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Abstract: Lychee is an important cash crop in southern China. The excessive growth of winter shoots in the early winter
season will lead to an increase in nutrient consumption, which in turn affects flower bud differentiation and fruit yield. To
address the issue of low efficiency in traditional manual measurement methods, this study proposes an automated detection
method using UAV remote sensing technology and an improved YOLOv8n_OBB_SEB algorithm. Through multi-dimensional
optimization, this method successfully solves the issue of the small size of winter shoots, similar color to branches, and leaf
occlusion in the orchard environment. The specific improvements include: using the SAHI algorithm for image slicing to assist
inference to improve the recognition ability of small targets; embedding the Starblock in the StarNet model into the C2f module
and replacing the original C2f module in the Backbone, which reduces the number of parameters and strengthens the feature
extraction ability; replacing the Concat module in the Neck part with the BiFPN structure to optimize multi-scale feature
fusion; introducing the EMA attention mechanism and embedding it into the C2f module in the Neck part to achieve pixel-level
attention allocation and enhance the distinguishability between the target and the background. The experimental results show
that on the lychee winter shoot test set, the detection accuracy of the improved YOLOv8 OBB_SEB algorithm reaches 89.2%,
which is 20.7% higher than that of the original YOLOv8_OBB algorithm. Compared with other mainstream algorithms,
YOLOv8 OBB_SEB shows stronger competitiveness and robustness. Through inference detection, the four coordinates of the
target rotation box can be obtained, and the actual size can be calculated by converting the pixel height to estimate the real
length of the lychee winter shoots. According to the estimation results, this paper divides the winter shoots into two groups:
those requiring drug intervention and those not requiring drug intervention. The specific judgment standard is that when the
length of the winter shoot exceeds 3 centimeters, it is classified into the group requiring drug intervention, and when the length
of the winter shoot is less than 3 centimeters, it is classified into the group not requiring drug intervention. Remote sensing data
of 24 lychee trees were collected on December 3, 2024. The spraying requirements were determined through manual field
surveys, which were then compared and verified with the model inference results. Finally, it was concluded that the accuracy of
the model reached 83.3%. This classification method provides reliable decision support and a clear decision-making basis for
the precise management of winter shoots.
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1 Introduction

Lychee is a subtropical fruit native to southern China and is
also an important agricultural product in the region. Around the turn
of autumn and winter, if temperatures are abnormally high, lychee
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trees tend to sprout winter shoots. The growth of these winter shoots
not only consumes a large amount of nutrients but also interferes
with flower bud differentiation, ultimately leading to reduced lychee
yields. Based on research on relevant literature and guidance from
local planting experts, the determined response plan is: when over
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15% of the winter shoots on lychee trees exceed 3 cm in length, it is
necessary to spray a 1250-2500 times diluted 40% ethephon
aqueous solution, combined with a 300-500 times diluted
paclobutrazol wettable powder!. Therefore, monitoring the length
of winter shoots is crucial for effective orchard management and
yield enhancement. However, detecting new lychee shoots presents
several challenges. First, the winter shoots are very small, making it
difficult to observe and measure them directly. Secondly, the dense
branches and leaves of the lychee tree often obscure the winter
shoots, further complicating the detection process. This makes
traditional manual detection methods not only inefficient but also
prone to obstruction and perspective issues, resulting in inaccurate
measurements. Therefore, effective detection of lychee winter
shoots remains a technical problem that needs to be addressed in
orchard management.

Using UAVs to capture high-resolution images of crops and
employing deep learning™ and machine learning techniques for crop
growth recognition and diagnosis is currently a mainstream research
method. Many scholars have applied this approach to problems such
as citrus flower counting®, disease recognition®, and canopy
segmentation”. Huang et al.® integrated the CBAM attention
module and ASFF module with YOLOVSs, improving the model’s
accuracy in detecting whiteflies. Li et al.”’ combined drone remote
sensing with image segmentation, integrating ResNet34, CBAM,
and U-Net to achieve precise segmentation of the lychee tree
canopy, with a segmentation accuracy of 90.98%. Song et al.'”)
combined the RESAM module with YOLOvVS8n to propose the
SEYOLOX-tiny model, successfully extracting maize ears from
drone-captured maize field images, achieving excellent detection
accuracy with a mAP0.5 index of 95.0%. Qing et al.'! developed
YOLOPC to detect citrus diseases, with approximately 75% fewer
parameters than YOLOvV5 Nano, achieving an accuracy of 94.5%,
and linked GPT for auxiliary diagnosis. Liang et al.'” integrated
Swin-transformer, BiFPN, CBAM, and CIOU into the YOLOvV5
model for detecting lychee winter shoots, achieving an accuracy of
79.56%. However, this approach did not address the estimation of
the length of the lychee winter shoots and the determination of
whether pesticide spraying is required.

