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Abstract: Due to varying crop maturity periods and uneven distribution of agricultural machinery, China has developed a
unique service model known as cross-regional agricultural machinery operations. Currently, China’s comprehensive
mechanization rate for grain crops is relatively high, creating a substantial market for cross-regional agricultural machinery
operations. Research on the behavioral patterns of cross-regional agricultural machinery migration is both urgent and
significant. Considering the actual rules of cross-regional migration during the wheat harvest and the characteristics of the
trajectory data, this paper proposes a trajectory mining method using a recursive search-based DBSCAN (Density-Based
Spatial Clustering of Applications with Noise) algorithm. One representative finding of this study is that by mining the
trajectory data of wheat harvesters within 25 d of peak harvest period, 131 cross-regional trajectories were identified, consisting
of 11 633 harvesters. Three main routes of wheat harvester cross-regional migration were identified, along with several smaller
routes outside their range. The overall spatiotemporal pattern aligns with observed realities in China. This study can provide
valuable references for operators to optimize cross-regional routes, for agricultural machinery manufacturers to develop
location-based services, and for relevant government departments to formulate policies.
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1 Introduction

Wheat is one of China’s primary grain crops. Its maturation and
harvesting are highly affected by weather conditions, leading to a
short operational window and placing high demands on harvesting
efficiency. As of 2024, the comprehensive mechanization rate for
crop cultivation and harvesting in China has exceeded 75%, with
the mechanized wheat harvesting rate reaching as high as 98%. Due
to the large north-south span of China’s wheat-producing areas, the
time differences in crop maturity across regions, and the imbalance
in the number of agricultural machines, China has developed a
unique social service model for wheat cross-regional harvesting!.
During the 2021 wheat harvest season, approximately 75% of the
harvesters in major wheat-producing areas participated in cross-
regional operations, covering around 84% of the total harvested
wheat area. The median cross-regional migration distance
(measured as straight-line distance) was approximately 597 km, and
about 69% of the harvesters traveled more than 300 km®. Based on

daily national agricultural machinery operation data, the national
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wheat harvesting center migration route was analyzed, which
showed an alternating trend from east to west and gradually
advancing northward, consistent with the wheat maturity period in
various regions. The cross-regional operation of agricultural
machinery is one of the important means to improve the technical
Studying
movement of wheat harvesters can provide a reference for
optimizing decisions for operators, agricultural machinery
manufacturers, and relevant government departments, improving

efficiency of grain production. the cross-regional

overall production efficiency, and ensuring national food security. It
has great economic and social significance®.
Based on practical production patterns and operational
requirements, analyzing the cross-regional migration patterns of
agricultural machinery through trajectory data mining demonstrates
significant practical applications across multiple domains including
agricultural production, management, and policy formulation. The
trajectory analysis enables identification of typical migration routes,
operational timeframes, and regional demand peaks for agricultural
machinery. For manufacturers, this analytical approach facilitates
optimization of warehouse facility distribution and enhancement of
supporting services through systematic investigation of machinery
utilization patterns and demand characteristics. Operators can
leverage these insights to refine cross-regional harvesting routes,
thereby reducing operational costs and improving resource
utilization efficiency. From a policymaking perspective, the derived
data patterns provide data-driven support for governmental
guidance in agricultural
Furthermore, integration with crop distribution data enables the

machinery industry development.

establishment of precision agricultural service platforms and
collaborative machinery sharing/leasing systems, which collectively
enhance service supply-demand

efficiency and optimize
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coordination in agricultural equipment allocation.

The cross-regional operation of agricultural machinery has
attracted attention from a wide range of research perspectives.
There have been many studies on its impact on production
efficiency*, economic benefits', path scheduling™, etc. However,
due to problems such as small sample sizes or incomplete data,
large-scale quantitative analysis is still difficult.

In recent years, the installation of Beidou high-precision
positioning terminals on agricultural machinery and the construction
of the agricultural machinery operation big data system have
enabled researchers to obtain a large amount of high-quality
agricultural machinery trajectory data. These high-frequency,
information-rich data can accurately correspond to each piece of
agricultural machinery, facilitating research on large-scale
agricultural machinery movements”. Zhang et al."” used social
network analysis to conduct cluster analysis from the aspects of
grouping and cohesive subgroups, exploring the network structure
and internal characteristics of wheat combine harvesters across
regions; Li et al.'! counted the agricultural machinery flow in
provinces, cities, and counties, analyzing the degree of dependence
on harvesters in various locations.

