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Abstract: This study presents a comprehensive framework for designing an intelligent and sustainable robot-assisted herding
system, based on a systematic literature review and field investigations conducted in remote pastoral regions operated by small
family  farms.  The  study  highlights  a  multi-institutional  collaboration  between  the  EUREKA  Robotics  Centre,  Cardiff
Metropolitan  University,  UK;  Universiti  Malaysia  Kelantan;  and  Shenyang  University  of  Technology,  China.  The  research
aims  to  ensure  that  advancements  in  robotic  technology  are  effectively  aligned  with  the  practical  challenges  encountered  in
livestock  herding.  The  literature  review  reveals  that  robotic-assisted  herding  has  evolved  from  theory  to  early  practical
applications through advances in AI, robotics, and agriculture. The study conducted a field survey involving fifty-five farmers,
and it revealed low initial awareness from the farmers but high practical acceptance of robotic herding solutions, and challenges
in costing and cultural shift. To overcome these challenges, the study applied the integration of object-oriented robotic design
with educational  initiatives  customized to  local  herding environments.  It  also coordinated with stakeholders  such as  farmers,
robotic  innovators,  and  local  authorities  in  robotic  herding.  The  proposed  framework  prioritizes  modularity,  durability,  and
adaptability to local context in the robotic design. Future work will focus on iterative development and field trials across China,
Malaysia,  and  the  UK.  This  study  is  intended  to  validate  and  refine  the  framework.  This  effort  will  contribute  to  global
precision livestock farming and the broader transformation toward sustainable agriculture.
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 1    Introduction

 1.1    Background of smart agriculture and small family farms
Smart  agriculture,  characterized  by  Agriculture  4.0,  integrates

big  data,  machine  learning,  deep  learning,  generative  adversarial
networks,  swarm  intelligence,  blockchain,  cloud-fog  computing,
robotics,  autonomous  systems,  the  IoT,  and  cyber-physical
systems[1-3].  Precision  Livestock  Farming  (PLF),  a  subset  of  smart
agriculture, uses Radio Frequency Identification (RFID) tags, walk-

in  weighing  platforms,  Global  Positioning  System  (GPS),  drones,
satellite remote sensing, and sensors[4]. These tools are employed to
facilitate  real-time  monitoring,  personalized  care,  and  precise
pasture  management[4-6].  Robotics  and  Artificial  Intelligence  (AI)
offer  significant  potential  by  automating  labor-intensive  tasks,
boosting  productivity,  optimizing  animal  welfare,  and  addressing
rural labor shortages[7-9]. The convergence of engineering, computer
science, and animal husbandry promotes transformative innovations
in livestock practices[10]. However, the majority of research remains
theoretical and has yet to be implemented on a larger scale, with no
comprehensive  framework  established  to  integrate  human–
robot–animal  interactions.  This  gap  underscores  the  need  for  a
collaborative  and  global  perspective  to  drive  practical  and
sustainable solutions[11,12].  This study provides an initial  insight into
integrating  robotics  with  traditional  herding,  highlighting  the  need
for  pilot  trials,  farmer  engagement,  and  interdisciplinary
collaboration to develop responsible, scalable, and welfare-centered
robotic  livestock.  Small  family  farms,  historically  fundamental  to
global  agriculture,  are  managed primarily  by family members  who
control  key resource and livestock decisions[13-15].  About  90 percent
of the world’s 570 million farms fall under this category[13,16]. These
family  farms  are  typically  located  in  remote  or  semi-remote  rural
areas, often characterized by limited infrastructure, restricted access
to  digital  technologies,  and  dependence  on  traditional  herding  and
crop management practices[17]. These family farms play pivotal roles
in  ensuring  food  security,  mitigating  rural  depopulation,  and

Received date: 2025-04-04 　 Accepted date: 2025-09-14
Biographies: Esyin Chew, PhD, Director of EUREKA Robotics Centre, Reader
in  Robotics  &  EdTech,  research  interest:  service  and  social  humanoid  robotics,
Email: echew@cardiffmet.ac.uk; Chow Siing Sia, PhD, Senior Lecturer, research
interest:  education  and  agricultural  robotics,  Email:  csia@cardiffmet.ac.uk;
Hasyiya  Karimah  Adli,  PhD,  Dean/Associate  Professor,  research  interest:
engineering  science  &  AIoT  applications  in  smart  agriculture,  Email:
hasyiya@umk.edu.my; Linnan  Zhang,  PhD,  Dean/Professor,  research  interest:
environmental  chemistry,  Email:  707460916@qq.com;  Shichen  Gai,  MSc,
Lecturer,  research  interest:  sustainable  agricultural  technologies,  Email:
357479956@qq.com;  Jiaji  Yang,  PhD,  Lecturer,  research  interest:  humanoid
social  robotics,  Email:  jyang@cardiffmet.ac.uk;  Tao  Wang,  BSc,  researcher,
research  interest:  sustainable  agricultural  technologies,  Email:
253239768@qq.com.
*Corresponding author: Jinyu Liu, PhD candidate, research assistant, research
interest:  agricultural  robotics  and  artificial  intelligence.  EUREKA  Robotics
Centre,  Cardiff  School  of  Technologies,  Cardiff  Metropolitan  University,  CF5
2YB, UK. Tel: +44-7419829180, Email: jliu2@cardiffmet.ac.uk.