In recent years, deep learning technologies have made
significant advancements in object detection, yet small object
detection and occlusion remain major challenges. There are two
primary reasons for the poor performance of small object detection:
First, small objects are significantly fewer in number compared to
medium and large objects in datasets, resulting in insufficient
feature learning for small objects. Second, small objects occupy
fewer pixels, and after multiple convolution and pooling operations,
their pixel information becomes excessively sparse, which can even
lead to the loss of small objects. To address these issues,
optimizations can be made in two aspects: the data preprocessing
stage and the model architecture. Kisantal et al.'! proposed a
method for oversampling small object images by repeatedly
copying, pasting, and enhancing these images. To tackle the
problem of limited pixels in small objects, Noh et al.' proposed a
feature-level super-resolution approach with supervisory signals
using generative adversarial networks. Akyon et al."” developed the
SAHI algorithm, which improves small object detection accuracy
through image slicing and auxiliary inference. Zhu et al.'’ also
combined transformers and YOLOVS to detect small objects in
drone-captured remote  sensing achieving  strong
performance in the VisDrone 2021 Challenge!”. Cai et al.'®
proposed the PKINet model, which employs non-dilated multi-scale

images,

convolution kernels to extract features from targets of various scales
and capture local context. Additionally, a Context Anchor Attention
module was introduced in parallel to capture long-range contextual
information, effectively addressing the issues where large
convolution kernels may introduce significant background noise and
dilated convolutions may result in overly sparse feature
representations. Lim et al.l' proposed a context-aware object
detection method to improve the accuracy of small object detection.
Liu et al.”” combined the multi-scale attention module EMA, path
aggregation feature pyramid network PAFPN, MPDIoU, and
YOLOVS to enhance the detection accuracy of small target green
plums in complex orchard environments, achieving an accuracy
0f 92.3%.

In agricultural production, the management of winter shoots in
lychee orchards typically involves spraying pesticides when the
winter shoots reach 3 cm in length to inhibit their growth. In remote
sensing images, these winter shoots are considered small targets.
This study aims to develop a detection method more suitable for
measuring the length of lychee winter shoots by combining an
improved YOLOVS algorithm with drone remote sensing
technology. 1) A remote sensing dataset of lychee winter shoots was
constructed through drone data collection. 2) To effectively detect
these targets, this paper proposes an improved YOLOvVS algorithm,
named YOLOv8n OBB SEB. Experimental results show that the
accuracy of YOLOv8n OBB_SEB in detecting lychee winter
shoots reached 89.2%, a 20.7% improvement over the original
YOLOv8n_OBB algorithm’s 68.5%. Furthermore, the proposed
YOLOv8 OBB_SEB algorithm outperforms current mainstream
detection algorithms on the test set. 3) This study establishes a
scientific winter shoot classification standard by inferring shoot
length through pixel-based measurement of rotated bounding boxes:
shoots exceeding 3 cm require pesticide application, while those
under 3 cm need no treatment, providing quantitative decision-
making support for precision lychee orchard management.

2 Materials and methods

2.1 Data collection

The dataset used in this paper was sourced from the lychee
orchard in Conghua District, Guangzhou, Guangdong Province,
China (23.56°N, 113.61°E). The data were collected using a DJI
M30T Enterprise Edition drone (Figure 1). The drone is equipped
with a camera with a resolution of 12 million pixels (4000%3000),
supporting 16x optical zoom and 200x digital zoom. The data
collection covers 34 lychee trees of the Jinggang Hongnuo variety,
with the time range from late November 2023 to early January 2024
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Note: a. Main study area location; b. Acquisition equipment: DJI Airport;
c. Sampling point at Li Bo Garden, Conghua, Guangzhou, China.