Previous studies have used regions formed by administrative
divisions as research objects and studied the flow between different
regions. Using the center of gravity shift map obtained by Li et al.""
as an example, this study used cities as units, first mapping a small
number of trajectories to each administrative district, and then
studying the characteristics and laws of agricultural machinery
movements across regions between different cities. This article
considers each agricultural machine as an independent research
object and conducts research based on the original movement
trajectory of the agricultural machinery. It is not restricted by
administrative divisions, resulting in more thorough data utilization,
finer granularity, and more accurate results.

In the past, the analysis of trajectory data movement patterns
usually focused on cars, ships, pedestrians, animals, etc., and also
had certain applications in meteorological fields such as vortices,

ocean hurricanes, and red tides!*"

1. To identify groups of vehicles
moving together over time, numerous classic movement patterns
and mining algorithms have been proposed, such as Flock!'",
Convoy!"”, Swarm™, and Platoon”. However, different patterns
define the spatiotemporal constraints of accompanying vehicles
differently. Regarding time constraints, Flock and Convoy require
continuous time points for accompanying vehicles; Swarm does not
require time point continuity; Platoon requires that vehicle groups
move together within a specific period. Regarding spatial
constraints, Flock requires vehicles to be in a disk-shaped
geographical area, while other studies relax this constraint to a
density-reachable area. Numerous studies have built upon these
classic patterns, improving them according to different data
characteristics. Li et al.”” proposed a more relaxed mobility model
and used grid partitioning for efficient clustering. Liu et al.!
proposed an optimized mining algorithm based on the BP model,
using a divide-and-conquer approach to optimize mining efficiency
in the spatial dimension. Previous studies often impose strict
temporal and spatial constraints when determining whether
agricultural machinery belongs to the same convoy. Since real-
world harvester convoys tend to be loosely organized, this study
adopts more relaxed constraints in defining convoys. In addition,
agricultural machinery trajectories typically exhibit a “field-road”
binary semantic characteristic, with field trajectories accounting for
a relatively high proportion, while road network features are

indistinct and highly dispersed. Traditional movement pattern
extraction methods tend to generate a large number of highly
similar convoy results under such conditions.

Trajectory clustering methods enable the grouping of similar
trajectories, where the representation of time series and the
calculation of similarity measures are critically important. Some sub-
trajectory clustering algorithms can identify frequently traveled
common paths™?>, but these methods compromise trajectory
integrity and are therefore unsuitable for extracting agricultural
machinery convoys. Park et al.® proposed a new trajectory
spatiotemporal similarity measure based on graph theory to mine
travel patterns. Most of these studies search based on the evolving
trajectory of moving objects, which often incurs high computational
costs and requires efficiency optimization: Zhou et al.* generated
grid indexes, extracted grid sequence features of the ship’s
spatiotemporal trajectory for mining, and improved model
confidence. Dutta et al.”” proposed a new evolutionary clustering
algorithm based on multi-objective criteria, using the search
function of archived multi-objective simulated annealing (AMOSA)
to cluster data sets. However, harvester trajectories vary greatly in
temporal duration and spatial coverage, making similarity
measurement not only difficult to define precisely but also
computationally expensive. Moreover, the resulting clusters may
not accurately align with our definition of convoys.

The main research content of this paper is to first utilize the
DBSCAN clustering algorithm to spatially cluster the trajectory
data at each time interval, and then merge these results to obtain the
spatiotemporal distribution of wheat harvesters across all periods.
Subsequently, based on this, recursive search is performed to
identify harvester cross-regional migration convoys. Finally, the
cross-regional movement patterns of wheat harvesters nationwide
are analyzed to explore the patterns and laws of cross-regional
migration.

2 Materials and methods

2.1 Data acquisition and preprocessing

The research period of this paper covers the large-scale
mechanized harvesting in China’s main wheat-producing areas in
2022, specifically 25 d from May 28 to June 21, based on statistics
from the Agricultural Mechanization Management Department of
the Ministry of Agriculture and Rural Affairs of the People’s
Republic of China™. The research data consist of GNSS trajectory
data of grain combine harvesters during operation. The data come
from the agricultural machinery operation big data system, which
collects real-time position data from agricultural machinery of
various brands such as Lovol, World, Zoomlion, and YTO.
Currently, the platform has connected about 700 000 pieces of
agricultural machinery, each equipped with a Beidou terminal with
a positioning accuracy of about 5 m. The BeiDou/GNSS terminal is
a mobile device mounted on the harvester, which continuously
collects the machine’s location data in real time during operation.
Each piece of agricultural machinery has a unique identification
number, and the parameters of each trajectory data include
timestamp, longitude, latitude coordinates, etc.