　182 　 December, 2025 Int J Agric & Biol Eng　　　Open Access at https://www.ijabe.org Vol. 18 No. 6　

https://doi.org/10.25165/j.ijabe.20251806.9826
mailto:echew@cardiffmet.ac.uk
mailto:csia@cardiffmet.ac.uk
mailto:hasyiya@umk.edu.my
mailto:707460916@qq.com
mailto:357479956@qq.com
mailto:jyang@cardiffmet.ac.uk
mailto:253239768@qq.com
mailto:jliu2@cardiffmet.ac.uk
https://www.ijabe.org


preserving  culture.  Yet  they  face  significant  challenges,  including
geographical isolation, outdated infrastructure, and limited access to
updated  agricultural  information[18].  Their  limited  scale  and
economic  restrictions  often  hinder  competitiveness[18].  The  study
proposes that adopting digital and robotic technologies can enhance
productivity and competitiveness. The study also examined specific
barriers  faced  by  small-scale  herding  operations,  including  farmer
attitudes,  operational  needs,  and ethical  considerations.  Addressing
these  challenges  is  crucial  for  this  study  to  inform  the  effective
integration  of  Robotics  and  AI  technologies  in  sustaining  small
family farms.
 1.2    Research objectives and significance

This  study  investigates  livestock  management  practices  in
remote mountainous pastoral areas composed of small family farms
in regions between 32°N-46°N latitude and 105°E-130°E. It focuses
on the farmers’ and prospective farmers’ awareness and acceptance
of  herding  robots.  However,  the  effectiveness  of  robotic  system
design  depends  on  users’  cognitive  frameworks  and  specific
requirements, highlighting the importance of understanding farmers’
perspectives.  The  study  seeks  to  find  answers  to  the  following
questions:  1)  What  traditional  livestock  management  practices  are
currently  employed  by  farmers  on  small  family  farms,  and  what
types  of  external  support  do  they  require?  2)  To  what  extent  are
farmers  and  prospective  farmers  aware  of  livestock  robotic
technologies,  and  what  are  their  attitudes  and  willingness  to  adopt
these technologies? 3) How are global research trends evolving, and
how  can  interdisciplinary  collaborations  be  leveraged  in  the
application  of  robotics  and  AI  in  livestock  farming?  Addressing
these questions will identify farmers’ technology-related needs and
barriers to technology adoption. This understanding will inform the
development  of  livestock  robotic  systems  tailored  to  the  specific
needs of small family farms.

 2    Systematic literature review
The study employed a Preferred Reporting Items for Systematic

Reviews and Meta-Analyses (PRISMA)-based systematic review[19]

to conduct a literature search across two primary databases: Scopus
and  Web  of  Science[20,21].  The  following  keywords  were  used:
“Robotics  Herding”,  “robotics  grazing”,  “smart  herding”,  “smart
grazing”,  “Intelligent  herding”,  “Intelligent  grazing”,  “intelligent
animal  husbandry”,  and  “robot  animal  husbandry”.  This  review
comprised  Agricultural  and  Biological  Sciences  and  Computer
Science  and  Engineering[22],  excluding  literature  from  unrelated
disciplines.

All collected articles underwent two rounds of deduplication to
eliminate  overlapping  records  from  Scopus  and  Web  of  Science.
This step is to ensure that each study is recorded once[20,21]. A further
screening  was  applied  to  exclude  non-peer-reviewed  publications,
including  conference  papers,  newsletters,  and  editorial  clips.  Only
peer-reviewed journal articles were retained to ensure robustness of
the  review.  Titles  and  abstracts  were  screened  through  semantic
analysis  to  identify  articles  that  focused  specifically  on  robot-
assisted  herding,  including  drones,  autonomous  ground  vehicles,
and  AI-based  livestock  monitoring  systems.  Articles  unrelated  to
livestock,  such  as  crop  automation  or  Artificial  General
Intelligence,  were  excluded.  Systematic  and  narrative  review
articles  were also excluded to  avoid secondary citation bias  and to
focus  solely  on  original  empirical  studies.  The  final  set  of  articles
was  critically  appraised  to  ensure  methodological  soundness,
validity, and practical relevance[19]. Finally, the articles that met high-
quality  benchmarks  were  included  in  the  core  analysis,  whereas

lower-quality  but  contextually  relevant  articles  were  retained  for
reference purposes[23], as shown in Figure 1.
  

