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Abstract: Due  to  varying  crop  maturity  periods  and  uneven  distribution  of  agricultural  machinery,  China  has  developed  a
unique  service  model  known  as  cross-regional  agricultural  machinery  operations.  Currently,  China’s  comprehensive
mechanization  rate  for  grain  crops  is  relatively  high,  creating  a  substantial  market  for  cross-regional  agricultural  machinery
operations.  Research  on  the  behavioral  patterns  of  cross-regional  agricultural  machinery  migration  is  both  urgent  and
significant.  Considering  the  actual  rules  of  cross-regional  migration  during  the  wheat  harvest  and  the  characteristics  of  the
trajectory  data,  this  paper  proposes  a  trajectory  mining  method  using  a  recursive  search-based  DBSCAN  (Density-Based
Spatial  Clustering  of  Applications  with  Noise)  algorithm.  One  representative  finding  of  this  study  is  that  by  mining  the
trajectory data of wheat harvesters within 25 d of peak harvest period, 131 cross-regional trajectories were identified, consisting
of 11 633 harvesters. Three main routes of wheat harvester cross-regional migration were identified, along with several smaller
routes outside their  range.  The overall  spatiotemporal  pattern aligns with observed realities  in China.  This study can provide
valuable  references  for  operators  to  optimize  cross-regional  routes,  for  agricultural  machinery  manufacturers  to  develop
location-based services, and for relevant government departments to formulate policies.
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 1    Introduction
Wheat is one of China’s primary grain crops. Its maturation and

harvesting  are  highly  affected  by  weather  conditions,  leading  to  a
short  operational  window and placing high demands on harvesting
efficiency.  As  of  2024,  the  comprehensive  mechanization  rate  for
crop  cultivation  and  harvesting  in  China  has  exceeded  75%,  with
the mechanized wheat harvesting rate reaching as high as 98%. Due
to the large north-south span of China’s wheat-producing areas, the
time differences in crop maturity across regions, and the imbalance
in  the  number  of  agricultural  machines,  China  has  developed  a
unique  social  service  model  for  wheat  cross-regional  harvesting[1].
During  the  2021  wheat  harvest  season,  approximately  75%  of  the
harvesters  in  major  wheat-producing  areas  participated  in  cross-
regional  operations,  covering  around  84%  of  the  total  harvested
wheat  area.  The  median  cross-regional  migration  distance
(measured as straight-line distance) was approximately 597 km, and
about 69% of the harvesters traveled more than 300 km[2]. Based on
daily  national  agricultural  machinery  operation  data,  the  national

wheat  harvesting  center  migration  route  was  analyzed,  which
showed  an  alternating  trend  from  east  to  west  and  gradually
advancing northward,  consistent  with  the  wheat  maturity  period  in
various  regions.  The  cross-regional  operation  of  agricultural
machinery  is  one  of  the  important  means  to  improve  the  technical
efficiency  of  grain  production.  Studying  the  cross-regional
movement  of  wheat  harvesters  can  provide  a  reference  for
optimizing  decisions  for  operators,  agricultural  machinery
manufacturers,  and  relevant  government  departments,  improving
overall production efficiency, and ensuring national food security. It
has great economic and social significance[3].

Based  on  practical  production  patterns  and  operational
requirements,  analyzing  the  cross-regional  migration  patterns  of
agricultural machinery through trajectory data mining demonstrates
significant practical applications across multiple domains including
agricultural  production,  management,  and  policy  formulation.  The
trajectory analysis enables identification of typical migration routes,
operational timeframes, and regional demand peaks for agricultural
machinery.  For  manufacturers,  this  analytical  approach  facilitates
optimization of warehouse facility distribution and enhancement of
supporting  services  through  systematic  investigation  of  machinery
utilization  patterns  and  demand  characteristics.  Operators  can
leverage  these  insights  to  refine  cross-regional  harvesting  routes,
thereby  reducing  operational  costs  and  improving  resource
utilization efficiency. From a policymaking perspective, the derived
data  patterns  provide  data-driven  support  for  governmental
guidance  in  agricultural  machinery  industry  development.
Furthermore,  integration  with  crop  distribution  data  enables  the
establishment  of  precision  agricultural  service  platforms  and
collaborative machinery sharing/leasing systems, which collectively
enhance  service  efficiency  and  optimize  supply-demand
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coordination in agricultural equipment allocation.
The  cross-regional  operation  of  agricultural  machinery  has

attracted  attention  from  a  wide  range  of  research  perspectives.
There  have  been  many  studies  on  its  impact  on  production
efficiency[4-6], economic benefits[1], path scheduling[7-9], etc. However,
due  to  problems  such  as  small  sample  sizes  or  incomplete  data,
large-scale quantitative analysis is still difficult.

In  recent  years,  the  installation  of  Beidou  high-precision
positioning terminals on agricultural machinery and the construction
of  the  agricultural  machinery  operation  big  data  system  have
enabled  researchers  to  obtain  a  large  amount  of  high-quality
agricultural  machinery  trajectory  data.  These  high-frequency,
information-rich  data  can  accurately  correspond  to  each  piece  of
agricultural  machinery,  facilitating  research  on  large-scale
agricultural  machinery  movements[2].  Zhang  et  al.[10]  used  social
network  analysis  to  conduct  cluster  analysis  from  the  aspects  of
grouping  and  cohesive  subgroups,  exploring  the  network  structure
and  internal  characteristics  of  wheat  combine  harvesters  across
regions;  Li  et  al.[11]  counted  the  agricultural  machinery  flow  in
provinces, cities, and counties, analyzing the degree of dependence
on harvesters in various locations.