In this experiment, the data sampling interval is set to one day,
with each harvester recording the first valid data after 8:00 am
daily. A total of 1 091 392 pieces of valid data were obtained from
80 294 harvesters over the entire time period. The daily number of
harvesters is shown in Figure 1. Harvesters usually upload data only
during the startup period. Due to factors such as weather and long-
distance migration, valid trajectory data are not uploaded daily. To
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Figure 1 Daily number of harvesters

exclude harvesters that have not operated across a large area, a total
of 36 904 harvesters that uploaded data for at least 15 d were
selected, as shown in Figure 2. This accounted for 46% of all
harvesters, with a total of 769 397 pieces, representing 70.5% of all
trajectory data. Data cleaning involved removing abnormal
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harvesters, drift, duplication, and abnormal trajectory points. The
specific geographic distribution of the data used in this study is
shown in Figure 3. The provinces with the largest number of
records include Henan, Jiangsu, Shandong, Anhui, and Hebei. This
dataset effectively covers China’s major wheat-producing regions.
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Figure 2 Frequency distribution of trajectory data
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Figure 3  Spatial distribution of the trajectory data

2.2 Definition of cross-regional convoy

To define the pattern of cross-regional convoys of wheat
harvesters, a series of field investigations targeting real-world
convoys was first conducted, and communication with multiple
harvester operators through questionnaires and interviews was
engaged in. Through this process, two main types of actual convoys
were identified: small-scale convoys primarily composed of
individual operators, and large-scale professional service teams. The
former are typically smaller in size—sometimes consisting of as
few as two machines—and are formed primarily for mutual support
and cost reduction. These convoys tend to be highly flexible, with
their composition and routes frequently changing in response to
factors such as order sources, overall harvesting progress,
operational costs, weather conditions, and agricultural policies. The
latter, although more structured, also adjust routes dynamically
based on service orders and harvesting schedules. Their members
may occasionally split and regroup depending on operational
demands. Figure 4 illustrates a possible movement pattern of such
machinery. O,, O,, and O; represent the trajectories of three
harvesters, with dots indicating their locations at different time
points. While the paths are not completely identical, there are

moments—such as at timestamps #,, t,, and t,—where full or
partial convergence among the machines occurs.

Figure 4 Illustration of cross-regional convoys during

wheat harvesting

This paper examines the primary cross-regional mobility
patterns of harvester through the lens of cross-regional convoys.
The movement pattern of cross-regional harvester convoys is
defined in this study as follows: each cross-regional convoy consists
of at least MinS ize harvesters, and any two harvesters s;, s; (where
i,j < MinSize) must belong to the same cluster for at least MinT
time interval. It should be noted that the definition of “convoy” in
this study does not strictly correspond to the narrow, real-world
convoys formed by harvester operators during cross-regional wheat
harvesting; rather, it aims to capture various migration patterns and
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regularities from a big-data perspective. Specifically, each harvester
is constrained to belong to only one convoy, differing from many
existing studies. This decision is motivated by the inherently loose
structure of harvester convoys and relaxed spatial-distance
constraints; without this restriction, a large number of highly similar
convoy results would be generated. Moreover, to extract the
dominant spatiotemporal patterns of cross-regional harvester
convoys, our method favors convoys that are larger in scale and
longer in duration.
2.3 Overview

Based on data mining principles, the actual cross-regional
migration trajectories of harvesters were analyzed and the concept
of cross-regional harvester convoys was proposed. By identifying
common patterns and laws in the cross-regional wheat harvest
process, the study searches for harvester convoys with high
spatiotemporal similarity in their trajectories and explores the
dominant cross-regional movement patterns during the wheat
harvest. First, the DBSCAN clustering algorithm is employed to
cluster and summarize the spatial data at each time interval,
resulting in a series of clusters that are temporally and spatially
proximate. After the valid data are filtered, the clustering results for
the entire period are recursively searched individually, the
appropriate parameters are selected, and each convoy that meets the
criteria is finally identified.