Three rounds of manual screening based on 

PRISMA checklist for quasi-experimental studies: 

Exclusion of duplication: n=12 380

Exclude non-journal articles: n=9318

semantic analysis: n=65

Excluded literature review articles: n=38

n=34; systematic reviews were included: n=14; 
use as a background reference: n=30

Figure 1    Flow diagram of the literature screening process
 

 2.1    Bibliometric profiling
Research on robotic herding remains in its early developmental

stage, with most publications appearing between 2017 and 2024 and
focusing primarily on conceptual and experimental validation rather
than large-scale implementation. The earliest work by Drach et al.[24]

explored  automation  in  livestock  management  through  robotic
milking,  demonstrating  labor  reduction  and  productivity
improvement  but  lacking  autonomous  behavioral  control.  In  2018,
Nardi  et  al.  and  Paranjape  et  al.  introduced  game-theoretic  multi-
robot coordination and UAV-based flock guidance, establishing the
theoretical  groundwork  for  multi-agent  herding  systems[25,26].  In
2021,  the  research  studies  were  mainly  focused  on  the  mean-field
control  frameworks  for  swarm  coordination[27]  and  LoRa-enabled
drone  communication  systems for  rural  monitoring[28].  In  2022,  the
research studies expanded to a wider range of approaches, including
occlusion-aware  coordination,  acoustic-driven  herding,  and  vision-
based  predator  detection  modules[29-31].  Recent  studies  (2023-2024)
demonstrated  incremental  progress  toward  practical  validation,
including  small-scale  field  experiments  with  cattle[32]  and  the
emergence  of  distributed  control  algorithms  and  open  datasets[33,34].
Figure 2 illustrates the number of publications in herding from 2017
to 2024.
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Figure 2    Number of publications in robotic herding (2017-2024)
 

Robotic  herding  has  emerged  as  a  globally  recognized  yet
domain-concentrated  research  field,  marked  by  cross-continental
participation  but  limited  methodological  maturity.  Between  2017
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and  2024,  representative  studies  have  been  published  across  nine
countries—China  (CN),  the  United  States  (US),  Spain  (ES),  Japan
(JP),  Italy  (IT),  Israel  (IL),  Malaysia  (MY),  the  United  Kingdom
(GB), and Australia (AU), illustrating the worldwide recognition of
robotic  herding  as  a  component  of  intelligent  and  sustainable
agriculture[24-37].  Table  1  lists  the  global  distribution  of  research  on
robot-assisted herding.
  

Table 1    Global distribution of robotic herding research
by country

Country CN US ES JP IT IL MY GB AU
Number of publications 3 2 2 2 1 1 1 1 1

 

 2.2    Thematic trends in robotic herding
Research  on  robotic  and  AI-assisted  livestock  management

indicates  a  pragmatic  division  of  aims:  while  single-agent  systems
are mainly employed for behavioral testing, controllability analysis,
and welfare-aware pilot trials, multi-robot coordination proves more
effective  for  accomplishing  large-scale  herding  tasks  that  demand
greater  spatial  coverage,  robustness,  and  adaptability  to
fragmentation  or  occlusion[25,29,30,33,35,36].  Studies  confirm  that
decentralized  and  game-theoretic  algorithms  enable  cooperative
management  of  herding  dynamics  while  maintaining  global
convergence[25,36].  Multi-stage  pursuit-encirclement-guidance
frameworks  enhance  adaptability  in  non-cooperative  target
scenarios[36],  whereas  mean-field  and  occlusion-based  approaches
strengthen  controllability,  stability,  and  motion  efficiency  in
complex environments[27,29].

Perception  research  has  simultaneously  advanced  from  static
sensing  to  multimodal  and  real-time  recognition  of  animals  and
environmental  conditions.  Integrated  datasets  combining  RGB,
depth,  and  behavioral  labels  have  enabled  object-detection  models
capable  of  accurately  identifying  livestock,  predators,  and
humans[31,34].  Real-time  vision  systems  achieving  up  to  64  FPS
support  adaptive  decision-making  in  dynamic  environments[31],
while  fiducial  marker-based  localization  and  sensor  fusion
approaches improve spatial  precision for  both structured barns and
open pastures[37].

Effective  communication  technologies  further  support  large-
scale,  distributed  herding  systems.  UAV-based  wide-area  LoRa
networks have achieved communication ranges up to 10 km, while
optimized  flight  paths  reduce  data-collection  time  by  more  than
70%[28,37].  Synchronized  data  exchange  between  robots  and  cloud
servers  ensures  consistent  command  execution  and  reliable
feedback[36,37],  confirming  the  feasibility  of  a  cloud-edge-device
collaborative system.

