
  

Evaluation of lychee winter shoot length using UAV remote
sensing technology

Zifan Shen1,2,3,4, Baihan Liu1, Rui Xu1,2,3,4, Yiwei Wang1,2,3,4, Heguang Sun1,2,3,4,
Yongshun Liu5, Yubin Lan1,2,3,4, Xiangbao Meng6, Xiaoling Deng1,2,3,4*

(1. College of Electronic Engineering (College of Artificial Intelligence), South China Agricultural University, Guangzhou 510642, China;
2. National Center for International Collaboration Research on Precision Agricultural Aviation Pesticide Spraying Technology,

Guangzhou 510642, China;
3. Center for International Cooperation and Disciplinary Innovation of Precision Agricultural Aviation Applied Technology

(‘111 Center’), Guangzhou 510642, China;
4. Guangdong Provincial Engineering Research Center for Smart Agriculture, Guangzhou 510642, China;

5. College of Mathematical, Physical and Computational Sciences (College of Climate Change and Artificial Intelligence),
University of Reading, RG6 6UR, UK;

6. Guangzhou Joinken Network Technology Development Co., Ltd., Guangzhou 510630, China)

Abstract: Lychee  is  an  important  cash  crop  in  southern  China.  The  excessive  growth  of  winter  shoots  in  the  early  winter
season  will  lead  to  an  increase  in  nutrient  consumption,  which  in  turn  affects  flower  bud  differentiation  and  fruit  yield.  To
address  the  issue  of  low  efficiency  in  traditional  manual  measurement  methods,  this  study  proposes  an  automated  detection
method using UAV remote sensing technology and an improved YOLOv8n_OBB_SEB algorithm. Through multi-dimensional
optimization,  this  method successfully solves the issue of  the small  size of  winter  shoots,  similar  color  to  branches,  and leaf
occlusion in the orchard environment. The specific improvements include: using the SAHI algorithm for image slicing to assist
inference to improve the recognition ability of small targets; embedding the Starblock in the StarNet model into the C2f module
and replacing the original C2f module in the Backbone, which reduces the number of parameters and strengthens the feature
extraction  ability;  replacing  the  Concat  module  in  the  Neck  part  with  the  BiFPN  structure  to  optimize  multi-scale  feature
fusion; introducing the EMA attention mechanism and embedding it into the C2f module in the Neck part to achieve pixel-level
attention allocation and enhance the distinguishability between the target and the background. The experimental results show
that on the lychee winter shoot test set, the detection accuracy of the improved YOLOv8_OBB_SEB algorithm reaches 89.2%,
which  is  20.7%  higher  than  that  of  the  original  YOLOv8_OBB  algorithm.  Compared  with  other  mainstream  algorithms,
YOLOv8_OBB_SEB shows stronger competitiveness and robustness. Through inference detection, the four coordinates of the
target  rotation  box  can  be  obtained,  and  the  actual  size  can  be  calculated  by  converting  the  pixel  height  to  estimate  the  real
length of  the lychee winter  shoots.  According to the estimation results,  this  paper divides the winter  shoots  into two groups:
those  requiring  drug intervention and those  not  requiring  drug intervention.  The specific  judgment  standard  is  that  when the
length of the winter shoot exceeds 3 centimeters, it is classified into the group requiring drug intervention, and when the length
of the winter shoot is less than 3 centimeters, it is classified into the group not requiring drug intervention. Remote sensing data
of  24  lychee  trees  were  collected  on  December  3,  2024.  The  spraying  requirements  were  determined  through  manual  field
surveys, which were then compared and verified with the model inference results. Finally, it was concluded that the accuracy of
the model reached 83.3%. This classification method provides reliable decision support and a clear decision-making basis for
the precise management of winter shoots.
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 1    Introduction
Lychee  is  a  subtropical  fruit  native  to  southern  China  and  is

also an important agricultural product in the region. Around the turn
of  autumn and winter,  if  temperatures  are  abnormally  high,  lychee

trees tend to sprout winter shoots. The growth of these winter shoots
not  only  consumes  a  large  amount  of  nutrients  but  also  interferes
with flower bud differentiation, ultimately leading to reduced lychee
yields.  Based on research on relevant  literature  and guidance from
local  planting  experts,  the  determined  response  plan  is:  when over
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15% of the winter shoots on lychee trees exceed 3 cm in length, it is
necessary  to  spray  a  1250–2500  times  diluted  40%  ethephon
aqueous  solution,  combined  with  a  300–500  times  diluted
paclobutrazol wettable powder[1-3].  Therefore, monitoring the length
of  winter  shoots  is  crucial  for  effective  orchard  management  and
yield enhancement. However, detecting new lychee shoots presents
several challenges. First, the winter shoots are very small, making it
difficult to observe and measure them directly. Secondly, the dense
branches  and  leaves  of  the  lychee  tree  often  obscure  the  winter
shoots,  further  complicating  the  detection  process.  This  makes
traditional  manual  detection  methods  not  only  inefficient  but  also
prone  to  obstruction  and perspective  issues,  resulting  in  inaccurate
measurements.  Therefore,  effective  detection  of  lychee  winter
shoots  remains  a  technical  problem  that  needs  to  be  addressed  in
orchard management.