Figure 5 below presents a schematic diagram of the technical
approach of this study. The first step involves data acquisition and
preprocessing. After obtaining the wheat harvester trajectory data

from the agricultural machinery operation big data system, the data
are screened, cleaned, and sampled to create a wheat harvester
trajectory dataset for a specific interval AT (1 d). The second step
involves clustering. The data are spatially clustered at each time
interval to obtain the spatial clustering results for each time period.
The DBSCAN clustering parameters are Eps = 3 and Minpts = 2.
The harvesters in each cluster have high temporal and spatial
similarities. All results are combined to obtain a clustering dataset
of wheat harvester operation trajectories at specific intervals over
the entire time period. The purpose of the third step is to obtain a
convoy with the largest possible scale and duration under the
premise that each harvester belongs to only one cross-regional
convoy. The fourth step involves recursive searching for cross-
regional convoys, screening harvesters with data upload times
greater than 15 d, and then comparing the clustering results for the
entire time period individually to obtain a convoy with a scale
greater than 20 and a duration greater than 15 d. On this basis, the
mainstream movement patterns of wheat harvesters during cross-
regional migration across the country can be analyzed, and the
patterns and laws of cross-regional migration can be explored.

The relevant parameters involved in the entire process are
presented in Table 1. During the initial stage of our research,
extensive and in-depth communication was conducted with
numerous wheat harvester operators, and on-site field research was
performed to gather information related to cross-regional wheat
harvesting. The values of each parameter were determined based on
the actual conditions.
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Figure 5 Technical approach

Table 1 Description and value of parameters involved in the whole process

Parameter

Module variable

Parameter name

Parameter meaning Current value

. Start and end time
Preprocessing

Tstart Tend Start and end time of original data

Tstart=May 28th
Tend=June 21st

Sampling interval AT Sampling the data at this interval 1d
DBSCAN Neighborhood distance threshold Eps Core object neighborhood radius 3 km
clusteranalysis Number of samples threshold Minpts ~ The minimum number of samples in the field 2
. . Only data greater than this threshold could participate in the determination of the
Cross-regional Valid data number threshold Vmin partner group. 15
:gflrrzlyve Minimum size of partner group MinSize The minimum number of harvesters at each encounter 20
searching Minimum number of encounters MinT In each partner group, the minimum number of encounters between any two harvesters, 15

that is, the minimum number of consistent days when each label is compared

2.4 DBSCAN clustering

There are numerous clustering algorithms, some of which, such
as K-means, hierarchical clustering, and Gaussian Mixture Models
(GMM), require the number of clusters to be specified in advance,
and the optimal parameters must be determined through iterative
comparison. However, due to the daily variations in the scale and

structure of data during wheat harvesting, the best parameters are
not universal. Searching for optimal parameters for each day’s data
would lead to different criteria for evaluating the fleet each day,
making these algorithms unsuitable for the task. Among algorithms
that do not require specifying the number of clusters, Affinity
Propagation automatically determines cluster count and centers via
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message passing, iteratively updating responsibility and availability
values based on the similarity matrix to select exemplars and assign
points®!; Mean Shift clustering identifies local density peaks
through density-gradient ascent, moving points toward higher-
density regions until convergence®™. However, both algorithms
incur high computational complexity and are unsuitable for large-
scale datasets. Two additional high-efficiency clustering
approaches, CDC (Clustering using local Direction Centrality)®!
and HDBSCAN (Hierarchical Density-Based Spatial Clustering of
Applications with Noise)"™, are also tried for further verification.
CDC distinguishes between interior and boundary points by
measuring the uniformity of each point’s K-nearest neighbor (KNN)
distribution. Boundary points can form an enclosing “cage” that
restricts the connection of internal points, thereby effectively
separating weakly connected clusters and mitigating the impact of
density heterogeneity on cluster identification. HDBSCAN, a
density-based algorithm extending DBSCAN, builds a hierarchy to
extract stable clusters and is well-suited to complex data
distributions. These two algorithms mitigate the overlapping-cluster
merging issue in DBSCAN that can produce excessively large
clusters. In the results produced by CDC, the maximum cluster size
remained relatively small. By adjusting its two key parameters—the
number of nearest neighbors K, and Ty (a parameter related to
the distinction between internal and boundary points)—the
maximum cluster size could be reduced to fewer than 1,000. With
HDBSCAN, given our definition of cross-regional convoys, the
permissible parameter range was narrow, resulting in clusters of no
more than 30 members. However, since the objective of this study is
to identify cross-regional convoys, there are practical requirements
regarding cluster size, and most clusters produced by CDC and
HDBSCAN are too small to effectively support convoy detection.
Therefore, after careful consideration, DBSCAN is selected as the
most suitable clustering algorithm.

DBSCAN (Density-Based Spatial Clustering of Applications
with Noise) is a widely used density-based clustering algorithm that
can identify clusters of arbitrary shape. The core idea behind
DBSCAN is that a cluster primarily consists of core points, which
have high point densities (see Definitions 1 and 2). The algorithm
defines a cluster as the largest set of density-connected points. By
identifying high-density regions separated by low-density areas,
DBSCAN separates these regions into distinct clusters. The
DBSCAN algorithm requires two parameters: the neighborhood
radius (Eps), which defines the range of the circular neighborhood
around a given point p, and the minimum number of points
(Minpts) required within the Eps-neighborhood of p, which
corresponds to the number of harvesters.

