts:  depthwise  convolution  and  pointwise  convolution.  For  the
depthwise  convolution,  M  convolution  kernels  of  size  k×k  were
used  to  convolve  the  feature  maps  input  from  each  channel  and
obtain  M  feature  maps.  Subsequently,  the  point-wise  convolution
was  performed  on  the  feature  maps  obtained  by  the  depth
convolution.  A  1×1  convolution  kernel  was  used  to  linearly
combine  the  feature  maps  on  each  channel  to  generate  the  final
feature  maps.  Through  the  above  two  steps,  the  depth-wise
separable  convolution  can  learn  spatial  features  and  channel
features, and reduce the computational complexity.

 2.7    Hyperparameter optimization methods
The model training environment used in the experiment was a

Windows  10  64-bit  operating  system.  The  graphics  card  was  an
Nvidia  4060Ti  GPU  with  16  G  video  memory.  The  hardware
configuration CPU was an Intel (R) Core (TM) i9-13900HX with a
2.20  GHz  main  frequency  and  32  GB  memory.  The  Python
programming  language  was  implemented  in  PyCharm  software.
During  training,  Bayesian  optimization  was  used  to  automatically
adjust  the  hyperparameters  of  the  model.  The  search  parameters
included the initial learning rate (ranging from 1e-5 to 1e-2), batch
size (32, 64, and 128), L2 regularization coefficient (1e-6 to 1e-3),
and  optimizer  (Adam,  SGD).
 2.8    Model performance evaluation

To evaluate the classification performance of  four  models,  the
accuracy,  Precision,  Recall,  and  F1  were  utilized  as  evaluation
metrics  and  calculated  by  the  confusion  matrix  analysis.  The
specific calculation formulas are as follows:

Accuracy =
TP+TN

TP+TN+FP+FN
(10)

Recall =
TP

TP+FN
(11)

Recall =
TP

TP+FN
(12)

F1 = 2× precision× recall
precision+ recall

(13)
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 3    Results and discussion
 3.1    Analysis of RP images of VA response signals

Figure  4  shows  the  typical  VA  responses  signal  curves  of
healthy pears and pears with varying extents  of  moldy core.  It  can
be  found  that  there  was  no  significant  differentiation  in  the  VA
signal  curves  of  the  three  categories  of  pears  at  the  first  peak  of
approximately  0.018  s.  In  the  following  peaks,  the  difference  in
signal  peak  values  between  healthy  pears  and  slight  moldy-core
pears was very small. With the severity of lesion tissue intensified,
the energy of the signal curves of moderate and severe moldy-core

pears  gradually  decreased.  Nevertheless,  the  corresponding  peak
value  was  significantly  higher  than  that  of  the  healthy  and  slight
moldy-core  pears.  Therefore,  it  was  still  difficult  to  extract  the
effective  characteristics  from  VA  curves  to  establish  the
classification model of moldy pear core. However, the RP and MTF
converted  from  VA  signals  of  the  three-class  pears  were  notably
different  in  visualized  texture  distribution.  To  demonstrate  the
effectiveness of the RP and MTF for discriminating the moldy pear
core,  the  recurrence  plots  of  three-class  pears  were  sent  into  the
deep learning algorithm for model training and classification.
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 3.2    Training  and  parameter  optimization  results  of  different
classification models
 3.2.1    Training results of machine learning models

LBP-RP  and  LBP-MTF  texture  features  were  employed  as
inputs to construct RF and KNN classification models, respectively.
The corresponding classification results are summarized in Table 2.
A comparative analysis indicated that models trained with LBP-RP
texture  features  achieved  superior  overall  classification  accuracy
compared with those trained on LBP-MTF features, suggesting that
RP  provides  a  more  discriminative  representation  of  temporal
dynamic information.  Specifically,  the RF and KNN models  based
on  LBP-RP  features  attained  overall  accuracies  of  95.65%  and
98.33%,  respectively,  whereas  the  RF  and  KNN  models  based  on
LBP-MTF  features  achieved  92.67%  and  96.52%,  respectively.
These  findings  confirm that  LBP-RP features  can more  effectively
capture the texture distribution patterns of signals after phase-space
mapping. Consequently,  this highlights the importance of selecting
appropriate  feature  representations  to  enhance  classification
performance in the nondestructive detection of moldy pears. Based
on  these  results,  the  subsequent  analysis  focused  on  the  two
classifiers trained with LBP-RP texture features.
  