Behavioral  and  field  experiments  have  identified  unmanned
aerial  vehicles  (UAVs)  as  the  most  efficient  and  flexible  robotic
agents for autonomous herding. UAVs enable rapid aggregation and
directional  steering  of  livestock  with  high  precision  across  large
spatial  ranges[32,35].  Although  repeated  operations  can  induce
habituation,  adaptive  flight  strategies—adjusting altitude,  approach
angle, and acoustic stimuli—maintain responsiveness and minimize
stress[30,32].  In  contrast,  ground  vehicles  face  limitations  in
maneuverability  and  responsiveness  on  uneven  terrain[35].  These
findings  confirm  UAVs  as  the  primary  operational  platform
integrating  sensing,  control,  and  communication  for  efficient  and
welfare-compliant herding.

Economic  and  welfare  assessments  reinforce  the  overall  value
of robotic herding. Long-term deployments indicate that automation
can  reduce  human  labor  by  up  to  80%  and  increase  milking

frequency by 45.5%,  significantly  improving productivity  and cost
efficiency[24,29].  From  an  ethical  perspective,  automation  also
supports  animal  welfare:  optimized  flight  distances,  reduced  noise
levels,  and  adaptive  behavioral  models  lessen  stress  responses  in
livestock[32,35].

Integrating physiological and behavioral monitoring into UAV
systems  provides  quantifiable  welfare  data,  ensuring  compliance
with  welfare  standards  while  maintaining  operational  efficiency.
Consequently,  UAV-centered  herding  aligns  with  the  global  trend
toward  ethical,  welfare-driven,  and  sustainable  smart  farming.
Despite these advancements in control, perception, communication,
execution,  and  welfare[24,28-30,32-34],  a  key  integration  gap  remains:  no
existing  study  has  established  a  complete  human-robot-animal
feedback  loop  connecting  task  assignment,  autonomous  decision-
making,  and  real-time  response.  Bridging  this  gap  will  require
unified  frameworks  that  integrate  human  operators,  cloud-based
intelligence,  and  UAV agents  within  a  continuous  decision-action-
feedback cycle—laying the groundwork for scientifically verifiable,
welfare-oriented, and economically sustainable herding ecosystems.
 2.3    Roles  of  stakeholders  in  smart  herding  technology
adoption

Building upon the previous literature review on robotic-assisted
herding,  this  section  conducts  a  stakeholder  analysis  to  further
explore the complex interactions among technological, human, and
institutional  actors  that  influence  the  development  and
implementation of such systems[12,30,32,35,36].

Figure 3 depicts a triangular interaction loop that fundamentally
defines  the  main  players  in  robot-assisted  herding  activities.
Farmers  supervise  and  control  robots,  ensuring  their  performance
aligns with practical needs and ethical standards[4,24]. Robots, in turn,
provide  farmers  with  data  and  efficiency  gains,  facilitating  better
decision-making and labor reduction[28,30]. Farmers maintain the care
and welfare of animals,  while animals communicate responses and
signals  that  reflect  their  behavior  and  well-being[8,32].  A  two-way
process  of  guidance  and  behavioral  feedback  between  robots  and
animals  enables  adaptive  control  of  robot-assisted  herding
systems[29,33,36].
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Figure 3    Core stakeholders for smart herding technology
 

Figure  4  extends  the  analysis  to  the  macro-level  institutional
ecosystem,  involving  local  authorities,  funding  institutions,
researchers,  suppliers,  and  farmers.  Each  stakeholder  plays  a
distinct  but  interdependent  role  in facilitating the development and
dissemination  of  robotic  herding  technology[38,39].  Local  authorities
provide  subsidies,  policy  support,  and  training  while  integrating
adoption  feedback  into  future  agricultural  strategies[39-41].  Financial
institutions  offer  funding,  loans,  and  leasing  mechanisms  that
enable  technological  investment  and  risk  management[14,41].
Researchers  contribute  technological  innovation,  field  validation,
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and  policy  evidence[33,34,36].  Suppliers  deliver  robotic  systems  and
receive user feedback to refine their products[37,42].  Farmers serve as
the  central  link,  connecting  scientific,  financial,  industrial,  and
policy  frameworks  through  their  practical  experience  and
operational feedback[5,15,16].  The diagram illustrates a comprehensive
collaboration  model  that  supports  technological  advancement
through  multi-directional  communication  and  mutual
reinforcement[3,9].
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Based  on  Figures  3  and  4,  the  success  of  robotic-assisted
herding  relies  on  both  technological  capability  and  collective
stakeholder  engagement.  It  is  therefore  recommended  that  future
initiatives  should  reinforce  multi-stakeholder  collaboration,  align
innovation  with  practical  needs,  and  establish  supportive  policies
that  promote  sustainable  and  inclusive  agricultural
transformation[4,9,32,39].