Figure I Collection location and equipment
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and December 2024, spanning two years. Images were captured
daily from 2:00 p.m. to 4:00 p.m. The flight altitude of the drone
was set to 6 m to ensure clear capture of lychee winter shoots while
avoiding interference from propeller airflow on the lychee trees. For
each lychee tree, three sampling points were set in each of the four
cardinal directions (east, south, west, and north), resulting in a total
of 12 sampling points per tree. A total of 1100 remote sensing
images were collected. Due to varying weather conditions during
data collection, the images show differences in light intensity,
which enhances the diversity of the dataset and provides strong
support for the generalization ability of the model.
2.2 Data pre-processing

Due to factors such as lighting, focus, and camera shake, some
of the remote sensing images had low clarity, which led to the
removal of images that did not meet the training requirements. We
used the roLabellmg annotation tool (as shown in Figure 2), which
employs a rotated bounding box framework to more accurately
estimate the length of winter shoots. Then, we used a script to
convert the XML files into TXT files that met the model’s training
standards. To improve the detection of small objects, we performed
image slicing. In the experiment, each image was divided into
2048%2048 pixel sections with a 20% overlap between adjacent
slices. This image slicing not only significantly improved the
accuracy of small object detection but also accelerated the GPU’s

7 ) -,

b. Vertical flipping

a. Horizontal flipping

image processing speed. To enhance the model’s learning
performance and generalization ability in complex orchard
environments, data augmentation techniques were applied, such as
mixup, mosaic, flipping, and brightness adjustments (as shown in
Figure 3), with the effects demonstrated in the figure. These
measures effectively improved the model’s generalization ability
and detection accuracy. In the end, 1100 original images were
collected, which were processed into 6600 sub-images through
slicing. These images were divided into training, validation, and test
sets in an 8:1:1 ratio, with the training set containing 5280 images,
and both the validation and test sets containing 660 images each.

Figure 2 A shoot annotation tool used in the experiment
named roLabellmg

c. Brightness variation

Figure 3 Examples of image enhancement methods

2.3 Proposed model

When lychee winter shoots exceed 3 cm in length, pesticide
application is required to inhibit their growth and prevent negative
impacts on fruit production in the following year. The dataset of this
study incorporated both newly emerged and mature winter shoots,
covering various growth stages to ensure model generalizability. As
shown in Figure 4, from top to bottom, the last image in each row
displays the distribution of the horizontal coordinate X of the rotated
bounding box center, the distribution of the vertical coordinate Y of
the rotated bounding box center, the distribution of the width of the
rotated bounding box, and the distribution of the height of the
rotated bounding box. It can be observed that the rotated bounding
boxes are evenly distributed across the image, with most bounding
boxes having a width less than 0.05 of the total image width and a
height less than 0.2 of the total image height. The detection of
lychee winter shoots presents three main challenges: 1) Limited
features: The low resolution of winter shoots in remote sensing
images restricts the extraction of distinctive characteristics; 2) Scale
variation: The dataset contains winter shoots of different lengths,
exhibiting significant scale differences across growth stages;
3) Background interference: The similar coloration between winter
shoots and tree trunks/dry branches makes target-background
differentiation difficult for models.

To enhance the performance of YOLOv8n_OBB on the lychee
winter shoot dataset, the YOLOv8n OBB_SEB algorithm was
developed. This model improves feature extraction quality by

embedding the Starblock module from the StarNet”" backbone
network into the C2f module, replacing the original C2f module.
Additionally, the BIFPN module™ is introduced to replace the
Concat module, further enhancing feature fusion. The EMA
module®™ is embedded into the C2f module, replacing the C2f
module in the neck section, significantly improving the model’s
ability to identify key feature areas in complex backgrounds.