Using  UAVs  to  capture  high-resolution  images  of  crops  and
employing deep learning[4] and machine learning techniques for crop
growth recognition and diagnosis is currently a mainstream research
method. Many scholars have applied this approach to problems such
as  citrus  flower  counting[5],  disease  recognition[6],  and  canopy
segmentation[7].  Huang  et  al.[8]  integrated  the  CBAM  attention
module and ASFF module with YOLOv5s,  improving the model’s
accuracy in detecting whiteflies.  Li  et  al.[9] combined drone remote
sensing  with  image  segmentation,  integrating  ResNet34,  CBAM,
and  U-Net  to  achieve  precise  segmentation  of  the  lychee  tree
canopy,  with  a  segmentation  accuracy  of  90.98%.  Song  et  al.[10]

combined  the  RESAM  module  with  YOLOv8n  to  propose  the
SEYOLOX-tiny  model,  successfully  extracting  maize  ears  from
drone-captured  maize  field  images,  achieving  excellent  detection
accuracy  with  a  mAP0.5  index  of  95.0%.  Qing  et  al.[11]  developed
YOLOPC to  detect  citrus  diseases,  with  approximately  75% fewer
parameters  than  YOLOv5  Nano,  achieving  an  accuracy  of  94.5%,
and  linked  GPT  for  auxiliary  diagnosis.  Liang  et  al.[12]  integrated
Swin-transformer,  BiFPN,  CBAM,  and  CIOU  into  the  YOLOv5
model for detecting lychee winter shoots, achieving an accuracy of
79.56%.  However,  this  approach  did  not  address  the  estimation  of
the  length  of  the  lychee  winter  shoots  and  the  determination  of
whether pesticide spraying is required.

In  recent  years,  deep  learning  technologies  have  made
significant  advancements  in  object  detection,  yet  small  object
detection  and  occlusion  remain  major  challenges.  There  are  two
primary reasons for the poor performance of small object detection:
First,  small  objects  are  significantly  fewer  in  number  compared  to
medium  and  large  objects  in  datasets,  resulting  in  insufficient
feature  learning  for  small  objects.  Second,  small  objects  occupy
fewer pixels, and after multiple convolution and pooling operations,
their pixel information becomes excessively sparse, which can even
lead  to  the  loss  of  small  objects.  To  address  these  issues,
optimizations  can  be  made  in  two  aspects:  the  data  preprocessing
stage  and  the  model  architecture.  Kisantal  et  al.[13]  proposed  a
method  for  oversampling  small  object  images  by  repeatedly
copying,  pasting,  and  enhancing  these  images.  To  tackle  the
problem of limited pixels in small objects, Noh et al.[14] proposed a
feature-level  super-resolution  approach  with  supervisory  signals
using generative adversarial networks. Akyon et al.[15] developed the
SAHI  algorithm,  which  improves  small  object  detection  accuracy
through  image  slicing  and  auxiliary  inference.  Zhu  et  al.[16]  also
combined  transformers  and  YOLOv5  to  detect  small  objects  in
drone-captured  remote  sensing  images,  achieving  strong
performance  in  the  VisDrone  2021  Challenge[17].  Cai  et  al.[18]

proposed the PKINet model, which employs non-dilated multi-scale

convolution kernels to extract features from targets of various scales
and capture local context. Additionally, a Context Anchor Attention
module was introduced in parallel to capture long-range contextual
information,  effectively  addressing  the  issues  where  large
convolution kernels may introduce significant background noise and
dilated  convolutions  may  result  in  overly  sparse  feature
representations.  Lim  et  al.[19]  proposed  a  context-aware  object
detection method to improve the accuracy of small object detection.
Liu  et  al.[20]  combined the  multi-scale  attention  module  EMA, path
aggregation  feature  pyramid  network  PAFPN,  MPDIoU,  and
YOLOv8  to  enhance  the  detection  accuracy  of  small  target  green
plums  in  complex  orchard  environments,  achieving  an  accuracy
of 92.3%.

In agricultural production, the management of winter shoots in
lychee  orchards  typically  involves  spraying  pesticides  when  the
winter shoots reach 3 cm in length to inhibit their growth. In remote
sensing  images,  these  winter  shoots  are  considered  small  targets.
This  study  aims  to  develop  a  detection  method  more  suitable  for
measuring  the  length  of  lychee  winter  shoots  by  combining  an
improved  YOLOv8  algorithm  with  drone  remote  sensing
technology. 1) A remote sensing dataset of lychee winter shoots was
constructed  through  drone  data  collection.  2)  To  effectively  detect
these targets, this paper proposes an improved YOLOv8 algorithm,
named  YOLOv8n_OBB_SEB.  Experimental  results  show  that  the
accuracy  of  YOLOv8n_OBB_SEB  in  detecting  lychee  winter
shoots  reached  89.2%,  a  20.7%  improvement  over  the  original
YOLOv8n_OBB  algorithm’s  68.5%.  Furthermore,  the  proposed
YOLOv8_OBB_SEB  algorithm  outperforms  current  mainstream
detection  algorithms  on  the  test  set.  3)  This  study  establishes  a
scientific  winter  shoot  classification  standard  by  inferring  shoot
length through pixel-based measurement of rotated bounding boxes:
shoots  exceeding  3  cm  require  pesticide  application,  while  those
under  3  cm  need  no  treatment,  providing  quantitative  decision-
making support for precision lychee orchard management.