Table 2    Different model classification results of LBP-RP and

LBP-MTF features on training set
Networks Input features Overall accuracy/%

RF
LBP-RP 95.65
LBP-MTF 92.67

KNN
LBP-RP 98.33
LBP-MTF 96.52

 
 3.2.2    Training results of deep learning models

The transformed RP and MTF were selected as input variables
for the classification model. In this study, five classification models,
namely  ResNet-101,  DenseNet-121,  SqueezeNet,  ISqueezeNet  and
ViT were constructed to validate the effectiveness of RP and MTF

in  the  discrimination  of  moldy  pear  core.  During  the  training
process,  the  uniform  sampling  algorithm  was  utilized  to  randomly
divide sample set into the training set and test set. Table 3 illustrates
the sample set division results of different categories of pears.  The
pears  with  varying  moldy-core  extents  were  classified  into  three
types:  healthy  (S  =  0%),  slight  moldy-core  (0  <  S  <  10%),  and
moderate and severe moldy core (S ≥ 10%). The train set consisted
of 288 samples including 112 healthy pears, 104 slight moldy-core
pears  and  72  moderate  and  severe  moldy-core  pears.  The  test  set
consisted of 72 samples including 28 healthy pears, 26 slight moldy-
core pears and 18 moderate and severe moldy-core pears.
 
 

Table 3    Sample set division results of different categories
of pears

Classes Moldy-core extents Total Training set Test set
Healthy 0 140 112 28
Slight < 10% 130 104 26

Moderate and severe ≥10% 90 72 18
 

Hyperparameter  optimization  was  a  key  step  for  the  ViT,
ResNet-101,  DenseNet-121,  SqueezeNet,  and  ISqueezeNet
classification  models.  To  accomplish  this  task,  Bayesian
optimization  was  employed  to  search  the  space  of  optimizer  type,
learning  rate,  batch  size,  and  L2  regularization  coefficient.  The
optimization  results  indicated  that  ISqueezeNet  and  DenseNet-121
achieved their best performance with the Adam optimizer (learning
rate  of  1×10–4,  batch  size  of  64,  and  L2  coefficients  of  5×10–4  and
1×10–5  respectively),  while  SqueezeNet  converged best  with  Adam
using a smaller learning rate of 5×10–5, a batch size of 32, and an L2
coefficient  of  1×10–5.  In  contrast,  ResNet-101 achieved the  highest
accuracy with the SGD optimizer (learning rate of 1×10−3, batch size
of 128, and L2 coefficient of 1×10−4), whereas ViT obtained optimal
performance  with  the  Adam  optimizer  (learning  rate  of  3×10−5,
batch size of 64, and L2 coefficient of 1×10−4). Under these model-
specific  optimal  configurations,  the  final  training  accuracies  of  the
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five  models  with  RP  input  reached  100%,  97.22%,  99.65%,
94.44%,  and 99.65%,  respectively.  When MTF features  were  used
as  input,  the  corresponding  training  accuracies  were  97.22%,
94.44%, 100%, 94.44%, and 99.65%. The training curves of the five
models  with  both  RP  and  MTF  inputs  are  presented  in  Figure  5.

Although both  inputs  yielded high accuracies,  models  trained with

RP  features  achieved  overall  more  stable  and  slightly  superior

performance.  Therefore,  RP features were selected as the input  for

subsequent analysis.
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Figure 5    Training performance of five models under RP and MTF inputs
 

 3.3    Visualization analysis of deep features
To  verify  the  effects  of  deep  feature  extraction  of  the

convolutional  layer,  the  t-SNE  algorithm  was  utilized  to  visualize
the deep features extracted from the output of the second-last layer
of the five networks. Figure 6 shows the cluster visualization results
using  the  t-SNE.  It  can  be  found  that  there  are  few  overlapping
regions  among  the  three  clusters  and  the  sample  points  of  three-

class  pears  were  closely  clustered  in  each  model.  Obviously,  the
low-level original RP images in the input layer were converted into
high-level features layer by layer, which can improve the robustness
of discrimination model.  The feature visualization results indicated
that the trained models have excellent feature learning capacity and
can  capture  effective  moldy-core  features  from  the  original  RP
images adaptively.
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Figure 6    Feature visualization through t-SNE for the convolution layer in four models
 

 3.4    Verification  and  evaluation  of  classification  performance
of models

To  further  verify  the  classification  performance  of  the
constructed model, a test data set consisting of 72 samples was used
as input, including 28 healthy pears, 26 slight moldy-core pears, and