Finally, Non-Maximum Suppression (NMS) 1is applied to
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Figure 4 Detailed distribution of annotation boxes
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successfully merge the detected sliced sub-images. The model
structure is shown in Figure 5. After inference with the
YOLOv8n_OBB_SEB model, the actual length of winter shoots is

C2f Star

calculated based on rotated bounding box coordinates: If the length
is greater than 3 cm, pesticide spraying is required; if the length is
less than or equal to 3 cm, no treatment is needed.

BIFPN_Add2

C2f EMA

—— Detect

> Detect

BIFPN Add2

C2f Star

SPPF >

A

Upsample

L

Y
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Figure 5 The final proposed YOLOv8n_OBB_SEB network structure

2.3.1 Slicing-aided hyper-inference

Considering the issues of limited features and small targets, this
paper adopts the SAHI algorithm. SAHI is a slicing-assisted hyper-
inference algorithm designed for small object detection in ultra-
large images. It allows direct application to existing networks
without the need for model redesign or retraining, enhancing the
accuracy of small object detection. SAHI performs slicing inference
on the original image by dividing it into smaller regions for
prediction. These prediction results are then merged using Non-
Maximum Suppression (NMS). This approach allows for more
accurate detection of small objects by focusing on smaller regions
of the image. This technique is particularly useful in situations
where the target size is small,
representation.
2.3.2 Bidirectional Feature Pyramid Network

resulting in limited pixel

Considering the issue of scale variation of targets, this study
has integrated the BiFPN structure into the YOLOv8n OBB
algorithm. The conventional FPNP! primarily fuses multi-scale
feature maps through a top-down pathway, whereas BiFPN not only
retains this top-down pathway but also introduces a complementary
bottom-up pathway, establishing bidirectional information flow to
generate more enriched feature representations. Furthermore,
BiFPN employs learnable weights to perform weighted fusion of
input feature maps, as opposed to simple concatenation or
summation, enabling the model to automatically learn the relative
importance of each feature map and thereby enhance the quality of
fused features. The architecture of BiFPN is illustrated in Figure 6.
Previous studies™* have demonstrated that integrating the BiFPN
module into object detection models yields significant performance
improvements.

2.3.3 Efficient Multi-scale Attention

Considering the complex background environment and the high
similarity in color and morphology between winter shoots and
branches, the detection accuracy in winter shoot identification tasks
is often suboptimal. To address this challenge, this study
innovatively integrates the EMA module into the C2f module of the
YOLOv8n model. The EMA (Efficient Multi-scale Attention)
attention mechanism enhances the model’s accuracy by establishing

both short-term and long-term dependencies using multi-scale
parallel subnetworks, without the need for channel reduction. It
reshapes part of the channels into the batch dimension and groups
the channel dimension into multiple sub-features, ensuring that
spatial semantic features are evenly distributed within each feature
group. This structure not only retains the information in each
channel but also reduces the computational overhead. Additionally,
the EMA module recalibrates the channel weights in each parallel
branch by encoding global information. It further aggregates the
output features of the two parallel branches through cross-
dimensional interaction to capture pixel-level pairwise relationships.
The EMA network structure is shown in Figure 7.

Repeated blocks

Note: P;-P; are the input features of layers 3-7.
Figure 6 BiFPN structural

2.3.4 StarBlock

Considering the limited features of lychee winter shoots and the
adoption of the lightweight Nano version, this study innovatively
integrates the StarBlock module (Figure 8) into the C2f module to
enhance feature extraction quality.

The Star operation represents a breakthrough from
conventional neural networks’ channel-number-increment approach.
It achieves feature fusion through element-wise multiplication
across different feature subspaces, operating similarly to kernel
function mechanisms. When stacked in multiple layers, this
operation enables exponential expansion of implicit dimensionality,
constructing high-dimensional feature spaces with minimal layers.
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Figure 7 EMA structure

This innovation allows YOLOv8n_OBB (a low-dimensional model)
to maintain low computational complexity while significantly
enhancing feature extraction performance. The star operation can be
written as:

d+1 d+1

wixswlx = E wix | = g wix’ | =
i=1 j=1

+a/(d+1,d+1)fi+lxd+l

d+1  d+l
E E wiwir'x/ =
=l j=1

@upX' X F s+

(1)
where, d is the input channel number, w; and w, are the weight
vectors, x is the feature vector, i and j are the indices of the
channels, and « is the coefficient for each term.