 3    Empirical study
 3.1    Data collection and research methods

An  empirical  study  was  conducted  in  a  pastoral  village
composed  mainly  of  small  family  farms,  with  approximately
600  households  and  a  total  population  of  around  2400  to  2800
residents.  More  than  300  households  owned  livestock  and  relied
primarily  on  small-scale  mixed  farming  for  their  livelihoods.  The
average  household  consisted  of  3  to  5  members,  and  annual
household incomes ranged from USD 6000 to 8000,  depending on
herd  size  and  seasonal  agricultural  output.  The  village’s  economic
structure  and  environmental  setting  represented  the  typical
characteristics  of  pastoral  communities  in  the  region  between  32°
and  46°  north  latitude  and  105°  and  130°  east  longitude.  In  this
region,  livestock  production  is  primarily  based  on  grassland
grazing,  characterized  by  mixed-species  herding,  high  grazing
intensity,  and  concurrent  grassland  degradation,  with  fragile
ecosystems highly sensitive to climatic variability[43].

A  mixed-method  research  approach  was  adopted  to  gain  a
comprehensive  understanding  of  local  ecological  conditions,
livestock  practices,  and  farmer  perceptions  of  robotic
technologies[44,45].  Quantitative  data  were  collected  through  paper-
based  questionnaires  distributed  in  a  pastoral  village  composed
mainly of small family farms. 55 households with livestock (18% of
all  households)  participated  in  the  survey,  with  one  representative
from each  household  completing  a  paper-based  questionnaire.  The
questionnaire  included  both  multiple-choice  and  open-ended  items
that examined farmers’ traditional herding methods as well as their
awareness, acceptance, and interest in mobile robotics[46-50].

Qualitative  data  were  collected  through  semi-structured
interviews  with  two  selected  key  informants[44,51].  Each  30-minute
interview  took  place  in  quiet  outdoor  settings.  A  written  consent

was  obtained  before  the  interviews[52].  The  first  respondent  was  a
village  leader  (A1,  male,  43),  who  provided  an  overview  of
community  farming  practices,  including  information  about  village
demographics,  land  allocation  patterns,  and  local  environmental
characteristics  that  shape agricultural  and pastoral  livelihoods.  The
second  respondent  was  a  farmer  from  a  small  family  farm  (A2,
male,  47),  who  offered  practical  insights  into  traditional  herding
routines,  including  sheep  breeding  and  feeding  practices,  seasonal
grazing  routes,  and  daily  herding  management  based  on  inherited
local knowledge.
 3.2    Farmers’ attitudes toward traditional grazing

Figure  4  shows  respondents’  views  about  traditional  herding
practices.  Each  column  represented  a  statement,  and  the  vertical
axis  showed  the  percentage  of  respondents  at  each  level  of
agreement.  The  bubble  colors  represent  different  levels  of
agreement  among  respondents:  cyan  indicates  “strongly  agree”,
blue  indicates  “agree”,  red  indicates  “neutral”,  orange  indicates
“disagree”,  and  green  indicates  “strongly  disagree”.  The  vertical
position  of  each  bubble  corresponds  to  the  percentage  of
responses[46,47].

The  survey  results  reveal  multiple  dimensions  of  challenge
embedded  in  traditional  herding  practices,  reflecting  both
operational  and  structural  constraints  within  the  livestock  sector.
Among  55  respondents,  76.4%  agreed  or  strongly  agreed  that
traditional grazing methods face labor shortages, confirming that the
decline  of  rural  labor  supply  is  a  critical  issue  shaping  livestock
productivity.  43.6% of  participants  agreed  that  traditional  methods
restrict  the  overall  development  of  the  livestock  industry,  while
30.9%  disagreed  and  25.5%  remained  neutral.  This  divergence
suggests  that  although  a  substantial  portion  of  farmers  recognized
efficiency  limitations,  others  continue  to  view  traditional  practices
as sustainable and culturally embedded systems.

Economic  considerations  also  influence  farmers’  perspectives.
A  large  majority  (81.8%)  believed  that  adopting  alternative
livestock  practices  could  enhance  economic  income,  and  78.2%
expressed willingness to modify current methods. In addition, 80%
agreed that traditional grazing requires improvement or innovation,
indicating  widespread  openness  to  reform  when  it  brings  tangible
benefits. A cultural identity remains a significant moderating factor,
where  41.8%  agreed  that  traditional  methods  should  be  preserved
for their cultural value, 34.5% disagreed, and none strongly agreed.
The  high  variability  implies  that  while  most  respondents  prioritize
innovation,  a  portion  still  attaches  symbolic  value  to  pastoral
traditions (Figure 5).
 3.3    Farmers’ attitudes toward robotic herding

The  heatmap  (Figure  6)  depicts  farmers’  attitudes  toward  the
use  of  herding  robots.  Only  14.5%  of  respondents  considered
themselves  familiar  with  the  concept  and  applications  of  robotics,
while  the  majority  (74.5%)  selected  lower  to  mid-scale  responses.
This limited awareness suggests that although interest in innovation
exists, exposure to robotic technologies within rural contexts is still
limited.  69.1%  agreed  that  robotic  technology  is  suitable  for
application  in  the  livestock  sector,  and  70.9%  believed  it  could
improve  work  efficiency,  demonstrating  strong  confidence
regarding  its  operational  potential.  81.8%  agreed  and  strongly
agreed that robots could help reduce physical labor demands.