Previous  studies  have  used  regions  formed  by  administrative
divisions as research objects and studied the flow between different
regions. Using the center of gravity shift map obtained by Li et al.[11]

as an example, this study used cities as units, first mapping a small
number  of  trajectories  to  each  administrative  district,  and  then
studying  the  characteristics  and  laws  of  agricultural  machinery
movements  across  regions  between  different  cities.  This  article
considers  each  agricultural  machine  as  an  independent  research
object  and  conducts  research  based  on  the  original  movement
trajectory  of  the  agricultural  machinery.  It  is  not  restricted  by
administrative divisions, resulting in more thorough data utilization,
finer granularity, and more accurate results.

In  the  past,  the  analysis  of  trajectory  data  movement  patterns
usually  focused  on  cars,  ships,  pedestrians,  animals,  etc.,  and  also
had  certain  applications  in  meteorological  fields  such  as  vortices,
ocean  hurricanes,  and  red  tides[12-15].  To  identify  groups  of  vehicles
moving  together  over  time,  numerous  classic  movement  patterns
and  mining  algorithms  have  been  proposed,  such  as  Flock[16],
Convoy[17],  Swarm[18],  and  Platoon[19].  However,  different  patterns
define  the  spatiotemporal  constraints  of  accompanying  vehicles
differently.  Regarding  time  constraints,  Flock  and  Convoy  require
continuous time points for accompanying vehicles; Swarm does not
require  time  point  continuity;  Platoon  requires  that  vehicle  groups
move  together  within  a  specific  period.  Regarding  spatial
constraints,  Flock  requires  vehicles  to  be  in  a  disk-shaped
geographical  area,  while  other  studies  relax  this  constraint  to  a
density-reachable  area.  Numerous  studies  have  built  upon  these
classic  patterns,  improving  them  according  to  different  data
characteristics.  Li et  al.[20] proposed a more relaxed mobility model
and  used  grid  partitioning  for  efficient  clustering.  Liu  et  al.[21]

proposed  an  optimized  mining  algorithm  based  on  the  BP  model,
using a divide-and-conquer approach to optimize mining efficiency
in  the  spatial  dimension.  Previous  studies  often  impose  strict
temporal  and  spatial  constraints  when  determining  whether
agricultural  machinery  belongs  to  the  same  convoy.  Since  real-
world  harvester  convoys  tend  to  be  loosely  organized,  this  study
adopts  more  relaxed  constraints  in  defining  convoys.  In  addition,
agricultural  machinery  trajectories  typically  exhibit  a  “field-road”
binary semantic characteristic, with field trajectories accounting for
a  relatively  high  proportion,  while  road  network  features  are

indistinct  and  highly  dispersed.  Traditional  movement  pattern
extraction  methods  tend  to  generate  a  large  number  of  highly
similar convoy results under such conditions.

Trajectory  clustering  methods  enable  the  grouping  of  similar
trajectories,  where  the  representation  of  time  series  and  the
calculation of similarity measures are critically important. Some sub-
trajectory  clustering  algorithms  can  identify  frequently  traveled
common  paths[22-24],  but  these  methods  compromise  trajectory
integrity  and  are  therefore  unsuitable  for  extracting  agricultural
machinery  convoys.  Park  et  al.[25]  proposed  a  new  trajectory
spatiotemporal  similarity  measure  based  on  graph  theory  to  mine
travel  patterns.  Most  of  these studies search based on the evolving
trajectory of moving objects, which often incurs high computational
costs  and  requires  efficiency  optimization:  Zhou  et  al.[26]  generated
grid  indexes,  extracted  grid  sequence  features  of  the  ship’s
spatiotemporal  trajectory  for  mining,  and  improved  model
confidence.  Dutta  et  al.[27]  proposed  a  new  evolutionary  clustering
algorithm  based  on  multi-objective  criteria,  using  the  search
function of archived multi-objective simulated annealing (AMOSA)
to  cluster  data  sets.  However,  harvester  trajectories  vary  greatly  in
temporal  duration  and  spatial  coverage,  making  similarity
measurement  not  only  difficult  to  define  precisely  but  also
computationally  expensive.  Moreover,  the  resulting  clusters  may
not accurately align with our definition of convoys.

The  main  research  content  of  this  paper  is  to  first  utilize  the
DBSCAN  clustering  algorithm  to  spatially  cluster  the  trajectory
data at each time interval, and then merge these results to obtain the
spatiotemporal  distribution  of  wheat  harvesters  across  all  periods.
Subsequently,  based  on  this,  recursive  search  is  performed  to
identify  harvester  cross-regional  migration  convoys.  Finally,  the
cross-regional  movement  patterns  of  wheat  harvesters  nationwide
are  analyzed  to  explore  the  patterns  and  laws  of  cross-regional
migration.