 2    Materials and methods
 2.1    Data collection

The  dataset  used  in  this  paper  was  sourced  from  the  lychee
orchard  in  Conghua  District,  Guangzhou,  Guangdong  Province,
China  (23.56°N,  113.61°E).  The  data  were  collected  using  a  DJI
M30T  Enterprise  Edition  drone  (Figure  1).  The  drone  is  equipped
with a  camera with a  resolution of  12 million pixels  (4000×3000),
supporting  16×  optical  zoom  and  200×  digital  zoom.  The  data
collection covers 34 lychee trees of the Jinggang Hongnuo variety,
with the time range from late November 2023 to early January 2024
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Figure 1    Collection location and equipment
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and  December  2024,  spanning  two  years.  Images  were  captured
daily  from  2:00  p.m.  to  4:00  p.m.  The  flight  altitude  of  the  drone
was set to 6 m to ensure clear capture of lychee winter shoots while
avoiding interference from propeller airflow on the lychee trees. For
each lychee tree, three sampling points were set in each of the four
cardinal directions (east, south, west, and north), resulting in a total
of  12  sampling  points  per  tree.  A  total  of  1100  remote  sensing
images  were  collected.  Due  to  varying  weather  conditions  during
data  collection,  the  images  show  differences  in  light  intensity,
which  enhances  the  diversity  of  the  dataset  and  provides  strong
support for the generalization ability of the model.
 2.2    Data pre-processing

Due to factors such as lighting, focus, and camera shake, some
of  the  remote  sensing  images  had  low  clarity,  which  led  to  the
removal of images that did not meet the training requirements. We
used the roLabelImg annotation tool (as shown in Figure 2), which
employs  a  rotated  bounding  box  framework  to  more  accurately
estimate  the  length  of  winter  shoots.  Then,  we  used  a  script  to
convert the XML files into TXT files that met the model’s training
standards. To improve the detection of small objects, we performed
image  slicing.  In  the  experiment,  each  image  was  divided  into
2048×2048  pixel  sections  with  a  20%  overlap  between  adjacent
slices.  This  image  slicing  not  only  significantly  improved  the
accuracy  of  small  object  detection  but  also  accelerated  the  GPU’s

image  processing  speed.  To  enhance  the  model’s  learning
performance  and  generalization  ability  in  complex  orchard
environments,  data  augmentation  techniques  were  applied,  such  as
mixup,  mosaic,  flipping,  and  brightness  adjustments  (as  shown  in
Figure  3),  with  the  effects  demonstrated  in  the  figure.  These
measures  effectively  improved  the  model’s  generalization  ability
and  detection  accuracy.  In  the  end,  1100  original  images  were
collected,  which  were  processed  into  6600  sub-images  through
slicing. These images were divided into training, validation, and test
sets in an 8:1:1 ratio, with the training set containing 5280 images,
and both the validation and test sets containing 660 images each.
  

Figure 2    A shoot annotation tool used in the experiment
named roLabelImg

 
 

a. Horizontal flipping b. Vertical flipping c. Brightness variation d. Mixup

Figure 3    Examples of image enhancement methods
 

 2.3    Proposed model
When  lychee  winter  shoots  exceed  3  cm  in  length,  pesticide

application is  required to inhibit  their  growth and prevent  negative
impacts on fruit production in the following year. The dataset of this
study  incorporated  both  newly  emerged  and  mature  winter  shoots,
covering various growth stages to ensure model generalizability. As
shown in Figure 4, from top to bottom, the last image in each row
displays the distribution of the horizontal coordinate X of the rotated
bounding box center, the distribution of the vertical coordinate Y of
the rotated bounding box center, the distribution of the width of the
rotated  bounding  box,  and  the  distribution  of  the  height  of  the
rotated bounding box. It can be observed that the rotated bounding
boxes are evenly distributed across the image, with most bounding
boxes having a width less than 0.05 of the total image width and a
height  less  than  0.2  of  the  total  image  height.  The  detection  of
lychee  winter  shoots  presents  three  main  challenges:  1)  Limited
features:  The  low  resolution  of  winter  shoots  in  remote  sensing
images restricts the extraction of distinctive characteristics; 2) Scale
variation:  The  dataset  contains  winter  shoots  of  different  lengths,
exhibiting  significant  scale  differences  across  growth  stages;
3) Background interference: The similar coloration between winter
shoots  and  tree  trunks/dry  branches  makes  target-background
differentiation difficult for models.