Definition 1. (Eps-neighborhood of a point): The Eps-
neighborhood of point p, is defined by Ng,(p)=1{gell
dis(p,q) < Eps, where L is a set of points representing the given
location coordinates, and dis(p,q) represents the Euclidean distance
between points p and q.

Definition 2. (Core point): If the number of points in the Eps-
neighborhood of point p is larger than Minpts, it is a core point.

DBSCAN accomplishes the clustering process by extracting
clusters sequentially. Starting from an arbitrary point p, its Eps-
neighborhood is checked. If p is a core point, a new cluster C is
created with the points in Ny, (p). Then, for each point g in C
whose Eps-neighborhood has not yet been checked, if g is a core
point, the points in Ny, (p) which are not already contained in Care
added to the cluster. The expansion of cluster C is repeated until no
new point can be added to the cluster. The clustering process

terminates when no new cluster is created.

Selecting appropriate parameters is essential to obtaining
reasonable clustering results. The Eps value directly affects the
number and size of clusters. If the Eps value is too large, most of
the trajectory points will be clustered together, resulting in fewer
but larger clusters. Conversely, if the Eps value is too small, it will
cause the clusters to split, generate more noise points, and reduce
the number of clusters. The Minpts value is relatively less sensitive
and should be carefully selected based on experience and data
distribution. This study selects parameters based on interviews with
actual cross-regional convoy drivers during the wheat harvest.

2.5 Sorting cluster data

It is conceivable that the same harvester may appear in multiple
convoys of similar size and duration. This paper prioritizes
identifying convoys with larger size and longer duration,
necessitating the sorting of cluster data. First, all data are
summarized into a table, with each row representing a harvester,
each column representing a time interval, and each value indicating
the corresponding cluster label, as listed in Table 2. Additionally,
the numbers in each column are independent, with no special
relationship between identical numbers. For instance, the label
value of the harvester corresponding to DID “LOV230” on June 19
and June 20 is 7. This does not imply that the two clusters are
completely consistent; it only indicates that they are both the
seventh cluster at their respective time intervals.

Table 2 Cluster label data after integration and
sorting (example)

DID 5-28 5-29 6-19 6-20 6-21
LOV227 0 0 . 0 0 0
LOV228 0 0 0 0 0
LOV229 0 0 0 0 0
LOV230 0 0 7 7 0
LOV231 0 0 14 0 0
LOV232 0 0 0 0 0
LOV233 -1 0 15 21 2
LOV234 0 0 2 0 0
LOV235 0 -1 . 2 5 0
LOV236 0 0 36 47 37
LOV237 0 0 29 60 48
LOV238 0 0 67 Na Na
LOV239 0 0 2 Na Na
LOV240 0 0 2 Na Na
LOV241 0 0 . 0 Na Na

Note: —1 represents noise, Na means no data on that day.

The sorting steps are:

(1) For the clustering results of each time interval, mark
outliers with a label of —1, and sort the remaining data in reverse
order based on cluster size.

(2) After summarizing the results of each interval, sort each
harvester in reverse order based on the number of valid data
(uploaded and non-noise).

(3) For harvesters with the same number of valid data, sort
them by cluster size from the previous step, according to the time
interval order.

Finally, all data are summarized into a table, with each row
representing a harvester, each column representing a time interval,
and each value indicating the corresponding cluster label.

2.6 Recursive search for cross-regional convoys
Based on the sorted clusters, the search for cross-regional
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convoys is conducted. The specific process is as follows:

(1) Compare all rows with the first row. If the number of
columns consistent with the first row is greater than MinT, retain
the row:

* If the number of rows that meet the requirements is less than
MinSize, delete the first row and proceed to step 2 with the
remaining rows.

« If the number of rows that meet the requirements is greater
than MinSize, compare these rows with the second row, and so on,
until all rows have been compared. If the number of rows is still
greater than MinSize, a convoy is identified.

(2) Delete the rows included in the convoy, and continue with
step 1 for the remaining rows until the number of remaining rows is
less than MinSize, ending the search.

2.7 Detailed analysis of cross-regional convoys

For the searched convoys, their average trajectories are
calculated, and various mainstream movement patterns in the cross-
regional migration of harvesters across the country can be obtained.
Their starting point, scale, internal segmentation mode, etc. are
analyzed in detail to explore more internal laws of cross-regional
migration.