 2    Materials and methods
 2.1    Data acquisition and preprocessing

The  research  period  of  this  paper  covers  the  large-scale
mechanized  harvesting  in  China’s  main  wheat-producing  areas  in
2022, specifically 25 d from May 28 to June 21, based on statistics
from  the  Agricultural  Mechanization  Management  Department  of
the  Ministry  of  Agriculture  and  Rural  Affairs  of  the  People’s
Republic of China[28].  The research data consist of GNSS trajectory
data  of  grain  combine  harvesters  during  operation.  The  data  come
from  the  agricultural  machinery  operation  big  data  system,  which
collects  real-time  position  data  from  agricultural  machinery  of
various  brands  such  as  Lovol,  World,  Zoomlion,  and  YTO.
Currently,  the  platform  has  connected  about  700  000  pieces  of
agricultural machinery, each equipped with a Beidou terminal with
a positioning accuracy of about 5 m. The BeiDou/GNSS terminal is
a  mobile  device  mounted  on  the  harvester,  which  continuously
collects  the  machine’s  location  data  in  real  time  during  operation.
Each  piece  of  agricultural  machinery  has  a  unique  identification
number,  and  the  parameters  of  each  trajectory  data  include
timestamp, longitude, latitude coordinates, etc.

In this experiment, the data sampling interval is set to one day,
with  each  harvester  recording  the  first  valid  data  after  8:00  am
daily. A total of 1 091 392 pieces of valid data were obtained from
80 294 harvesters over the entire time period. The daily number of
harvesters is shown in Figure 1. Harvesters usually upload data only
during the startup period. Due to factors such as weather and long-
distance migration, valid trajectory data are not uploaded daily. To
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exclude harvesters that have not operated across a large area, a total
of  36  904  harvesters  that  uploaded  data  for  at  least  15  d  were
selected,  as  shown  in  Figure  2.  This  accounted  for  46%  of  all
harvesters, with a total of 769 397 pieces, representing 70.5% of all
trajectory  data.  Data  cleaning  involved  removing  abnormal

harvesters,  drift,  duplication,  and  abnormal  trajectory  points.  The
specific  geographic  distribution  of  the  data  used  in  this  study  is
shown  in  Figure  3.  The  provinces  with  the  largest  number  of
records include Henan, Jiangsu, Shandong, Anhui, and Hebei. This
dataset effectively covers China’s major wheat-producing regions.
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 2.2    Definition of cross-regional convoy

O1 O2 O3

To  define  the  pattern  of  cross-regional  convoys  of  wheat
harvesters,  a  series  of  field  investigations  targeting  real-world
convoys  was  first  conducted,  and  communication  with  multiple
harvester  operators  through  questionnaires  and  interviews  was
engaged in. Through this process, two main types of actual convoys
were  identified:  small-scale  convoys  primarily  composed  of
individual operators, and large-scale professional service teams. The
former  are  typically  smaller  in  size—sometimes  consisting  of  as
few as two machines—and are formed primarily for mutual support
and cost  reduction.  These  convoys  tend to  be  highly  flexible,  with
their  composition  and  routes  frequently  changing  in  response  to
factors  such  as  order  sources,  overall  harvesting  progress,
operational costs, weather conditions, and agricultural policies. The
latter,  although  more  structured,  also  adjust  routes  dynamically
based  on  service  orders  and  harvesting  schedules.  Their  members
may  occasionally  split  and  regroup  depending  on  operational
demands. Figure  4  illustrates  a  possible  movement  pattern  of  such
machinery.  ,  ,  and    represent  the  trajectories  of  three
harvesters,  with  dots  indicating  their  locations  at  different  time
points.  While  the  paths  are  not  completely  identical,  there  are

t2 t4 t7moments—such  as  at  timestamps  ,  ,  and  —where  full  or
partial convergence among the machines occurs.
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Figure 4    Illustration of cross-regional convoys during
wheat harvesting
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This  paper  examines  the  primary  cross-regional  mobility
patterns  of  harvester  through  the  lens  of  cross-regional  convoys.
The  movement  pattern  of  cross-regional  harvester  convoys  is
defined in this study as follows: each cross-regional convoy consists
of at least   harvesters, and any two harvesters  ,   (where

)  must  belong  to  the  same  cluster  for  at  least 
time interval.  It  should be noted that  the definition of “convoy”  in
this  study  does  not  strictly  correspond  to  the  narrow,  real-world
convoys formed by harvester operators during cross-regional wheat
harvesting; rather, it aims to capture various migration patterns and
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regularities from a big-data perspective. Specifically, each harvester
is  constrained  to  belong  to  only  one  convoy,  differing  from  many
existing studies.  This decision is  motivated by the inherently loose
structure  of  harvester  convoys  and  relaxed  spatial-distance
constraints; without this restriction, a large number of highly similar
convoy  results  would  be  generated.  Moreover,  to  extract  the
dominant  spatiotemporal  patterns  of  cross-regional  harvester
convoys,  our  method  favors  convoys  that  are  larger  in  scale  and
longer in duration.
 2.3    Overview

Based  on  data  mining  principles,  the  actual  cross-regional
migration  trajectories  of  harvesters  were  analyzed  and  the  concept
of  cross-regional  harvester  convoys  was  proposed.  By  identifying
common  patterns  and  laws  in  the  cross-regional  wheat  harvest
process,  the  study  searches  for  harvester  convoys  with  high
spatiotemporal  similarity  in  their  trajectories  and  explores  the
dominant  cross-regional  movement  patterns  during  the  wheat
harvest.  First,  the  DBSCAN  clustering  algorithm  is  employed  to
cluster  and  summarize  the  spatial  data  at  each  time  interval,
resulting  in  a  series  of  clusters  that  are  temporally  and  spatially
proximate. After the valid data are filtered, the clustering results for
the  entire  period  are  recursively  searched  individually,  the
appropriate parameters are selected, and each convoy that meets the
criteria is finally identified.