To enhance the performance of YOLOv8n_OBB on the lychee
winter  shoot  dataset,  the  YOLOv8n_OBB_SEB  algorithm  was
developed.  This  model  improves  feature  extraction  quality  by

embedding  the  Starblock  module  from  the  StarNet[21]  backbone
network  into  the  C2f  module,  replacing  the  original  C2f  module.
Additionally,  the  BIFPN  module[22]  is  introduced  to  replace  the
Concat  module,  further  enhancing  feature  fusion.  The  EMA
module[23]  is  embedded  into  the  C2f  module,  replacing  the  C2f
module  in  the  neck  section,  significantly  improving  the  model’s
ability  to  identify  key  feature  areas  in  complex  backgrounds.
Finally,  Non-Maximum  Suppression  (NMS)  is  applied  to
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successfully  merge  the  detected  sliced  sub-images.  The  model
structure  is  shown  in  Figure  5.  After  inference  with  the
YOLOv8n_OBB_SEB model,  the actual  length of  winter  shoots  is

calculated based on rotated bounding box coordinates: If the length
is greater than 3 cm, pesticide spraying is required; if  the length is
less than or equal to 3 cm, no treatment is needed.
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Figure 5    The final proposed YOLOv8n_OBB_SEB network structure
 

 2.3.1    Slicing-aided hyper-inference
Considering the issues of limited features and small targets, this

paper adopts the SAHI algorithm. SAHI is a slicing-assisted hyper-
inference  algorithm  designed  for  small  object  detection  in  ultra-
large  images.  It  allows  direct  application  to  existing  networks
without  the  need  for  model  redesign  or  retraining,  enhancing  the
accuracy of small object detection. SAHI performs slicing inference
on  the  original  image  by  dividing  it  into  smaller  regions  for
prediction.  These  prediction  results  are  then  merged  using  Non-
Maximum  Suppression  (NMS).  This  approach  allows  for  more
accurate  detection  of  small  objects  by  focusing  on  smaller  regions
of  the  image.  This  technique  is  particularly  useful  in  situations
where  the  target  size  is  small,  resulting  in  limited  pixel
representation.
 2.3.2    Bidirectional Feature Pyramid Network

Considering  the  issue  of  scale  variation  of  targets,  this  study
has  integrated  the  BiFPN  structure  into  the  YOLOv8n_OBB
algorithm.  The  conventional  FPN[24]  primarily  fuses  multi-scale
feature maps through a top-down pathway, whereas BiFPN not only
retains this top-down pathway but also introduces a complementary
bottom-up  pathway,  establishing  bidirectional  information  flow  to
generate  more  enriched  feature  representations.  Furthermore,
BiFPN  employs  learnable  weights  to  perform  weighted  fusion  of
input  feature  maps,  as  opposed  to  simple  concatenation  or
summation,  enabling  the  model  to  automatically  learn  the  relative
importance of each feature map and thereby enhance the quality of
fused features. The architecture of BiFPN is illustrated in Figure 6.
Previous  studies[25,26]  have  demonstrated  that  integrating  the  BiFPN
module into object detection models yields significant performance
improvements.
 2.3.3    Efficient Multi-scale Attention

Considering the complex background environment and the high
similarity  in  color  and  morphology  between  winter  shoots  and
branches, the detection accuracy in winter shoot identification tasks
is  often  suboptimal.  To  address  this  challenge,  this  study
innovatively integrates the EMA module into the C2f module of the
YOLOv8n  model.  The  EMA  (Efficient  Multi-scale  Attention)
attention mechanism enhances the model’s accuracy by establishing

both  short-term  and  long-term  dependencies  using  multi-scale
parallel  subnetworks,  without  the  need  for  channel  reduction.  It
reshapes  part  of  the  channels  into  the  batch  dimension  and  groups
the  channel  dimension  into  multiple  sub-features,  ensuring  that
spatial  semantic  features are evenly distributed within each feature
group.  This  structure  not  only  retains  the  information  in  each
channel but also reduces the computational overhead. Additionally,
the  EMA module  recalibrates  the  channel  weights  in  each  parallel
branch  by  encoding  global  information.  It  further  aggregates  the
output  features  of  the  two  parallel  branches  through  cross-
dimensional interaction to capture pixel-level pairwise relationships.
The EMA network structure is shown in Figure 7.
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Note: P3-P7 are the input features of layers 3-7.
Figure 6    BiFPN structural

 

 2.3.4    StarBlock
Considering the limited features of lychee winter shoots and the

adoption  of  the  lightweight  Nano  version,  this  study  innovatively
integrates  the StarBlock module (Figure 8)  into the C2f module to
enhance feature extraction quality.