Note: *: element-wise mul. (star); DW-Conv: The kernel size of Depthwise
Convolution is 7x7, and the stride is 1; FC: Fully Connected Layer.
Figure 8 Starblock structure

2.3.5 Automated Classification of Lychee Winter Shoots

The method for measuring the length of lychee winter shoots in
this experiment is as follows: The YOLOv8n OBB_SEB model is
used for object detection to obtain the rotated bounding box of the
target, and then the length is calculated based on the coordinates of
the four points of the bounding box. Orchard drone inspections are
usually conducted by shooting along preset flight paths, so the
shooting scheme remains consistent. This experiment uses the DJI
M30T drone, which features an image control-free design and is
equipped with a lens distortion correction function and a laser
rangefinder.

To explore the differences, comparative verification was
simultaneously conducted through the automatic adjustment of the
DJI Dock and a complete geometric calibration process: Five high-
reflectivity PVC ground control panels (GCPs, 30 cmx30 cm, with
a black and white checkerboard pattern) were placed in the
experimental orchard, and their actual coordinates were recorded

using RTK-GPS as the ground truth reference. The DJI M30T drone
(RTK nominal accuracy: horizontal 1 cm + 1x10°, vertical 1.5 cm +
1x107) was used for positioning accuracy verification. In the static
verification, the drone was stationary above the GCPs, and the
calculated horizontal RMSE=+1.2 ¢cm and vertical RMSE=+1.6 cm,
which meet the accuracy requirements.

Lens distortion correction was performed using Zhang
Zhengyou’s®” method: 20 images of a 12x9 checkerboard (with a
square side length of 3 cm) taken from different angles were
calibrated using OpenCV to obtain the intrinsic matrix and
distortion coefficients, which were then imported into Metashape to
complete the correction. The results show that the two schemes are
consistent, with a pixel resolution of 0.01 cm per pixel. The actual
length of the lychee winter shoots satisfies the following equation:

@)

where, L., represents the shoot length, cm; L, represents the

Lnew = Lobb X pr

rotated bounding box length; U, represents the pixel unit length,
cm per pixel.

3 Experimental results and analysis

3.1 Experimental environment

The training environment for this paper consists of Windows
10 with 32 GB of RAM and an NVIDIA GeForce RTX 3090 GPU.
Model training was implemented using Python 3.9.0, PyTorch
1.10.1, and CUDA 11.3.

In this study, a model input size of 2048x2048 was selected,
with Adam as the optimizer. The batch size was set to 16, and the
number of epochs was set to 300. The initial learning rate was
0.001, and an early stopping strategy was applied to prevent
overfitting. Commonly used evaluation metrics in object detection,
including mean average precision (MAP), model size (Weights),
and frames per second (FPS), were employed in this study.

3.2 Evaluation metrics

In object detection tasks, precision (P), recall (R), average
precision (AP), model size, and frames per second (FPS) are
commonly used as metrics to evaluate the overall performance of
the model. The calculations for P, R, and AP are as follows:

TP
P=pirp 3)
R= 1 )
TP+ FN
£ (5)

- num(Total Objects)
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Where TP represents the number of correctly detected lychee
sprouts, FP represents the number of falsely detected lychee sprouts,
and FN represents the number of missed lychee sprouts.

3.3 Ablation experiment

To tackle the challenge of detecting the extremely small targets
of lychee winter shoots and improve the detection performance,
researchers conducted experiments on the YOLOv8n_OBB model
using three datasets: the original dataset, the non-overlapping sliced
dataset, and the overlapping sliced dataset. When the image data is
directly input without slicing, the MAP50 of the model can only
reach 68.5%. In contrast, the MAP50s of the non-overlapping sliced
dataset and the overlapping sliced dataset are 79.1% and 80.6%,
further
performance, this paper integrates three key improved modules,
namely StarBlock, BiFPN, and EMA, and seamlessly incorporates
them into the YOLOv8n OBB framework to comprehensively
improve the model’s performance on the lychee winter shoot