Figure  5  below  presents  a  schematic  diagram  of  the  technical
approach of this study. The first  step involves data acquisition and
preprocessing.  After  obtaining  the  wheat  harvester  trajectory  data

from the agricultural machinery operation big data system, the data
are  screened,  cleaned,  and  sampled  to  create  a  wheat  harvester
trajectory  dataset  for  a  specific  interval  ΔT  (1  d).  The  second  step
involves  clustering.  The  data  are  spatially  clustered  at  each  time
interval to obtain the spatial clustering results for each time period.
The  DBSCAN clustering  parameters  are  Eps  =  3  and  Minpts  =  2.
The  harvesters  in  each  cluster  have  high  temporal  and  spatial
similarities.  All  results  are  combined  to  obtain  a  clustering  dataset
of  wheat  harvester  operation  trajectories  at  specific  intervals  over
the  entire  time period.  The  purpose  of  the  third  step  is  to  obtain  a
convoy  with  the  largest  possible  scale  and  duration  under  the
premise  that  each  harvester  belongs  to  only  one  cross-regional
convoy.  The  fourth  step  involves  recursive  searching  for  cross-
regional  convoys,  screening  harvesters  with  data  upload  times
greater than 15 d, and then comparing the clustering results for the
entire  time  period  individually  to  obtain  a  convoy  with  a  scale
greater than 20 and a duration greater than 15 d. On this basis, the
mainstream  movement  patterns  of  wheat  harvesters  during  cross-
regional  migration  across  the  country  can  be  analyzed,  and  the
patterns and laws of cross-regional migration can be explored.

The  relevant  parameters  involved  in  the  entire  process  are
presented  in  Table  1.  During  the  initial  stage  of  our  research,
extensive  and  in-depth  communication  was  conducted  with
numerous wheat harvester operators, and on-site field research was
performed  to  gather  information  related  to  cross-regional  wheat
harvesting. The values of each parameter were determined based on
the actual conditions.
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Table 1    Description and value of parameters involved in the whole process

Module Parameter name Parameter
variable Parameter meaning Current value

Preprocessing
Start and end time Tstart Tend Start and end time of original data Tstart=May 28th

Tend=June 21st
Sampling interval ΔT Sampling the data at this interval 1 d

DBSCAN
cluster analysis

Neighborhood distance threshold Eps Core object neighborhood radius 3 km
Number of samples threshold Minpts The minimum number of samples in the field 2

Cross-regional
convoy
recursive
searching

Valid data number threshold Vmin Only data greater than this threshold could participate in the determination of the
partner group. 15

Minimum size of partner group MinSize The minimum number of harvesters at each encounter 20

Minimum number of encounters MinT In each partner group, the minimum number of encounters between any two harvesters,
that is, the minimum number of consistent days when each label is compared 15

 

 2.4    DBSCAN clustering
There are numerous clustering algorithms, some of which, such

as  K-means,  hierarchical  clustering,  and Gaussian  Mixture  Models
(GMM), require the number of clusters to be specified in advance,
and  the  optimal  parameters  must  be  determined  through  iterative
comparison.  However,  due  to  the  daily  variations  in  the  scale  and

structure  of  data  during  wheat  harvesting,  the  best  parameters  are
not universal. Searching for optimal parameters for each day’s data
would  lead  to  different  criteria  for  evaluating  the  fleet  each  day,
making these algorithms unsuitable for the task. Among algorithms
that  do  not  require  specifying  the  number  of  clusters,  Affinity
Propagation automatically determines cluster count and centers via
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message passing, iteratively updating responsibility and availability
values based on the similarity matrix to select exemplars and assign
points[29];  Mean  Shift  clustering  identifies  local  density  peaks
through  density-gradient  ascent,  moving  points  toward  higher-
density  regions  until  convergence[30].  However,  both  algorithms
incur  high  computational  complexity  and  are  unsuitable  for  large-
scale  datasets.  Two  additional  high-efficiency  clustering
approaches,  CDC  (Clustering  using  local  Direction  Centrality)[31]

and  HDBSCAN (Hierarchical  Density-Based  Spatial  Clustering  of
Applications  with  Noise)[32],  are  also  tried  for  further  verification.
CDC  distinguishes  between  interior  and  boundary  points  by
measuring the uniformity of each point’s K-nearest neighbor (KNN)
distribution.  Boundary  points  can  form  an  enclosing  “cage”  that
restricts  the  connection  of  internal  points,  thereby  effectively
separating  weakly  connected  clusters  and  mitigating  the  impact  of
density  heterogeneity  on  cluster  identification.  HDBSCAN,  a
density-based algorithm extending DBSCAN, builds a hierarchy to
extract  stable  clusters  and  is  well-suited  to  complex  data
distributions. These two algorithms mitigate the overlapping-cluster
merging  issue  in  DBSCAN  that  can  produce  excessively  large
clusters. In the results produced by CDC, the maximum cluster size
remained relatively small. By adjusting its two key parameters—the
number  of  nearest  neighbors  ,  and    (a  parameter  related  to
the  distinction  between  internal  and  boundary  points)—the
maximum cluster  size  could  be  reduced to  fewer  than 1,000.  With
HDBSCAN,  given  our  definition  of  cross-regional  convoys,  the
permissible parameter range was narrow, resulting in clusters of no
more than 30 members. However, since the objective of this study is
to identify cross-regional  convoys,  there are practical  requirements
regarding  cluster  size,  and  most  clusters  produced  by  CDC  and
HDBSCAN are  too  small  to  effectively  support  convoy  detection.
Therefore,  after  careful  consideration,  DBSCAN is  selected  as  the
most suitable clustering algorithm.