The  Star  operation  represents  a  breakthrough  from
conventional neural networks’ channel-number-increment approach.
It  achieves  feature  fusion  through  element-wise  multiplication
across  different  feature  subspaces,  operating  similarly  to  kernel
function  mechanisms.  When  stacked  in  multiple  layers,  this
operation enables exponential expansion of implicit dimensionality,
constructing  high-dimensional  feature  spaces  with  minimal  layers.
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This innovation allows YOLOv8n_OBB (a low-dimensional model)
to  maintain  low  computational  complexity  while  significantly
enhancing feature extraction performance. The star operation can be
written as:

wT
1 x ∗wT

2 x =

(
d+1∑
i=1

wi
1 xi

)
∗

(
d+1∑
j=1

w j
2 x j

)
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d+1∑
j=1

wi
1w

j
2π

i x j =

α(1,1) x1 x1 + . . .+α(4,5) x4 x5 + . . .+α(d+1,d+1) xd+1 xd+1 (1)
where,  d  is  the  input  channel  number, w1  and w2  are  the  weight
vectors,  x  is  the  feature  vector,  i  and  j  are  the  indices  of  the
channels, and α is the coefficient for each term.
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Convolution is 7×7, and the stride is 1; FC: Fully Connected Layer.

Figure 8    Starblock structure
 

 2.3.5    Automated Classification of Lychee Winter Shoots
The method for measuring the length of lychee winter shoots in

this  experiment  is  as  follows:  The YOLOv8n_OBB_SEB model  is
used for object detection to obtain the rotated bounding box of the
target, and then the length is calculated based on the coordinates of
the four points of the bounding box. Orchard drone inspections are
usually  conducted  by  shooting  along  preset  flight  paths,  so  the
shooting  scheme remains  consistent.  This  experiment  uses  the  DJI
M30T  drone,  which  features  an  image  control-free  design  and  is
equipped  with  a  lens  distortion  correction  function  and  a  laser
rangefinder.

To  explore  the  differences,  comparative  verification  was
simultaneously  conducted  through  the  automatic  adjustment  of  the
DJI Dock and a complete geometric calibration process: Five high-
reflectivity PVC ground control panels (GCPs, 30 cm×30 cm, with
a  black  and  white  checkerboard  pattern)  were  placed  in  the
experimental  orchard,  and  their  actual  coordinates  were  recorded

using RTK-GPS as the ground truth reference. The DJI M30T drone
(RTK nominal accuracy: horizontal 1 cm + 1×10–6, vertical 1.5 cm +
1×10–6) was used for positioning accuracy verification. In the static
verification,  the  drone  was  stationary  above  the  GCPs,  and  the
calculated horizontal RMSE=±1.2 cm and vertical RMSE=±1.6 cm,
which meet the accuracy requirements.

Lens  distortion  correction  was  performed  using  Zhang
Zhengyou’s[27] method:  20  images  of  a  12×9  checkerboard  (with  a
square  side  length  of  3  cm)  taken  from  different  angles  were
calibrated  using  OpenCV  to  obtain  the  intrinsic  matrix  and
distortion coefficients, which were then imported into Metashape to
complete the correction. The results show that the two schemes are
consistent,  with a pixel resolution of 0.01 cm per pixel.  The actual
length of the lychee winter shoots satisfies the following equation:

Lnew = Lobb ×Upx (2)
where,  Lnew  represents  the  shoot  length,  cm;  L0bb  represents  the
rotated  bounding  box  length; Upx  represents  the  pixel  unit  length,
cm per pixel.

 3    Experimental results and analysis
 3.1    Experimental environment

The  training  environment  for  this  paper  consists  of  Windows
10 with 32 GB of RAM and an NVIDIA GeForce RTX 3090 GPU.
Model  training  was  implemented  using  Python  3.9.0,  PyTorch
1.10.1, and CUDA 11.3.

In  this  study,  a  model  input  size  of  2048×2048  was  selected,
with Adam as the optimizer.  The batch size was set  to 16,  and the
number  of  epochs  was  set  to  300.  The  initial  learning  rate  was
0.001,  and  an  early  stopping  strategy  was  applied  to  prevent
overfitting.  Commonly used evaluation metrics in object  detection,
including  mean  average  precision  (MAP),  model  size  (Weights),
and frames per second (FPS), were employed in this study.
 3.2    Evaluation metrics

In  object  detection  tasks,  precision  (P),  recall  (R),  average
precision  (AP),  model  size,  and  frames  per  second  (FPS)  are
commonly  used  as  metrics  to  evaluate  the  overall  performance  of
the model. The calculations for P, R, and AP are as follows:

P =
TP

TP+FP
(3)

R =
TP

TP+FN
(4)

AP =
p

num(Total Objects)
(5)
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Where  TP  represents  the  number  of  correctly  detected  lychee
sprouts, FP represents the number of falsely detected lychee sprouts,
and FN represents the number of missed lychee sprouts.
 3.3    Ablation experiment