18  moderate  and  severe  moldy-core  pears.  Figure  7  illustrates
the  confusion  matrices  of  the  RF  and  KNN  models.  For  the  RF
model,  60  out  of  72  samples  were  correctly  classified,
corresponding  to  an  overall  discrimination  accuracy  of  83.33%.
Specifically,  the  recognition  accuracies  were  85.71%  for  healthy
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pears,  76.92%  for  slight  moldy-core  pears,  and  88.89%  for
moderate and severe moldy-core pears.For the KNN model, 62 out
of  72  samples  were  correctly  identified,  yielding  an  overall
accuracy  of  86.11%.  The  class-wise  accuracies  were  82.14%  for
healthy pears, 92.31% for slight moldy-core pears, and 83.33% for
moderate  and  severe  moldy-core  pears.These  results  suggest  that
both RF and KNN can effectively discriminate moldy pear cores to
a  certain  extent,  with  KNN  showing  better  performance  in
identifying slight moldy-core pears. Figure 8 depicts the confusion
matrix of four classification models for three-class pear samples on
the test  set.  Both ResNet-101 model  and DenseNet-121 model  can
correctly identify 61 out of 72 pears, with an overall discrimination
accuracy of  84.72%. The above results  were  even worse  when the
SqueezeNet  model  was  applied,  with  the  overall  discrimination

accuracy  being  as  low as  80%,  meaning  that  <  60  out  of  72  fruits
were correctly classified. High misjudgment rate could be attributed
to  the  insignificant  difference  of  vibro-acoustic  signal  curves
between  the  healthy  and  slight  moldy-core  fruit  with  similar.
Compared  with  the  above-mentioned  models,  the  ISqueezeNet
model exhibited a significant improvement in classification results.
As  seen  in  Figure  9,  the  overall  discrimination  accuracy  for
ISqueezeNet  model  reached  93.05%.  Specifically,  the
discrimination  accuracy  was  89.28%,  96.15%,  and  94.44%  for
healthy  pears,  slight  moldy-core  pears,  and  moderate  and  severe
moldy-core  pears,  respectively.  The  comparison  of  the
discrimination  effects  of  above  models  indicated  that  the
ISqueezeNet  model  exhibited  the  superior  performance  for
discriminating moldy pear cores.
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Table  4  presented  the  performance  evaluation  results  of  the
ISqueezeNet  model.  The  value  of  Precision,  Recall,  and  F1

exceeded 92.7%, indicating that the ISqueezeNet model had higher

generalization  ability  for  identifying  moldy  pear  core. F1  score  is
the  weighted  average  of  precision  and  recall.  A  higher  F1  score
indicated that the model performs well in the classification task and
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has  a  higher  discrimination  ability  for  the  minority  class  of  early
moldy-core fruits. The F1 score of the ISqueezeNet model for early
moldy  pears  core  reached  92.59%  for  healthy  pears,  94.33%  for
slight moldy-core pears, and 91.89% for moderate and severe pears.
The  results  show  that  the  ISqueezeNet  model  is  quite  robust  for
identifying moldy pear core using vibro-acoustic testing method. It
can  be  concluded  that  the  ISqueezeNet  model  developed  in  this
study  can  be  employed  to  identify  moldy  pear  cores  with  high
classification  accuracy  and  generalization  performance  through  a
homemade VA detection system.
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Figure 9    The model discrimination results based on confusion
matrix analysis

At  present,  some  scholars  have  studied  the  identification  of
internal diseases of pears, and the detection accuracy can reach 95%
or  above[32,33].  However,  these  studies  only  identify  the  presence  or
absence of internal diseases of pears, and do not consider the early
diseases  of  fruits.  Liu  et  al.[6]  converted  one-dimensional  acoustic
vibration  multi-domain  images  (AVMDI),  and  used  visual

transformer (ViT) for feature extraction to construct
 
 

Table 4    Performance evaluation of the ISqueezeNet model

Moldy core degree
Performance evaluation

Precision/% Recall/% F1/%

Healthy 96.15 89.28 92.59

Slight 92.59 96.15 94.33

Moderate and severe 89.47 94.44 91.89
Total 92.74 93.29 92.94

classification  model  of  pear  moldy-core.  The  recognition
accuracy of AVMDI-ViT model was 94.74% for slight moldy-core
apples. In comparison, the recognition accuracy of early moldy pear
core  can  reach  96.15%  by  the  ISqueezeNet  model  in  this  work,
which  was  an  improvement  of  1.41%.  Moreover,  compared  with
other models, ISqueezeNet effectively reduces the number of model
parameters  and  computational  complexity  through  depth-wise
separable  convolution,  significantly  improving  the  inference  speed
and efficiency of model deployment while ensuring high accuracy.
 3.5    Misclassification analysis based on Grad-CAM