Eps
p

Minpts p

DBSCAN  (Density-Based  Spatial  Clustering  of  Applications
with Noise) is a widely used density-based clustering algorithm that
can  identify  clusters  of  arbitrary  shape.  The  core  idea  behind
DBSCAN is  that  a  cluster  primarily  consists  of  core  points,  which
have  high  point  densities  (see  Definitions  1  and  2).  The  algorithm
defines  a  cluster  as  the  largest  set  of  density-connected  points.  By
identifying  high-density  regions  separated  by  low-density  areas,
DBSCAN  separates  these  regions  into  distinct  clusters.  The
DBSCAN  algorithm  requires  two  parameters:  the  neighborhood
radius ( ),  which defines the range of the circular neighborhood
around  a  given  point  ,  and  the  minimum  number  of  points
( )  required  within  the  Eps-neighborhood  of  ,  which
corresponds to the number of harvesters.

p NEps(p) = {q ∈ L|
dis(p,q) ≤ Eps L

dis (p,q)
p q

Definition  1.  (Eps-neighborhood  of  a  point):  The  Eps-
neighborhood  of  point  ,  is  defined  by 

,  where    is  a  set  of  points  representing  the  given
location coordinates, and   represents the Euclidean distance
between points   and  .

p Minpts
Definition 2.  (Core point):  If  the number of points in the Eps-

neighborhood of point   is larger than  , it is a core point.

p
p C

NEps (p) q C
q

NEps (p) C
C

DBSCAN  accomplishes  the  clustering  process  by  extracting
clusters  sequentially.  Starting  from  an  arbitrary  point  ,  its  Eps-
neighborhood  is  checked.  If    is  a  core  point,  a  new  cluster    is
created  with  the  points  in  .  Then,  for  each  point    in 
whose  Eps-neighborhood  has  not  yet  been  checked,  if    is  a  core
point, the points in   which are not already contained in  are
added to the cluster. The expansion of cluster   is repeated until no
new  point  can  be  added  to  the  cluster.  The  clustering  process

terminates when no new cluster is created.

Eps
Eps

Selecting  appropriate  parameters  is  essential  to  obtaining
reasonable  clustering  results.  The    value  directly  affects  the
number  and size  of  clusters.  If  the   value  is  too large,  most  of
the  trajectory  points  will  be  clustered  together,  resulting  in  fewer
but larger clusters. Conversely, if the Eps value is too small, it will
cause  the  clusters  to  split,  generate  more  noise  points,  and  reduce
the number of clusters. The Minpts value is relatively less sensitive
and  should  be  carefully  selected  based  on  experience  and  data
distribution. This study selects parameters based on interviews with
actual cross-regional convoy drivers during the wheat harvest.
 2.5    Sorting cluster data

It is conceivable that the same harvester may appear in multiple
convoys  of  similar  size  and  duration.  This  paper  prioritizes
identifying  convoys  with  larger  size  and  longer  duration,
necessitating  the  sorting  of  cluster  data.  First,  all  data  are
summarized  into  a  table,  with  each  row  representing  a  harvester,
each column representing a time interval, and each value indicating
the  corresponding  cluster  label,  as  listed  in  Table  2.  Additionally,
the  numbers  in  each  column  are  independent,  with  no  special
relationship  between  identical  numbers.  For  instance,  the  label
value of the harvester corresponding to DID “LOV230” on June 19
and  June  20  is  7.  This  does  not  imply  that  the  two  clusters  are
completely  consistent;  it  only  indicates  that  they  are  both  the
seventh cluster at their respective time intervals.
  

Table 2    Cluster label data after integration and
sorting (example)

DID 5-28 5-29 … 6-19 6-20 6-21
LOV227 0 0 … 0 0 0
LOV228 0 0 … 0 0 0
LOV229 0 0 … 0 0 0
LOV230 0 0 … 7 7 0
LOV231 0 0 … 14 0 0
LOV232 0 0 … 0 0 0
LOV233 –1 0 … 15 21 2
LOV234 0 0 … 2 0 0
LOV235 0 –1 … 2 5 0
LOV236 0 0 … 36 47 37
LOV237 0 0 … 29 60 48
LOV238 0 0 … 67 Na Na
LOV239 0 0 … 2 Na Na
LOV240 0 0 … 2 Na Na
LOV241 0 0 … 0 Na Na

Note: –1 represents noise, Na means no data on that day.
 

The sorting steps are:
(1)  For  the  clustering  results  of  each  time  interval,  mark

outliers  with  a  label  of  –1,  and  sort  the  remaining  data  in  reverse
order based on cluster size.

(2)  After  summarizing  the  results  of  each  interval,  sort  each
harvester  in  reverse  order  based  on  the  number  of  valid  data
(uploaded and non-noise).

(3)  For  harvesters  with  the  same  number  of  valid  data,  sort
them by  cluster  size  from the  previous  step,  according  to  the  time
interval order.