To tackle the challenge of detecting the extremely small targets
of  lychee  winter  shoots  and  improve  the  detection  performance,
researchers  conducted  experiments  on  the  YOLOv8n_OBB  model
using three datasets: the original dataset, the non-overlapping sliced
dataset, and the overlapping sliced dataset. When the image data is
directly  input  without  slicing,  the  MAP50  of  the  model  can  only
reach 68.5%. In contrast, the MAP50s of the non-overlapping sliced
dataset  and  the  overlapping  sliced  dataset  are  79.1%  and  80.6%,
respectively.  Moreover,  to  further  enhance  the  model’s
performance,  this  paper  integrates  three  key  improved  modules,
namely  StarBlock,  BiFPN,  and  EMA,  and  seamlessly  incorporates
them  into  the  YOLOv8n_OBB  framework  to  comprehensively
improve  the  model’s  performance  on  the  lychee  winter  shoot
dataset. Ablation experiments were conducted for each module, and
the  specific  results  are  listed  in  Table  1.  The  experimental  results
indicate  that  embedding  StarBlock  into  the  C2f  module  of  the
backbone  network  effectively  enhances  the  model’s  feature
representation  ability  without  increasing  model  parameters  or
computational  load,  leading  to  a  2.9%  improvement  in  MAP50.
Additionally,  when  the  mAP50  value  reaches  its  optimal  value,
YOLOv8n_OBB  requires  248  epochs,  while  the  YOLOv8n_OBB
with  StarBlock  only  requires  228  epochs  (as  shown  in  Figure  9).
Furthermore,  the  BiFPN  module  dynamically  adjusts  feature
importance  through  a  weighting  mechanism  and  supports
bidirectional  feature  flow  (top-down  and  bottom-up),  enabling
efficient  multi-scale  feature  fusion,  which  improves  MAP50  by
1.2%.  Meanwhile,  embedding  the  EMA  module  into  the  C2f
module  of  the  neck  network  significantly  enhances  the  model’s
ability  to  distinguish  between  target  and  background  regions,
effectively  improving  overall  detection  performance,  with  a  2.3%
increase  in  MAP50.  By  combining  the  advantages  of  these  three
modules,  the  YOLOv8n_OBB_SEB  model  achieves  a  MAP50  of
85.4%, a 4.8% improvement over the original YOLOv8n_OBB. In
the  lychee  winter  shoot  detection  task,  the  model  demonstrates
stronger detection capabilities, good robustness, and great potential
for practical applications.
  

Table 1    Ablation experiment

Methods MAP50/
% P/% R/% Weight/

Mb GFLOPs FPS

YOLOv8n_OBB 80.6 85.7 76.7 6.74 9.3 158.1
YOLOv8n_OBB+BIFPN 81.8 83.5 80.2 9.33 14.3 138.6

YOLOv8n_OBB+C2f_EMA 82.9 85.5 79.2 9.28 14.4 139.0
YOLOv8n_OBB+C2f_Star 83.5 83.1 82.8 8.39 12.1 123.5
YOLOv8n_OBB+BIFPN+

C2f_EMA 83.5 82.4 81.1 9.34 14.5 132.7

YOLOv8n_OBB+C2f_EMA+
C2f_Star 80.7 81.4 80.3 8.42 12.3 118.5

YOLOv8n_OBB_SEB(proposed) 85.4 85.2 83.2 8.51 12.7 118.2
 

 3.4    Comparative experiments on attentional mechanisms
To  validate  the  effectiveness  of  the  EMA  module,  this  study

conducted  comparative  experiments  with  CBAM[28]  and  LSKA[29]

modules (Table 2). Experimental results demonstrate that the EMA
module  improved  mAP50  from  80.6%  to  82.9%,  achieving  a  2.3
percentage  point  accuracy  increase  and  outperforming  other
attention  mechanisms.  The  EMA  module’s  multi-scale  feature
extraction  and  cross-space  interaction  mechanisms  enable  more

comprehensive  feature  capture.  Unlike  CBAM’s  separate
processing of channel/spatial  attention, EMA integrates multi-scale
features  with  cross-space  interactions,  significantly  enhancing
detection performance. For small object detection tasks like lychee
winter  shoot  identification,  EMA  demonstrates  superior  local
feature  extraction  capabilities  compared  to  LSKA’s  large  kernel
decomposition approach.
  

0.9

0.8

0.7

M
ap

5
0

Epochs

0.6

0.5
0 50 100 150 200 250

(248, 0.806)

(228, 0.835)

300

YOLOv8n_obb YOLOv8n_obb+starblocks

Figure 9    Comparison of MAP50 between YOLOv8n_OBB and
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Table 2    Comparison of attention mechanisms

Model Attention Methods MAP50/% P/% R/%
YOLOv8n_obb - 80.6 85.7 76.7
YOLOv8n_obb CBAM 81.9 81.9 78.6
YOLOv8n_obb LSKA 82.8 85.1 79.5
YOLOv8n_obb EMA 82.9 85.5 79.2

 

 3.5    Performance  comparison  of  different  object  detection
models

Research indicates that small-sample object detection still faces
accuracy degradation issues due to background interference[30,31]. To
address  this,  this  study  optimized  the  YOLOv8n_OBB  model.
Experiments revealed that the original model exhibited missed and
false  detections  under  strong  lighting  or  shadowed  backgrounds
(Figure 10). By incorporating image overlapping slicing technology
and  improving  the  model  architecture  (with  particular  focus  on
optimizing  the  attention  mechanism  and  multi-scale  feature  fusion
modules), we developed an enhanced YOLOv8n_OBB_SEB model.
As listed in Table 3, the improved model demonstrates outstanding
performance  in  lychee  winter  shoot  detection:  achieving  85.4%
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Note: Magnified view of the local region.