52.7%  of  respondents  agreed  that  robotics  could  enhance
animal  welfare,  while  72.7%  believed  it  could  improve  working
conditions  and  living  standards.  67.3%  anticipated  that  the
introduction  of  robots  would  affect  traditional  grazing  practices,
while 38.2% raised concern that robotic technology adoption might
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cause  unemployment  among  farmers.  Training  and  technical
support  were  recognized  as  critical  conditions  for  adoption,  where
78.2%  agreed  that  training  would  be  necessary,  and  60%  were

willing  to  participate.  67.3%  agreed  that  robots  might  impose  an
economic  burden,  suggesting  that  affordability,  rather  than
resistance, is the key constraint.
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I am concerned that the use of robots in livestock farming could lead to unemployment among farmers.
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I believe that implementing robots in the livestock industry can enhance animal welfare.

I believe that the introduction of robots in livestock farming will impact traditional grazing practices.
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 3.4    Discussion of findings
Traditional  herding,  though  deeply  rooted  in  culture  and

identity,  is  increasingly  constrained  by  demographic  decline,  labor
shortages,  and  the  physical  demands  of  livestock  management—
particularly  as  rural  populations  age,  youth  participation  declines,
and large herds must be managed across vast and complex terrains
(see  Section  3.2).  These  challenges  indicate  that  traditional  labor-
dependent  models  may  no  longer  sustain  the  productivity  and
resilience  required  under  changing  social  and  environmental
conditions.  Moreover,  traditional  herding  lacks  the  capacity  for
continuous  surveillance,  precision  control,  and  real-time  animal
health management. These capabilities are essential for maintaining
efficiency,  safety,  and  welfare  in  modern  livestock  operations.
Robotic assistance, therefore, emerges as a practical response to the
structural decline of the traditional system. It can perform repetitive
or high-risk tasks, provide continuous environmental and behavioral
monitoring, and operate across terrains and time spans inaccessible
to  humans[4,6,7,12,38,42].  Through  automation  and  intelligent  sensing,
robots  can  introduce  a  data-driven  dimension  to  herding,  enabling
early  detection  of  animal  health  issues,  optimization  of  grazing
patterns,  and more sustainable land use[4,7,8,53].  Robotic herding does
not  aim  to  replace  human  herders  but  to  support  them,  allowing
herders  to  focus  on  decision-making,  animal  welfare,  and  cultural
transmission  while  offloading  physical  burdens  to  machines[38,42].
From a theoretical  standpoint,  this  shift  represents a sociotechnical
adaptation  process,  where  innovation  evolves  within,  rather  than

against,  traditional  approaches[38,54].  The  automation  in  agriculture
can be accomplished when it aligns with local social structures and
community  values[54].  Schnack  et  al.  highlight  that  sustainable
technological  adoption  requires  co-adaptation  between  human
agency and technical efficiency[55]. In this context, the use of robots
in  herding  embodies  a  balanced  path  forward,  bridging  cultural
preservation  and  modern  efficiency.  It  ensures  that  pastoral
knowledge  evolves  in  tandem  with  technological  progress,
supporting  both  the  preservation  of  traditional  practices  and  the
advancement of sustainable livestock production.
 3.5    Insights from traditional herding practices

According  to  A1,  traditional  livestock  farming  in  this  region
typically  involved  integrated  agricultural-livestock  systems.
Farmers primarily raised sheep (about 70% of livestock), along with
cattle  and  pigs.  They  benefited  economically  from  hybrid  breeds
such  as  Australian  White  and  Small-tailed  Han sheep,  which  were
known  for  improved  growth,  disease  resistance,  and  higher  meat
yields.  According  to  A2,  herd  management  methods  could  be
extensive.  Traditional  grazing techniques,  such as  leading,  driving,
carrying,  and  waiting,  to  optimize  pasture  usage  and  prevent  land
degradation were adapted seasonally and geographically. In adverse
weather, sheep were managed in pens with supplementary feed, and
sheepdogs  assisted  farmers  in  daily  management.  Sheep  clustering
varied  according  to  pasture  conditions,  with  techniques  such  as
horizontal formation, dispersed pattern, and column-like formations.
By digitally mapping traditional grazing routes and seasonal pasture
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conditions,  robots  could  effectively  guide  sheep  to  form  these
traditional  herd  formations.  This  ensures  efficient  pasture
utilization. Robots enhanced with AI-driven sensors and algorithms
can  emulate  experienced  shepherds’  observational  skills  and  can
detect  abnormal  animal  behaviors  or  health  issues  early[7,8].
Incorporating  traditional  auditory  cues  such  as  vocal  commands,
whistle signals, or bell tones can engage animals’ innate behavioral
responses,  thereby reducing stress and promoting improved animal
welfare  outcomes[12,35].  A  robotic  herding  system  can  be  used  to
monitor  livestock  and  can  improve  livestock  management
efficiency[26,31].  Robotic  herding  design  considers  local  cultural
practices, such as traditional livestock knowledge passed down from
generation  to  generation.  This  cultural  integration  can  help  the
system  to  gain  wider  acceptance  and  become  more  sustainable  in
traditional livestock communities[48].