3 Results and discussion

3.1 Shift of wheat harvest center of gravity

Due to the extensive north-south span of wheat-producing
regions in China and the associated time differences in crop
maturity across these areas, coupled with the uneven distribution of
agricultural machinery, China has developed a unique social service
model for cross-regional mechanized wheat harvesting. Operators
migrate based on wheat maturity, moving to various locations for
harvesting. Figure 6 shows a national wheat harvest center of
gravity shift map based on the analysis of daily national agricultural
machinery operation data. The daily operation center G is
calculated based on the weighted average of the harvester locations
(x;,y;) for the day, according to the harvested area s; (as shown in
Equation (1)). The map indicates that the harvest center of gravity
alternates between east and west and gradually advances northward
(Li et al. 2023). However, this study uses administrative divisions as
the research unit, which limits the accuracy and detail of the results.
Therefore, this paper investigates the laws of cross-regional
migration of harvesters during the wheat harvest based on the
specific trajectories of individual harvesters.

zn:(xia%) X5
G= ':"7'1
nx Z S
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(D
3.2 DBSCAN clustering

Based on communications with drivers in the cross-regional
convoy, it was learned that there are many small “convoys”
consisting of only two harvesters. Therefore, the Minpts parameter
of DBSCAN was set to 2. While the general movement direction of
the convoy is consistent, the daily operation locations are not
necessarily close, often reuniting only during rest periods. Thus, the
Eps value was set to 3 km. Figure 7 shows the number of clusters of
various sizes per day, with most clusters being small.

Although there are fewer large clusters, the harvesters
contained within them account for a significant proportion. This is
due to the nature of the DBSCAN algorithm. In areas with higher
density, very large clusters are formed, while in areas with sparse
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Figure 7 Distribution of daily cluster size: The vertical axis
represents the number of clusters of different sizes per day

density, the clusters obtained are often smaller and most are
considered noise. Figure 8 shows the clustering results for the peak
day during the wheat harvest (53 365 harvesters). A total of 2942
clusters and 5192 noise points (not shown) were obtained. In
Figure 8a, it can be seen that most of the harvesters are concentrated
in the top few clusters. In Figure 8b, each color represents a cluster.
The two largest clusters have 15,126 and 13,804 points,
respectively, accounting for 61.43% of the harvesters on that day.

Applying Swarm pattern mining to the clustering results
yielded 595 367 893 convoy records, a number that far exceeds the
total number of harvesters. This is primarily due to the definition of
the Swarm movement pattern, which allows a single harvester to be
included in multiple convoys. In fact, this characteristic is shared by
many existing movement pattern mining methods. Combined with
our relatively permissive DBSCAN parameter settings, this resulted
in numerous highly similar convoys. For example, the following are
two convoy examples extracted from the same clustering result:

» Convoy A: [69, 28 186, 36270, 43 664, 84 967] active on
timestamps [0, 1, 3,4, 5, 6, 7, 8, 10, 11, 12, 13, 14, 15, 16, 17, 18,
19, 20, 21, 22, 23, 24];

» Convoy B: [69, 28 186, 36 270, 84 967] active on timestamps
[0,1,3,4,5,6,7,8,9,10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21,
22,23,24].

In Convoy B, the inclusion of timestamp 9 led to the exclusion
of harvester 43 664. The timestamp overlap between the two
convoys was 95.65%, and the membership overlap was 80%. Many
similar cases were observed, indicating a high level of redundancy
in the results. Such redundant and highly similar convoy records do
not meaningfully contribute to the identification of dominant cross-
regional migration patterns of wheat harvesters, which is the
primary goal of this study.
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Figure 8 Clustering results for the peak day during the wheat harvest

3.3 Parameter selection

Convoy numbers and sizes are influenced by many parameters.
Table 3 presents results under different parameter combinations.
The parameters were determined as follows. Eps was chosen as
3 km, informed by field investigations into the dispersion of real
harvester convoys. The table also includes a result for Eps = 9.5 km:
such a large Eps causes over-merged clusters, yielding very few
clusters and convoys. Although the overall spatial flow aligns with
reality, too many details are lost. For MinT, as shown in Figure 3, it
is observed that most harvesters operate for over 5 d; and because
cross-regional transfer patterns over the entire peak harvest period
are focused on, setting MinT below 10 d is considered too short.
Setting MinT above 20 d is deemed impractical, as harvester
operations are commonly interrupted by weather or long-distance
transfers during actual harvesting. Results around 15 d show little
variation, so 15 d was selected as a representative middle value. The
selection strategy for the MinSize parameter is guided by similar
principles, as small variations in this parameter are likewise found
to have minimal impact on the results.