Figure 10    YOLOv8n_OBB inference results
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MAP50,  85.2%  precision  (P),  and  83.2%  recall  (R),  significantly
outperforming  mainstream  algorithms  including  R-CNN[32],
R3Det[33],  S2A-Net[34],  ReDet[35],  and YOLOv5_OBB. Moreover, the
model maintains excellent computational efficiency, with a compact
size of 8.51 MB, computational load of 12.8 GFLOPs, and real-time
processing speed reaching 118.2 FPS.
  

Table 3    Comparison of results from different algorithms

Methods MAP50/
% P/% R/% Weight/

Mb GFLOPs FPS

YOLOv8n_OBB 80.6 85.7 76.7 6.74 9.60 158.1
R-CNN 76.8 76.5 82.5 314 198.5 18.6
R3Det 68.4 76.4 72.4 318 328.7 16.4
S2A-Net 70.9 85.6 77.6 295 196.2 17.2
ReDet 58.1 65.2 66.9 244 54.3 8.2

YOLOv5n_OBB 71.9 71.3 67.4 4.05 4.2 180.8
YOLOv8n_OBB_SEB 85.4 85.2 83.2 8.51 12.8 118.2

 

 3.6    Visualization of detection results
To  verify  the  superiority  of  the  proposed  model  in  lychee

winter  shoot  detection,  we  randomly  selected  several  images  from
the test set for a comparative analysis of detection performance. The
YOLOv8n_OBB  model  performed  poorly  on  the  lychee  winter
shoot  dataset,  mainly  due  to  false  positives  and  missed  detections
under conditions of bright light and shadow, as shown in Figure 10.
Specifically,  the  model  mistakenly  identified  spots  on  leaves,
mature branches, and light reflections as winter shoots. In contrast,
the  improved  YOLOv8n_OBB_SEB  model  demonstrated  superior
performance  in  distinguishing  between  the  target  and  background,
and it  was able to accurately detect winter shoots even in dimly lit
environments,  as  shown  in  Figure  11.  This  indicates  that  the
YOLOv8n_OBB_SEB model has significantly improved robustness
and accuracy under complex lighting conditions.
 3.7    Model generalization evaluation

In  the  experimental  study  conducted  on  December  23,  2024,
aerial  images  of  six  lychee  trees  were  captured  using  drone
photography,  followed  by  intelligent  recognition  analysis
employing  the  YOLOv8n_OBB_SEB  deep  learning  model.  The
winter  shoots  of  the  six  sampled  lychee  trees  exhibited  a  gradient
distribution  in  length  (classified  into  short,  medium,  and  long

types).  In  practical  agricultural  production,  pesticide  application
decisions are typically made on a per-tree basis. When over 15% of
detected  shoots  require  treatment,  the  tree  is  designated  for
spraying;Validation  against  manual  assessments  yielded  the
following model  performance metrics:  detection rate  89.10%, miss
rate  7.35%,  false  detection  rate  3.55%,  with  pesticide  decision
accuracy  reaching  83.3%.  (Detailed  data  are  listed  in Table  4,  and
among the six tested trees, the lengths of winter shoots were divided
into three categories (short,  medium, and long),  with two trees per
category.  The  corresponding  detection  results  are  presented  in
Figure  12).  The  experimental  results  conclusively  demonstrate  the
model’s  outstanding  performance  in  lychee  winter  shoot
identification  tasks:  not  only  achieving  an  overall  detection
accuracy approaching 90%, but also maintaining high reliability in
pesticide  application  decisions.  Particularly  noteworthy  is  the
model’s  consistently  stable  recognition  performance  and
exceptional generalization capability when handling diverse sample
detection requirements.
  

Shadow

Bright

background

Figure 11    YOLOv8n_OBB_SEB inference results
 
 

Table 4    Experimental results of the YOLOv8n_OBB_SEB model on six lychee trees
Tree Detected Undetected Real False Detection rate/% Undetection rate/% False rate/% Actual drug requirement Estimated drug requirement
A 31 2 34 1 91.2 5.9 2.9 No No
B 37 3 40 0 92.5 7.5 0 No No
C 30 3 33 0 90.9 9.1 0 No Yes
D 11 0 13 2 84.6 0 15.4 Yes Yes
E 14 2 16 0 87.5 12.5 0 Yes Yes
F 29 3 33 1 87.9 9.1 3.0 Yes Yes

 