Finally,  all  data  are  summarized  into  a  table,  with  each  row
representing a  harvester,  each column representing a  time interval,
and each value indicating the corresponding cluster label.
 2.6    Recursive search for cross-regional convoys

Based  on  the  sorted  clusters,  the  search  for  cross-regional
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convoys is conducted. The specific process is as follows:
(1)  Compare  all  rows  with  the  first  row.  If  the  number  of

columns  consistent  with  the  first  row  is  greater  than  MinT,  retain
the row:

• If the number of rows that meet the requirements is less than
MinSize,  delete  the  first  row  and  proceed  to  step  2  with  the
remaining rows.

•  If  the  number  of  rows  that  meet  the  requirements  is  greater
than MinSize, compare these rows with the second row, and so on,
until  all  rows  have  been  compared.  If  the  number  of  rows  is  still
greater than MinSize, a convoy is identified.

(2) Delete the rows included in the convoy, and continue with
step 1 for the remaining rows until the number of remaining rows is
less than MinSize, ending the search.
 2.7    Detailed analysis of cross-regional convoys

For  the  searched  convoys,  their  average  trajectories  are
calculated, and various mainstream movement patterns in the cross-
regional migration of harvesters across the country can be obtained.
Their  starting  point,  scale,  internal  segmentation  mode,  etc.  are
analyzed  in  detail  to  explore  more  internal  laws  of  cross-regional
migration.

 3    Results and discussion
 3.1    Shift of wheat harvest center of gravity

G

(xi,yi) si

Due  to  the  extensive  north-south  span  of  wheat-producing
regions  in  China  and  the  associated  time  differences  in  crop
maturity across these areas, coupled with the uneven distribution of
agricultural machinery, China has developed a unique social service
model  for  cross-regional  mechanized  wheat  harvesting.  Operators
migrate  based  on  wheat  maturity,  moving  to  various  locations  for
harvesting.  Figure  6  shows  a  national  wheat  harvest  center  of
gravity shift map based on the analysis of daily national agricultural
machinery  operation  data.  The  daily  operation  center    is
calculated based on the weighted average of the harvester locations

 for the day,  according to the harvested area   (as shown in
Equation (1)).  The map indicates  that  the  harvest  center  of  gravity
alternates between east and west and gradually advances northward
(Li et al. 2023). However, this study uses administrative divisions as
the research unit, which limits the accuracy and detail of the results.
Therefore,  this  paper  investigates  the  laws  of  cross-regional
migration  of  harvesters  during  the  wheat  harvest  based  on  the
specific trajectories of individual harvesters.

G =

n∑
i=0

(xi,yi)× si

n×
n∑

i=0

si

(1)

 3.2    DBSCAN clustering
Based  on  communications  with  drivers  in  the  cross-regional

convoy,  it  was  learned  that  there  are  many  small  “convoys”
consisting of only two harvesters.  Therefore,  the Minpts parameter
of DBSCAN was set to 2. While the general movement direction of
the  convoy  is  consistent,  the  daily  operation  locations  are  not
necessarily close, often reuniting only during rest periods. Thus, the
Eps value was set to 3 km. Figure 7 shows the number of clusters of
various sizes per day, with most clusters being small.

Although  there  are  fewer  large  clusters,  the  harvesters
contained within them account  for  a  significant  proportion.  This  is
due  to  the  nature  of  the  DBSCAN algorithm.  In  areas  with  higher
density,  very  large  clusters  are  formed,  while  in  areas  with  sparse

density,  the  clusters  obtained  are  often  smaller  and  most  are
considered noise. Figure 8 shows the clustering results for the peak
day  during  the  wheat  harvest  (53  365  harvesters).  A  total  of  2942
clusters  and  5192  noise  points  (not  shown)  were  obtained.  In
Figure 8a, it can be seen that most of the harvesters are concentrated
in the top few clusters. In Figure 8b, each color represents a cluster.
The  two  largest  clusters  have  15,126  and  13,804  points,
respectively, accounting for 61.43% of the harvesters on that day.

Applying  Swarm  pattern  mining  to  the  clustering  results
yielded 595 367 893 convoy records, a number that far exceeds the
total number of harvesters. This is primarily due to the definition of
the Swarm movement pattern, which allows a single harvester to be
included in multiple convoys. In fact, this characteristic is shared by
many  existing  movement  pattern  mining  methods.  Combined  with
our relatively permissive DBSCAN parameter settings, this resulted
in numerous highly similar convoys. For example, the following are
two convoy examples extracted from the same clustering result:

•  Convoy  A:  [69,  28 186,  36 270,  43 664,  84 967]  active  on
timestamps [0, 1, 3, 4, 5, 6, 7, 8, 10, 11, 12, 13, 14, 15, 16, 17, 18,
19, 20, 21, 22, 23, 24];

• Convoy B: [69, 28 186, 36 270, 84 967] active on timestamps
[0, 1, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21,
22, 23, 24].

In Convoy B, the inclusion of timestamp 9 led to the exclusion
of  harvester  43 664.  The  timestamp  overlap  between  the  two
convoys was 95.65%, and the membership overlap was 80%. Many
similar cases were observed,  indicating a high level  of redundancy
in the results. Such redundant and highly similar convoy records do
not meaningfully contribute to the identification of dominant cross-
regional  migration  patterns  of  wheat  harvesters,  which  is  the
primary goal of this study.
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 3.3    Parameter selection
Convoy numbers and sizes are influenced by many parameters.