respectively. Moreover, to enhance the model’s

dataset. Ablation experiments were conducted for each module, and
the specific results are listed in Table 1. The experimental results
indicate that embedding StarBlock into the C2f module of the
backbone network effectively enhances the model’s feature
representation ability without increasing model parameters or
computational load, leading to a 2.9% improvement in MAP50.
Additionally, when the mAP50 value reaches its optimal value,
YOLOv8n_OBB requires 248 epochs, while the YOLOv8n_ OBB
with StarBlock only requires 228 epochs (as shown in Figure 9).
Furthermore, the BiFPN module dynamically adjusts feature
importance through a weighting mechanism and supports
bidirectional feature flow (top-down and bottom-up), enabling
efficient multi-scale feature fusion, which improves MAP50 by
1.2%. Meanwhile, embedding the EMA module into the C2f
module of the neck network significantly enhances the model’s
ability to distinguish between target and background regions,
effectively improving overall detection performance, with a 2.3%
increase in MAP50. By combining the advantages of these three
modules, the YOLOv8n_OBB_SEB model achieves a MAP50 of
85.4%, a 4.8% improvement over the original YOLOv8n_OBB. In
the lychee winter shoot detection task, the model demonstrates
stronger detection capabilities, good robustness, and great potential
for practical applications.

Table 1 Ablation experiment
MAP50/ Weight/

0, 0,
Methods % Pl% RI% Mb GFLOPs FPS
YOLOv&n_OBB 80.6 857 76.7 6.74 9.3 158.1
YOLOv8n_OBB+BIFPN 81.8 835802 9.33 143 138.6

YOLOv8n_OBB+C2f EMA 829 855792 9.28 144 139.0
YOLOv8n_OBB+C2f Star 83.5 83.1 82.8 839 12.1 1235

YOLOv8n_OBB+BIFPN+
C2f EMA

YOLOv8n_OBB+C2f EMA+
C2f Star

YOLOv8n_OBB_SEB(proposed) 854 85.2 83.2 8.51 12.7 1182

83.5 824 81.1 9.34 145 1327

80.7 81.4 803 842 123 1185

3.4 Comparative experiments on attentional mechanisms

To validate the effectiveness of the EMA module, this study
conducted comparative experiments with CBAM™ and LSKA®!
modules (Table 2). Experimental results demonstrate that the EMA
module improved mAP50 from 80.6% to 82.9%, achieving a 2.3
percentage point accuracy increase and outperforming other
attention mechanisms. The EMA module’s multi-scale feature
extraction and cross-space interaction mechanisms enable more

comprehensive feature capture. Unlike CBAM’s separate
processing of channel/spatial attention, EMA integrates multi-scale
features with cross-space interactions, significantly enhancing
detection performance. For small object detection tasks like lychee
winter shoot identification, EMA demonstrates superior local
feature extraction capabilities compared to LSKA’s large kernel

decomposition approach.
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Figure 9 Comparison of MAP50 between YOLOv8n_OBB and
YOLOv8n_OBB+StarBlock

Table 2 Comparison of attention mechanisms

Model Attention Methods MAP50/% P/% R/%
YOLOvV8n_obb - 80.6 85.7 76.7
YOLOvV8n_obb CBAM 81.9 81.9 78.6
YOLOvV8n_obb LSKA 82.8 85.1 79.5
YOLOv8n_obb EMA 82.9 85.5 79.2

3.5 Performance comparison of different object detection
models

Research indicates that small-sample object detection still faces
accuracy degradation issues due to background interference®™*". To
address this, this study optimized the YOLOv8n OBB model.
Experiments revealed that the original model exhibited missed and
false detections under strong lighting or shadowed backgrounds
(Figure 10). By incorporating image overlapping slicing technology
and improving the model architecture (with particular focus on
optimizing the attention mechanism and multi-scale feature fusion
modules), we developed an enhanced YOLOv8n OBB_SEB model.
As listed in Table 3, the improved model demonstrates outstanding
performance in lychee winter shoot detection: achieving 85.4%

Note: Magnified view of the local region.