Table 3 Results obtained under different parameter settings

Eps Minpts MinSize MinT Number of Convoy Number of Harvester
9.5 2 20 15 27 16 989
3 2 18 13 185 17 666
3 2 18 14 159 14 433
3 2 18 15 152 11877
3 2 18 16 131 9738
3 2 18 17 129 7992
3 2 19 13 170 17 465
3 2 19 14 151 14 296
3 2 19 15 143 11768
3 2 19 16 127 9708
3 2 20 13 162 17316
3 2 20 14 145 14210
3 2 20 15 131 11633
3 2 20 16 120 9614
3 2 20 17 105 7616
3 2 21 13 153 17 166
3 2 21 14 138 14109
3 2 21 15 131 11671
3 2 21 16 117 11674
3 2 21 17 104 7608
3 2 22 13 153 17 166
3 2 22 14 130 13977
3 2 22 15 126 11 608
3 2 22 16 113 9453
3 2 22 17 96 7534
2 2 10 15 111 1630
2 2 20 15 29 847

3.4 Recursive searching cross-regional convoys

To ensure the size and duration of the convoy, and considering
the actual wheat maturity period and the basic requirements for cross-
regional migration, Eps = 3, Vmin = 15, MinSize = 20, and MinT =
15 are used. This resulted in a total of 131 cross-regional convoys,
comprising 11 633 harvesters. Among these, two large convoys had
more than 1000 harvesters, while most convoys had fewer than
100 harvesters, as shown in Figure 9. The visualization results are
shown in Figure 10. Each colored polyline in the figure represents
the average trajectory of a convoy. The width of the polyline
corresponds to the number of harvesters. The green triangle marks
the starting point, and the red dot marks the end point. The results
reveal three primary modes of harvester cross-regional migration,
all originating from southern Henan. The largest group operates in
the main wheat-producing area, moving northeastward along the
northern Henan-Hebei central route, which is also the region with
the highest wheat yield and greatest harvesting pressure. The second
group follows the Jiangsu-Shandong eastern route, initially moving
east and then turning north. The third group moves northwest along
the Shaanxi-Gansu western route. Additionally, there are smaller
convoys operating across other wheat-producing areas. The overall
spatial flow direction and scale align with the actual conditions of
cross-regional mechanized wheat harvesting in China.

2 53
Z 50F
3
.5 40
gcib 33
o 30+ 27
g
S 20+
=}
g 8
S 10 +
E] 2
2 0 s ' ' s [
Q Q Q Q Q
> )2 S S \
Q' Q N N S
Q /
v ) B) \QQ 7

Number of harvesters in corss regional convoy

Figure 9 Distribution of cross-regional convoy sizes

 Origin
[ - Destination

114 116 118
Lon/E

106 108 110 112 120 122

Figure 10  Average trajectory of cross-regional convoys



228  December, 2025 Int J Agric & Biol Eng

Open Access at https://www.ijabe.org

Vol. 18 No. 6

The largest cross-regional convoy contains 2878 harvesters,
with an average trajectory starting from Pingyu County, Zhumadian
City, Henan Province, moving to Zaogiang County, Hengshui City,
Hebei Province, and then turning south to Xiajin County, Dezhou
City, Shandong Province. To observe the movement patterns within
the convoy more deeply, the specific trajectories of each harvester
are presented individually, as shown in Figure 11. The trajectories
mainly cover most of Henan and Hebei provinces, as well as the
western region of Shandong. It can be seen that the trajectories of
most harvesters follow the average trajectory trend, carrying out
cross-regional migration from south to north in the main wheat-
producing areas. Compared with previous studies, this result is
based on actual trajectories, is not restricted by administrative
division frameworks, is more specific and intuitive, and conforms to
actual crop maturity laws and cross-regional migration modes.
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Figure 11 Detailed trajectory of harvesters

3.5 Limitations

Due to the characteristics of DBSCAN algorithm, DBSCAN
uses fixed parameters to identify clusters and requires data density
decrease to detect cluster boundaries. If multiple clusters overlap
without data density decrease, they may be grouped into a single
cluster. Therefore, large clusters will appear in high-density regions,
and the distribution of all cluster sizes will show a long tail.