 4    Proposed  intelligent  robotic  unmanned  aerial
vehicles (UAVs) herding framework

Based  on  the  integration  gap  identified  in  the  literature,  this
study  proposes  a  unified  human–robot–animal  framework  that

establishes  a  continuous  perception–decision–control  cycle  for
intelligent  livestock  herding.  The  framework  connects  human
supervision,  onboard  intelligence,  and  autonomous  UAV  agents
within  an  adaptive  coordination  structure.  In  this  configuration,
UAVs  serve  as  the  primary  operational  entities,  equipped  with
algorithm-driven perception systems, multimodal sensors, and real-
time communication links to  ensure welfare-oriented guidance and
efficient herding performance.

Figure  7  illustrates  the  operational  structure  of  the  proposed
framework within a small family farm context. The system forms a
closed-loop  interaction  among  the  ranch,  control  center,  and  UAV
operational  units.  At  the  ranch  level,  a  fleet  of  UAVs  conducts
herding operations by observing, monitoring, and guiding livestock
between  home  enclosures  and  grazing  zones.  Each  UAV
continuously  collects  behavioral  and  positional  data,  which  are
processed by the onboard computer to support real-time perception,
situational  analysis,  and  path  optimization.  The  onboard  processor
integrates  visual  and  radar  information  to  enable  obstacle
avoidance,  group  coordination,  and  adaptive  control  before
transmitting commands to the flight controller.
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The control center integrates the farmer, remote controller, and
laptop  interface.  Farmers  monitor  operations  through  real-time
visualization  dashboards  and  can  manually  intervene  when
necessary.  Continuous  information  exchange  between  livestock,
UAVs,  and  the  human  operator  completes  the  perception–
decision–communication–control loop. This integrated design links
human  management,  robotic  execution,  and  animal  behavior  in  a
dynamic  and  adaptive  process—achieving  intelligent,  welfare-
driven,  and  cost-efficient  herding  particularly  suitable  for  small
family farms with limited labor resources.

 5    Preliminary  pilot  simulation  based  on  animal
behavior

To  demonstrate  the  feasibility  of  the  proposed  human–
robot–animal  framework,  a  series  of  simulations  was  conducted  to
visualize UAV-assisted herding behaviors and control mechanisms.

Figure 8 shows an initial path-planning simulation showing the
coordinated  movement  of  a  drone  and  a  sheep  herd  in  a  dynamic
environment  with  multiple  obstacles.  The  red  curve  represents  the
UAV’s  trajectory,  which  adapts  to  terrain  constraints  as  it  moves
from left to right to influence the herd’s movement. The black curve
shows  the  sheep  cluster’s  corresponding  trajectory,  progressively

shifting toward the target area under UAV guidance. The green dots
simulate  static  obstacles  scattered  across  the  field,  representing
irregular  terrain  such  as  bushes  or  rocks.  Both  UAV  and  herd
trajectories  demonstrate  obstacle  avoidance  and  smooth
coordination,  validating  the  system’s  capability  for  real-time  path
planning and behavioral adaptation. The drone performs oscillatory
maneuvers  to  maintain  optimal  spacing  and  apply  gradient-based
repulsive  influence,  ensuring  efficient  control  while  minimizing
animal  stress.  This  preliminary  simulation  visually  verifies  the
spatial  coordination  and  obstacle-avoidance  logic  embedded  in  the
framework’s path-planning algorithm.

Figure  9  presents  a  simulation  model  of  how  autonomous
UAVs  can  be  navigated  to  assist  sheep  herding.  The  drones  are
represented  by  three  colored  dots,  i.e.,  blue,  pink,  and  purple,
respectively.  The  numerous  green  dots  on  the  right  side  of  the
diagram indicate a cluster of sheep. The presence of red dots within
the  dense  cluster  of  green  dots  represents  the  herd  leader  (head
sheep),  which  exerts  a  guiding  effect  on  other  sheep.  The  green
boundary  delineates  the  dynamic  of  the  sheep  cluster.  The  target
zone,  illustrated  by  red  concentric  circles,  indicates  the  desired
destination of the herd.