Figure 10 ' YOLOv8n OBB inference results
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MAP50, 85.2% precision (P), and 83.2% recall (R), significantly
outperforming mainstream algorithms including R-CNNF,
R3Det™!, S2A-Net®, ReDet"*], and YOLOv5 OBB. Moreover, the
model maintains excellent computational efficiency, with a compact
size of 8.51 MB, computational load of 12.8 GFLOPs, and real-time
processing speed reaching 118.2 FPS.

Table3 Comparison of results from different algorithms
MAP50/ Weight/

Methods % P/% R/% Mb GFLOPs  FPS
YOLOv&n_OBB 80.6 85.7 76.7 6.74 9.60 158.1
R-CNN 76.8 76.5 825 314 198.5 18.6
R3Det 68.4 76.4 724 318 328.7 16.4
S2A-Net 70.9 85.6 77.6 295 196.2 17.2
ReDet 58.1 652 66.9 244 54.3 8.2
YOLOv5n_OBB 71.9 713 674 4.05 4.2 180.8
YOLOv8n_OBB_SEB 85.4 852 832 8.51 12.8 118.2

3.6 Visualization of detection results

To verify the superiority of the proposed model in lychee
winter shoot detection, we randomly selected several images from
the test set for a comparative analysis of detection performance. The
YOLOv8n_OBB model performed poorly on the lychee winter
shoot dataset, mainly due to false positives and missed detections
under conditions of bright light and shadow, as shown in Figure 10.
Specifically, the model mistakenly identified spots on leaves,
mature branches, and light reflections as winter shoots. In contrast,
the improved YOLOv8n_OBB_SEB model demonstrated superior
performance in distinguishing between the target and background,
and it was able to accurately detect winter shoots even in dimly lit
environments, as shown in Figure 11. This indicates that the
YOLOv8n_OBB_SEB model has significantly improved robustness
and accuracy under complex lighting conditions.
3.7 Model generalization evaluation

In the experimental study conducted on December 23, 2024,
aerial images of six lychee trees were captured using drone
photography, followed by intelligent recognition analysis
employing the YOLOv8n OBB SEB deep learning model. The
winter shoots of the six sampled lychee trees exhibited a gradient
distribution in length (classified into short, medium, and long

types). In practical agricultural production, pesticide application
decisions are typically made on a per-tree basis. When over 15% of
detected shoots require treatment, the tree is designated for
spraying;Validation against manual assessments yielded the
following model performance metrics: detection rate 89.10%, miss
rate 7.35%, false detection rate 3.55%, with pesticide decision
accuracy reaching 83.3%. (Detailed data are listed in Table 4, and
among the six tested trees, the lengths of winter shoots were divided
into three categories (short, medium, and long), with two trees per
category. The corresponding detection results are presented in
Figure 12). The experimental results conclusively demonstrate the
model’s outstanding performance in lychee winter shoot
identification tasks: not only achieving an overall detection
accuracy approaching 90%, but also maintaining high reliability in
pesticide application decisions. Particularly noteworthy is the
model’s consistently stable recognition performance and
exceptional generalization capability when handling diverse sample
detection requirements.

Shadow -

Bright
background
N

Figure 11 YOLOv8n_OBB_SEB inference results

Table 4 Experimental results of the YOLOv8n_OBB_SEB model on six lychee trees

Tree Detected Undetected Real False Detectionrate/%  Undetection rate/%  False rate/%  Actual drug requirement  Estimated drug requirement
A 31 2 34 1 91.2 5.9 2.9 No No
B 37 3 40 0 92.5 7.5 0 No No
C 30 3 33 0 90.9 9.1 0 No Yes
D 11 0 13 2 84.6 0 15.4 Yes Yes
E 14 2 16 0 87.5 12.5 0 Yes Yes
F 29 3 33 1 87.9 9.1 3.0 Yes Yes