The Ht-index quantifies the fractal or scaling structure of
geographic features™. The data is divided according to the average:
if the tail is larger than the head, the head is further divided. A
geographic feature has an Ht-index of /4 if the pattern of far more
small things than large ones recurs (4 — 1) times at different scales.
If the Ht-index is 4, it indicates three instances where the number of
small clusters is larger than the number of large clusters. As shown
in Figure 8a, the head and tail of the day’s clustering results were
highly unbalanced, with the tail being much longer than the head,
demonstrating clear characteristics of a long-tail distribution. The
data volume of the head after the first division was only 5.11%,
while the data volume of the head after the final division was
2 units, accounting for just 0.11% of the total. Figure 12 illustrates
the Ht-index of daily clustering results and the proportion of head
data volume after the first division. This indicates that the
distribution of daily cluster sizes resembles that of the observed day,
exhibiting long-tail distribution characteristics. Consequently, the

search convoys also exhibit similar characteristics, ultimately
resulting in two convoys being significantly larger than the others.
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Figure 12 Daily Ht-index

In future work, improvements to clustering algorithms are
planned to be explored. For example, results from DBSCAN under
multiple parameter settings may be fused, or multi-level clustering
may be performed to further subdivide large clusters. Additionally,
how other advanced clustering algorithms can be adapted and
improved for applications in this type of research will be
investigated.

4 Conclusions

In response to regular differences in crop maturity across
regions and the imbalance in agricultural machinery ownership,
China has developed a socialized service model for cross-regional
agricultural machinery operations. The agricultural machinery
operation big data system based on Beidou offers a substantial
amount of high-quality trajectory positioning data of agricultural
machinery. This data enables a comprehensive quantitative analysis
of harvester movement patterns. Research has yielded significant
findings on the cross-regional migration patterns of agricultural
machinery during wheat harvesting, including the development of
shift maps for the center of gravity. Based on previous studies of
cross-regional agricultural machinery laws, this study addresses the
characteristics of harvester trajectory data dispersion and the high
proportion of field trajectories, along with field survey results of the
cross-regional convoy migration mode. Starting from the trajectory
of each harvester, this study proposes a trajectory mining method
using a recursive search-based DBSCAN algorithm. After sampling
and slicing the wheat harvester trajectory data during the peak
harvest period, spatial clustering is performed separately, followed
by a recursive search to identify multiple cross-regional migration
convoys. From 1091392 pieces of location data of 80294
harvesters, 131 convoys with a scale greater than 20 and a duration
greater than 15 d were searched, comprising a total of 11 633
harvesters. Except for the two largest convoys of more than 1000
harvesters, most of the convoy sizes are less than 100 harvesters.
The average trajectory of the harvester within each convoy is
calculated to determine its cross-regional movement paths. The
results identify three primary modes of cross- regional migration:
western, middle, and eastern routes. The middle route, the largest in
scale, begins in southern Henan and moves northeast to Hebei,
covering the main wheat-producing area. The eastern route
generally starts eastward and then moves north, encompassing
provinces such as Anhui, Jiangsu, and Shandong. The western route
moves northwest towards Shaanxi and Gansu. Additionally, smaller
convoys operate across other wheat-producing areas. The overall
spatial flow direction and scale align with the observed cross-
regional migration pattern during the wheat harvest. This research
can provide references for operators, agricultural machinery
and other

manufacturers, relevant government departments,


https://www.ijabe.org

December, 2025 Zhai W X, et al.

Wheat harvester convoys spatiotemporal patterns mining using DBSCAN algorithm

Vol. 18 No. 6 229

stakeholders to optimize cross-regional migration routes, configure
Spare parts
agricultural machinery, and implement location- and community-
based This approach
comprehensive information utilization and ultimately enhances the

and maintenance resources, rationally allocate

services. improves the efficiency of
overall efficiency of cross-regional operations, ensuring bumper
harvests and national food security.

While this research has made important contributions, several
limitations remain. Different parameter combinations can lead to
varying results, and different crops, time periods, study regions, or
movement patterns may impose different requirements on the
This
complexity in parameter selection. Future work could explore

clustering outcomes. introduces greater flexibility and

improvements in parameter selection, such as the fusion of multi-
parameter results, the development of dynamic parameter models,
or the adaptation and enhancement of other advanced clustering
algorithms for similar research applications. Moreover, this research
has the potential for application in other domains. For example,
identifying wheat harvester convoys with similar movement
patterns could help optimize machinery scheduling and supply-
demand matching, thereby improving the efficiency of cross-
regional operations. It could also support the prediction of
machinery maintenance and service needs to optimize resource
allocation, as well as the analysis of cross-regional operation costs
and their economic benefits to farmers.
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