Table  3  presents  results  under  different  parameter  combinations.
The  parameters  were  determined  as  follows.  Eps  was  chosen  as
3  km,  informed  by  field  investigations  into  the  dispersion  of  real
harvester convoys. The table also includes a result for Eps = 9.5 km:
such  a  large  Eps  causes  over-merged  clusters,  yielding  very  few
clusters and convoys. Although the overall spatial flow aligns with
reality, too many details are lost. For MinT, as shown in Figure 3, it
is  observed that  most  harvesters  operate  for  over  5  d;  and because
cross-regional  transfer  patterns  over  the  entire  peak  harvest  period
are  focused  on,  setting  MinT  below  10  d  is  considered  too  short.
Setting  MinT  above  20  d  is  deemed  impractical,  as  harvester
operations  are  commonly  interrupted  by  weather  or  long-distance
transfers  during  actual  harvesting.  Results  around  15  d  show  little
variation, so 15 d was selected as a representative middle value. The
selection  strategy  for  the  MinSize  parameter  is  guided  by  similar
principles,  as  small  variations  in  this  parameter  are  likewise  found
to have minimal impact on the results.
  

Table 3    Results obtained under different parameter settings
Eps Minpts MinSize MinT Number of Convoy Number of Harvester
9.5 2 20 15 27 16 989
3 2 18 13 185 17 666
3 2 18 14 159 14 433
3 2 18 15 152 11 877
3 2 18 16 131 9738
3 2 18 17 129 7992
3 2 19 13 170 17 465
3 2 19 14 151 14 296
3 2 19 15 143 11 768
3 2 19 16 127 9708
3 2 20 13 162 17 316
3 2 20 14 145 14 210
3 2 20 15 131 11 633
3 2 20 16 120 9614
3 2 20 17 105 7616
3 2 21 13 153 17 166
3 2 21 14 138 14 109
3 2 21 15 131 11 671
3 2 21 16 117 11 674
3 2 21 17 104 7608
3 2 22 13 153 17 166
3 2 22 14 130 13 977
3 2 22 15 126 11 608
3 2 22 16 113 9453
3 2 22 17 96 7534
2 2 10 15 111 1630
2 2 20 15 29 847

 3.4    Recursive searching cross-regional convoys
To ensure the size and duration of the convoy, and considering

the actual wheat maturity period and the basic requirements for cross-
regional migration, Eps = 3, Vmin = 15, MinSize = 20, and MinT =
 15 are used. This resulted in a total of 131 cross-regional convoys,
comprising 11 633 harvesters. Among these, two large convoys had
more  than  1000  harvesters,  while  most  convoys  had  fewer  than
100 harvesters,  as  shown in Figure  9.  The visualization results  are
shown in Figure 10.  Each colored polyline in the figure represents
the  average  trajectory  of  a  convoy.  The  width  of  the  polyline
corresponds to the number of  harvesters.  The green triangle marks
the starting point,  and the red dot marks the end point.  The results
reveal  three  primary  modes  of  harvester  cross-regional  migration,
all  originating from southern Henan.  The largest  group operates  in
the  main  wheat-producing  area,  moving  northeastward  along  the
northern  Henan-Hebei  central  route,  which  is  also  the  region  with
the highest wheat yield and greatest harvesting pressure. The second
group follows the Jiangsu-Shandong eastern route, initially moving
east and then turning north. The third group moves northwest along
the  Shaanxi-Gansu  western  route.  Additionally,  there  are  smaller
convoys operating across other wheat-producing areas. The overall
spatial  flow direction  and  scale  align  with  the  actual  conditions  of
cross-regional mechanized wheat harvesting in China.
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The  largest  cross-regional  convoy  contains  2878  harvesters,
with an average trajectory starting from Pingyu County, Zhumadian
City, Henan Province, moving to Zaoqiang County, Hengshui City,
Hebei  Province,  and  then  turning  south  to  Xiajin  County,  Dezhou
City, Shandong Province. To observe the movement patterns within
the  convoy more  deeply,  the  specific  trajectories  of  each harvester
are  presented  individually,  as  shown in Figure  11.  The  trajectories
mainly  cover  most  of  Henan  and  Hebei  provinces,  as  well  as  the
western  region  of  Shandong.  It  can  be  seen  that  the  trajectories  of
most  harvesters  follow  the  average  trajectory  trend,  carrying  out
cross-regional  migration  from  south  to  north  in  the  main  wheat-
producing  areas.  Compared  with  previous  studies,  this  result  is
based  on  actual  trajectories,  is  not  restricted  by  administrative
division frameworks, is more specific and intuitive, and conforms to
actual crop maturity laws and cross-regional migration modes.
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Figure 11    Detailed trajectory of harvesters
 

 3.5    Limitations
Due  to  the  characteristics  of  DBSCAN  algorithm,  DBSCAN

uses fixed parameters to identify clusters  and requires data density
decrease  to  detect  cluster  boundaries.  If  multiple  clusters  overlap
without  data  density  decrease,  they  may  be  grouped  into  a  single
cluster. Therefore, large clusters will appear in high-density regions,
and the distribution of all cluster sizes will show a long tail.