To  investigate  the  causes  of  misclassification,  we  employed
Grad-CAM to  visualize  the  regions  attended  by  the  model  during
decision-making (Figure 10). The heatmaps reveal that healthy and
slight  samples exhibit  highly similar  high-response regions in both
spatial  location  and  intensity,  which  makes  them  prone  to
confusion.  In  addition,  slight  samples  often  show  an  expansion  of
attention  to  larger  areas  and  oversensitivity  to  local  peaks,  leading
to their misclassification as moderate and severe. Nevertheless, such
cases  remain  limited,  and  the  overall  attention  patterns  align  well
with the true categories, underscoring the robustness and reliability
of the proposed method.
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Figure 10    Grad-CAM visualization of the model’s attention area
 

 3.6    Comparative  analysis  of  the  ISqueezeNet  network  model
and other lightweight network models

In this study, we conducted a comparative analysis between the
ISqueezeNet model and other popular lightweight network models,
including  SqueezeNet,  MobileNetV1,  and  ShuffleNetV2.  This
analysis focuses on several  key performance metrics:  classification
accuracy,  model  size,  FLOPs,  and  inference  speed.  The  goal  is  to
highlight  the  advantages  of  ISqueezeNet,  especially  in  terms  of
maintaining  high  performance  while  reducing  computational
complexity.

As  shown  in  Table  5,  ISqueezeNet  shows  the  strongest
classification  performance,  with  an  overall  classification  accuracy
of  93.05%.  In  addition  to  the  classification  accuracy,  as  a
lightweight  network,  the  ISqueezeNet  model  also  demonstrates
good  real-time  deployment  capabilities.  The  model  achieves  an
inference time of 0.009 s per sample, with a model size of 0.18 MB
and  0.06  GFLOPs  FLOPs,  which  outperforms  other  lightweight

models.  These  indicators  confirm  that  the  ISqueezeNet  model  can
be  deployed  on  embedded devices  such  as  sorting  lines,  providing
efficient, high-accuracy detection without compromising processing
speed.  The ability to balance high classification accuracy with low
resource  consumption  makes  the  ISqueezeNet  model  a  viable
solution  for  real-time  moldy  pear  core  detection  in  production
settings.
 
 

Table 5    Classification results comparison of the network
models of the ISqueezeNet, SqueezeNet, MobileNetV1

and ShuffleNetV2
Networks DSC OA/% Size/MB FLOP/GFLOPs Speed/s
SqueezeNet - 81.94 4.6 0.39 0.040
MobileNetV1 √ 83.58 0.34 0.07 0.089
ShuffleNetV2 - 90.62 7.79 0.29 0.050
ISqueezeNet √ 93.05 0.18 0.06 0.009
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 4    Conclusions
This  work  develops  a  nondestructive  classification  framework

for moldy pear cores by converting VA signals into recurrence-plot
andmarkov  transition  field  and  training  both  machine-learning  and
deep-learning  models.  Machine-learning  baselines  (RF  and  KNN)
delivered  reasonable  performance,  but  deep architectures  exhibited
stronger  generalization.  Among  them,  the  proposed  ISqueezeNet
achieved  the  best  overall  accuracy  (93.05%)  with  balanced  class-
wise  performance.  A  systematic  Bayesian  optimization  of
optimizer,  learning  rate,  batch  size,  and  L2  regularization
contributed  to  stable  convergence  and  superior  accuracy  across
models.  In  head-to-head comparisons with ResNet-101,  DenseNet-
121,  SqueezeNet,  ViT,  and  lightweight  CNNs  (MobileNetV1,
ShuffleNetV2), ISqueezeNet provided a favorable trade-off between
accuracy,  parameter  count,  and  inference  speed.  Grad-CAM
analyses  showed  consistent  attention  over  disease-related  regions,
enhancing  interpretability  and  user  trust.  Taken  together,  these
findings  substantiate  the  suitability  of  the  proposed  method  for
accurate  and  efficient  online  detection  of  moldy  cores  in  practical
sorting  and  quality-inspection  scenarios.  In  future  work,  we  will
incorporate  naturally  infected  samples  collected  from  different
regions and under varied storage conditions, enabling more realistic
evaluation  of  the  proposed  method  and  contributing  to  the
development  of  reliable  non-destructive  detection  techniques.
Ultimately,  this  will  support  postharvest  disease  management  and
promote food safety and quality assurance in the fruit industry.
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