 4    Discussion and conclusions
 4.1    Discussion

Although  the  proposed  YOLOv8n_OBB_SEB  model  shows
significant  improvements  across  multiple  evaluation  metrics,  the
experimental  results  also  reveal  several  issues  that  need  to  be
addressed.  Firstly,  some  lychee  winter  shoots  experienced  false
positives  or  missed  detections,  indicating  that  the  model’s
performance  in  complex  backgrounds  still  has  room  for
improvement,  which  is  a  common  challenge  in  small  object
detection.  Secondly,  some  rotated  bounding  boxes  did  not
accurately fit  the actual  boundaries of the targets,  leading to errors

in  measuring  the  target’s  length.  To  address  these  issues,  future
research  could  focus  on  the  following  aspects:  first,  introducing
more  diverse  training  datasets,  covering  different  lighting
conditions,  complex  backgrounds,  and  varying  target  shapes,  to
enhance  the  model’s  robustness  and  adaptability,  enabling  it  to
better  handle  the  challenges  of  real-world  scenarios;  second,
optimizing the model’s loss function design, particularly improving
the penalty mechanism for target box localization errors, to increase
the model’s  sensitivity to differences between predicted and actual
boxes,  thereby  improving  the  precision  of  the  target  boxes;  third,
integrating  multi-scale  feature  extraction  techniques  to  further
enhance the model’s ability to capture detailed features and reduce
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the occurrence of false positives and missed detections. At the same
time, using rotated bounding boxes to estimate the length of lychee
winter  shoots  may  still  introduce  certain  errors,  primarily  in  the
following aspects:

1) The limitation of laser rangefinders lies in that such ranging
devices  can  only  measure  the  distance  at  the  focal  point,  which
leads to measurement deviations for other points in the image. This
deviation  is  particularly  prominent  when  the  density  of  lychee
canopies  is  low,  as  it  causes  significant  increases  in  the  distance
differences  between  different  pixels  in  the  image  and  the  camera.
To  reduce  this  error,  improvements  can  be  made  by  equipping
drones with LiDAR, thereby minimizing the error.

2)  Fit  between  the  detection  box  and  the  winter  shoot:  The
rotated detection box may not perfectly align with the boundaries of
the  lychee  winter  shoot,  leading  to  measurement  deviations.  This
issue can be addressed by further optimizing the model’s detection
accuracy  and  boundary-fitting  capability.  Through  detection  and
calculation,  the  four  corner  coordinates  of  the  target’s  rotated
bounding  box  are  obtained.  After  computing  the  pixel  length  and
converting  it  to  the  actual  dimension,  the  mean  absolute  error
(MAE) on the test set is 7.3%.

3) Curvature of the lychee winter shoot:  Estimating the length
of the lychee winter shoot using the length of the rotated bounding
box  introduces  an  error,  as  the  winter  shoots  may  be  curved.
However,  observations  of  previously  captured  images  show  that
newly sprouted lychee shoots are relatively straight. It is only after a
certain period of  growth that  the shoots  begin to  bend slightly.  By
then,  most  of  the  winter  shoots  will  have  reached  the  stage  where
pesticide spraying is required, so this error is considered acceptable.

In future work, we plan to integrate the YOLOv8n_OBB_SEB
model  into  a  smart  orchard  platform,  continue  data  collection,  and
use  the  model  for  inference.  By  incorporating  feedback  from
detection performance, we will continuously optimize the model to
better suit complex and diverse environments, meeting the needs of

agricultural production.
 4.2    Conclusions

To  achieve  accurate  detection  of  lychee  winter  shoots  in  real
orchard  environments,  this  study  proposes  a  method  combining
drone  remote  sensing  technology  with  the  YOLOv8n_OBB_SEB
model  for  classifying  the  lengths  of  winter  shoots.  The  model
introduces  the  StarBlock  module  into  the  backbone  network  and
embeds  the  C2f  module  to  increase  network  dimensionality  and
enhance  feature  extraction  capabilities,  while  replacing  the
traditional  Concat  module  with  BiFPN,  dynamically  adjusting  the
importance  of  features  through  a  weighting  mechanism to  achieve
bidirectional feature fusion and further optimize the fusion process.
In  addition,  it  integrates  the  EMA  attention  module  into  the  C2f
module  to  help  the  model  more  accurately  distinguish  between
targets  and  backgrounds,  thereby  improving  detection  accuracy.
Experimental results show that on the self-constructed lychee winter
shoot dataset, the YOLOv8n_OBB_SEB model achieves an average
precision  (AP)  of  89.2%,  a  20.7%  improvement  over  the  original
YOLOv8n_OBB  model.  To  verify  the  model’s  generalization
performance, the tests at a flight height of 7 m above the trees were
also  conducted,  achieving  a  precision  of  88.7%,  and  comparative
experiments with other lychee winter shoot detection models further
confirm  that  this  model  can  achieve  higher  detection  accuracy  in
complex  backgrounds.  Meanwhile,  considering  the  practical  needs
of  lychee  production,  merely  detecting  lychee  winter  shoots  is
insufficient to directly solve production issues, so rotated bounding
boxes  were  used  to  fit  the  shape  of  lychee  winter  shoots  and
estimate their lengths to facilitate subsequent evaluation of whether
pesticide  spraying  is  necessary.  Future  research  will  focus  on
optimizing  detection  accuracy  and  the  fitting  degree  of  rotated
bounding boxes, and explore the application of this method in actual
orchard  management  to  support  the  intelligent  and  precise
management of agricultural production.
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