The  Ht-index  quantifies  the  fractal  or  scaling  structure  of
geographic features[33]. The data is divided according to the average:
if  the  tail  is  larger  than  the  head,  the  head  is  further  divided.  A
geographic  feature  has  an  Ht-index  of h  if  the  pattern  of  far  more
small things than large ones recurs (h – 1) times at different scales.
If the Ht-index is 4, it indicates three instances where the number of
small clusters is larger than the number of large clusters. As shown
in Figure  8a,  the  head  and tail  of  the  day’s  clustering  results  were
highly  unbalanced,  with  the  tail  being  much  longer  than  the  head,
demonstrating  clear  characteristics  of  a  long-tail  distribution.  The
data  volume  of  the  head  after  the  first  division  was  only  5.11%,
while  the  data  volume  of  the  head  after  the  final  division  was
2 units, accounting for just 0.11% of the total. Figure 12 illustrates
the  Ht-index  of  daily  clustering  results  and  the  proportion  of  head
data  volume  after  the  first  division.  This  indicates  that  the
distribution of daily cluster sizes resembles that of the observed day,
exhibiting  long-tail  distribution  characteristics.  Consequently,  the

search  convoys  also  exhibit  similar  characteristics,  ultimately
resulting in two convoys being significantly larger than the others.
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In  future  work,  improvements  to  clustering  algorithms  are
planned to be explored. For example, results from DBSCAN under
multiple  parameter  settings may be fused,  or  multi-level  clustering
may be performed to further subdivide large clusters. Additionally,
how  other  advanced  clustering  algorithms  can  be  adapted  and
improved  for  applications  in  this  type  of  research  will  be
investigated.

 4    Conclusions
In  response  to  regular  differences  in  crop  maturity  across

regions  and  the  imbalance  in  agricultural  machinery  ownership,
China  has  developed  a  socialized  service  model  for  cross-regional
agricultural  machinery  operations.  The  agricultural  machinery
operation  big  data  system  based  on  Beidou  offers  a  substantial
amount  of  high-quality  trajectory  positioning  data  of  agricultural
machinery. This data enables a comprehensive quantitative analysis
of  harvester  movement  patterns.  Research  has  yielded  significant
findings  on  the  cross-regional  migration  patterns  of  agricultural
machinery  during  wheat  harvesting,  including  the  development  of
shift  maps  for  the  center  of  gravity.  Based  on  previous  studies  of
cross-regional agricultural machinery laws, this study addresses the
characteristics  of  harvester  trajectory  data  dispersion  and  the  high
proportion of field trajectories, along with field survey results of the
cross-regional convoy migration mode. Starting from the trajectory
of  each  harvester,  this  study  proposes  a  trajectory  mining  method
using a recursive search-based DBSCAN algorithm. After sampling
and  slicing  the  wheat  harvester  trajectory  data  during  the  peak
harvest  period,  spatial  clustering  is  performed separately,  followed
by  a  recursive  search  to  identify  multiple  cross-regional  migration
convoys.  From  1 091 392  pieces  of  location  data  of  80 294
harvesters, 131 convoys with a scale greater than 20 and a duration
greater  than  15  d  were  searched,  comprising  a  total  of  11  633
harvesters.  Except  for  the  two  largest  convoys  of  more  than  1000
harvesters,  most  of  the  convoy  sizes  are  less  than  100  harvesters.
The  average  trajectory  of  the  harvester  within  each  convoy  is
calculated  to  determine  its  cross-regional  movement  paths.  The
results  identify  three  primary  modes  of  cross-  regional  migration:
western, middle, and eastern routes. The middle route, the largest in
scale,  begins  in  southern  Henan  and  moves  northeast  to  Hebei,
covering  the  main  wheat-producing  area.  The  eastern  route
generally  starts  eastward  and  then  moves  north,  encompassing
provinces such as Anhui, Jiangsu, and Shandong. The western route
moves northwest towards Shaanxi and Gansu. Additionally, smaller
convoys  operate  across  other  wheat-producing  areas.  The  overall
spatial  flow  direction  and  scale  align  with  the  observed  cross-
regional  migration  pattern  during  the  wheat  harvest.  This  research
can  provide  references  for  operators,  agricultural  machinery
manufacturers,  relevant  government  departments,  and  other
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stakeholders to optimize cross-regional  migration routes,  configure
spare  parts  and  maintenance  resources,  rationally  allocate
agricultural  machinery,  and  implement  location-  and  community-
based  services.  This  approach  improves  the  efficiency  of
comprehensive  information  utilization  and  ultimately  enhances  the
overall  efficiency  of  cross-regional  operations,  ensuring  bumper
harvests and national food security.

While  this  research  has  made  important  contributions,  several
limitations  remain.  Different  parameter  combinations  can  lead  to
varying results,  and different crops, time periods, study regions, or
movement  patterns  may  impose  different  requirements  on  the
clustering  outcomes.  This  introduces  greater  flexibility  and
complexity  in  parameter  selection.  Future  work  could  explore
improvements  in  parameter  selection,  such  as  the  fusion  of  multi-
parameter  results,  the  development  of  dynamic  parameter  models,
or  the  adaptation  and  enhancement  of  other  advanced  clustering
algorithms for similar research applications. Moreover, this research
has  the  potential  for  application  in  other  domains.  For  example,
identifying  wheat  harvester  convoys  with  similar  movement
patterns  could  help  optimize  machinery  scheduling  and  supply-
demand  matching,  thereby  improving  the  efficiency  of  cross-
regional  operations.  It  could  also  support  the  prediction  of
machinery  maintenance  and  service  needs  to  optimize  resource
allocation,  as  well  as  the analysis  of  cross-regional  operation costs
and their economic benefits to farmers.
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