In  the  beginning,  the  drones  were  deployed  around  the  outer
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perimeter  of  the herd.  Each drone exerted a repulsive influence on
all  sheep  within  its  effective  range  of  interaction.  The  strength  of
this repulsion decreased with distance,  forming a gradient  pressure
that  guided  the  herd’s  collective  movement  without  physical
contact[11,29].  Instead  of  targeting  individual  sheep,  the  drones  guide
the collective spatial distribution and density of the herd, indirectly
steering  towards  the  herd  leader,  which  in  turn  attracts  the
remaining sheep through an inherent following behavior.
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Figure 8    Concept diagram of drone-simulated herding
 
 

Figure 9    Simulation of drone herding on animal behavior
 

If the herd became widely dispersed, the nearest drone switched
to  Orbit  Mode,  circling  the  cluster  and  applying  distributed
repulsion  around  its  perimeter  to  compress  the  herd  density  and
restore  cohesion[33].  Once  the  sheep  cluster  was  assembled,  the
drones transitioned to Drive Mode and positioned behind the herd to
maintain directional repulsive pressure to navigate the cluster along
an arc-shaped trajectory toward the target zone[36].

If  the herd density increased excessively,  the drones shifted to
Control Mode, retreating slightly to reduce local repulsion intensity
and  avoid  over-compression.  This  would  allow  the  herd  to  relax
while  preserving  spatial  coherence[32].  Through  this  process,
repulsion  from  drones  and  attraction  to  the  herd  leader  jointly
shaped  the  collective  motion,  achieving  adaptive  and  humane
navigation  through  a  distance-decayed  field-based  control
mechanism.

 6    Limitations and future work
This  study offers  preliminary insights  into  integrating robotics

with traditional herding practices and assessing farmers’ acceptance
of robotics herding. The survey was based on a sample of fifty-five
participants, who consisted of local farmers engaged in small-scale
livestock  herding  from  a  single  village  in  China.  In  addition,  two
experienced herders were interviewed to provide qualitative insights
into  their  perceptions  of  robotic  herding.  This  study  was  restricted

by its geographical limitation, which constrains the generalizability
of  findings  across  regions  with  diverse  cultural  and  economic
conditions.  Data  collection  was  conducted  as  a  single  cross-
sectional  study.  Consequently,  this  represents  a  challenge  in
assessing  the  longitudinal  effectiveness  and  economic  benefits  of
robotics in livestock farming.

Future  work  will  prioritize  the  integration  of  existing  sensing,
decision-making,  communication,  and  control  modules  into  the
proposed  human–robot–animal  UAV-assisted  herding  framework.
The  next  phase  will  focus  on  implementing  small-scale  pilot  field
trials to evaluate the framework’s technical feasibility, adaptability,
and welfare compliance under real  herding conditions.  These trials
will  enable  iterative  refinement  of  system  parameters  and
interaction  strategies  through  continuous  feedback  from  both
farmers  and  livestock  behavioral  responses.  Technical
advancements  such  as  multi-agent  reinforcement  learning,  pasture
rotation  planning,  and  real-time  livestock  stress  monitoring  can  be
implemented  to  strengthen  UAV-based  livestock  systems.
Consequently,  a  “responsibility  by  design”  approach  is
recommended to consider impacts on future work structures, human
well-being,  and  farming  systems[9,56].  Strong  collaboration  between
technologists, agricultural experts, and animal welfare practitioners
is  essential  to  balance  efficiency  with  sustainability.  Local
authorities  can  further  support  innovation  through  incentives,
regulation,  and  partnerships[39].  Best  practices  with  an  open-source
agricultural  robotics  platform  could  strengthen  interdisciplinary
research collaboration and accelerate progress by facilitating dataset
sharing,  benchmarking,  and  broader  adoption  of  established
methodologies[31,34].

 7    Conclusions
This  study  establishes  an  initial  and  pivotal  understanding  of

the  development  of  intelligent  and  sustainable  herding  systems,
offering  a  critical  insight  for  the  integration  of  robotics  and  AI  in
livestock  management.  It  begins  with  a  systematic  literature
review[20,21]  alongside  empirical  field  investigations  in  robotics
herding[13,14].  While  traditional  livestock  practices  remain  prevalent
in  remote  regions,  farmers  showed  a  strong  openness  to  robotic
herding technologies for the perceived practical benefits. Successful
adoption  depends  on  improving  awareness,  reducing  costs,
providing training, and integrating innovations that assimilate local
cultural  values.  The  study  highlights  the  critical  importance  of
incorporating  stakeholders,  including  farmers,  technologists,  and
local authorities. This collaboration is needed to build a sustainable
ecosystem for the responsible and effective deployment of the smart
herding  solutions.  This  study  proposes  a  modular  UAV-based
robotic  herding  framework  that  integrates  AI-driven  perception,
adaptive  control  algorithms,  and  human-supervised  interfaces.  The
framework emphasizes human–robot–animal coordination to ensure
scalability, real-time adaptability, and alignment with local herding
practices  for  small-scale  pastoralists.  This  study  contributes  to
bridging  the  gap  between  technological  innovation  and  practical
implementation in livestock systems by offering a pathway toward
inclusive, resilient, and sustainable agricultural development.
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