4 Discussion and conclusions

4.1 Discussion

Although the proposed YOLOv8n OBB SEB model shows
significant improvements across multiple evaluation metrics, the
experimental results also reveal several issues that need to be
addressed. Firstly, some lychee winter shoots experienced false
positives or missed detections, indicating that the model’s
performance still has
improvement, which is a common challenge in small object

in complex backgrounds room for

detection. Secondly, some rotated bounding boxes did not

accurately fit the actual boundaries of the targets, leading to errors

in measuring the target’s length. To address these issues, future
research could focus on the following aspects: first, introducing
more diverse training datasets, covering different lighting
conditions, complex backgrounds, and varying target shapes, to
enhance the model’s robustness and adaptability, enabling it to
better handle the challenges of real-world scenarios; second,
optimizing the model’s loss function design, particularly improving
the penalty mechanism for target box localization errors, to increase
the model’s sensitivity to differences between predicted and actual
boxes, thereby improving the precision of the target boxes; third,
integrating multi-scale feature extraction techniques to further

enhance the model’s ability to capture detailed features and reduce
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Note: Red: model prediction; blue: ground truth.

Figure 12 Detection results of YOLOv8n_ OBB_SEB model on
six trees (A, B, C, D, E, F)

the occurrence of false positives and missed detections. At the same
time, using rotated bounding boxes to estimate the length of lychee
winter shoots may still introduce certain errors, primarily in the
following aspects:

1) The limitation of laser rangefinders lies in that such ranging
devices can only measure the distance at the focal point, which
leads to measurement deviations for other points in the image. This
deviation is particularly prominent when the density of lychee
canopies is low, as it causes significant increases in the distance
differences between different pixels in the image and the camera.
To reduce this error, improvements can be made by equipping
drones with LiDAR, thereby minimizing the error.

2) Fit between the detection box and the winter shoot: The
rotated detection box may not perfectly align with the boundaries of
the lychee winter shoot, leading to measurement deviations. This
issue can be addressed by further optimizing the model’s detection
accuracy and boundary-fitting capability. Through detection and
calculation, the four corner coordinates of the target’s rotated
bounding box are obtained. After computing the pixel length and
converting it to the actual dimension, the mean absolute error
(MAE) on the test set is 7.3%.

3) Curvature of the lychee winter shoot: Estimating the length
of the lychee winter shoot using the length of the rotated bounding
box introduces an error, as the winter shoots may be curved.
However, observations of previously captured images show that
newly sprouted lychee shoots are relatively straight. It is only after a
certain period of growth that the shoots begin to bend slightly. By
then, most of the winter shoots will have reached the stage where
pesticide spraying is required, so this error is considered acceptable.

In future work, we plan to integrate the YOLOv8n OBB_SEB
model into a smart orchard platform, continue data collection, and
use the model for inference. By incorporating feedback from
detection performance, we will continuously optimize the model to
better suit complex and diverse environments, meeting the needs of

agricultural production.
4.2 Conclusions

To achieve accurate detection of lychee winter shoots in real
orchard environments, this study proposes a method combining
drone remote sensing technology with the YOLOv8n_OBB_SEB
model for classifying the lengths of winter shoots. The model
introduces the StarBlock module into the backbone network and
embeds the C2f module to increase network dimensionality and
enhance feature extraction capabilities, while replacing the
traditional Concat module with BiFPN, dynamically adjusting the
importance of features through a weighting mechanism to achieve
bidirectional feature fusion and further optimize the fusion process.
In addition, it integrates the EMA attention module into the C2f
module to help the model more accurately distinguish between
targets and backgrounds, thereby improving detection accuracy.
Experimental results show that on the self-constructed lychee winter
shoot dataset, the YOLOv8n_OBB_SEB model achieves an average
precision (AP) of 89.2%, a 20.7% improvement over the original
YOLOv8n_OBB model. To verify the model’s generalization
performance, the tests at a flight height of 7 m above the trees were
also conducted, achieving a precision of 88.7%, and comparative
experiments with other lychee winter shoot detection models further
confirm that this model can achieve higher detection accuracy in
complex backgrounds. Meanwhile, considering the practical needs
of lychee production, merely detecting lychee winter shoots is
insufficient to directly solve production issues, so rotated bounding
boxes were used to fit the shape of lychee winter shoots and
estimate their lengths to facilitate subsequent evaluation of whether
pesticide spraying is necessary. Future research will focus on
optimizing detection accuracy and the fitting degree of rotated
bounding boxes, and explore the application of this method in actual
orchard management to support the intelligent and precise
management of agricultural production.
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