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Abstract: Crop  yield  prediction  helps  to  enhance  the  stability  of  agricultural  product  supply  and  promote  sustainable
agricultural  development,  both  of  which are  crucial  for  food production and security.  To develop simple  yet  highly  accurate
crop yield prediction models, this study proposed a spring- and summer-maize yield prediction model based on the deep hybrid
kernel extreme learning machine (DHKELM) algorithm. In this study, four tree-based feature importance analysis algorithms,
including  classification  and  regression  tree,  gradient  boosting  decision  tree,  random  forest,  and  extreme  gradient  boosting
algorithms, were utilized to analyze the importance of the factors affecting the yield of spring and summer maize. Then, based
on the analysis of the four algorithms, different combinations of factors were established to obtain the optimal combination of
features.  Moreover,  to  improve the prediction accuracy of  the  machine learning model,  this  study utilized three optimization
algorithms,  including  the  bald  eagle  search  algorithm,  chaos  game  optimization  (CGO)  algorithm,  and  carnivorous  plant
algorithm, to optimize the hyperparameters in the DHKELM algorithm. The results of the study showed that planting density
and  plant  height  were  important  factors  affecting  maize  yield,  and  net  solar  radiation  (Rn)  received  during  the  reproductive
period exhibited  the  highest  relative  importance.  Appropriate  feature  combinations  can effectively  improve model  prediction
accuracy.  The  optimal  feature  combination  for  spring  maize  included  planting  density,  plant  height, Rn,  mean  temperature
(Tmean),  minimum  temperature  (Tmin),  and  cumulative  temperature,  and  the  optimal  feature  combination  for  summer  maize
included  Rn,  plant  height,  planting  density,  Tmin,  and  Tmean.  Among  the  three  optimization  algorithms,  the  CGO  algorithm
exhibited  the  best  optimization  effect  and  could  significantly  improve  the  prediction  accuracy  of  the  DHKELM  algorithm.
When  the  optimal  combination  of  features  was  used  as  input,  the  CGO–DHKELM  model  used  for  maize  yield  prediction
provided  the  following  values:  RMSE=1.488  t/hm2,  R2=0.862,  MAE=1.051  t/hm2,  and  NSE=0.852  for  spring  maize;
RMSE=1.498 t/hm2, R2=0.892, MAE=1.055 t/hm2, and NSE=0.891 for summer maize. Thus, the findings of the study provide a
reference for high-precision prediction of spring and summer maize yields in China.
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 1    Introduction
Crop  yield  prediction,  which  provides  information  on  crop

growth  to  farmers  and  related  enterprises,  as  well  as  the
government, is beneficial for the rational formulation of agricultural
production  policies  as  it  can  guarantee  food  safety  and  reduce
economic losses caused by production risks[1]. Furthermore, accurate

and  efficient  crop  yield  prediction  is  the  key  to  sustainable  food
production and guaranteeing national food security and can provide
a reliable reference for agricultural policy adjustment and scientific
planning  of  agricultural  production  decisions[2].  Therefore,  highly
operational and accurate crop yield prediction models are necessary
for the development of sustainable agriculture in China.

Crop  yield  prediction  is  a  multivariate,  nonlinear  process,  as
crop  yield  is  affected  by  a  variety  of  factors  such  as  climatic
conditions,  soil  conditions,  and  planting  management  measures[3].
Traditional  crop  yield  prediction  builds  on  farmers’  labor  and
expertise,  a  method  that  is  inefficient  and  destructive[4].  In  recent
years, with the improvement in the efficiency of data extraction and
the  increase  in  the  amount  of  available  data,  previously  developed
linear analysis methods have also failed to meet the requirements of
complex  yield  prediction[5].  To  address  this  issue,  researchers  have
developed  models  for  simulating  crop  growth  processes  based  on
their  physiological  characteristics  and immediate environment,  and
these  models  have  been  widely  used  for  crop  yield  prediction[6-8].
These  crop  growth  models  accurately  describe  crop  growth  and
development  in  relation  to  the  environment  and  management
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practices,  but  they  are  data-driven,  with  uncertainty  in  the  input
parameters, and need to be simulated under specific conditions[9].

In  this  regard,  machine  learning,  a  powerful  data  analysis
technique,  has  exhibited  better  performance  in  dealing  with  the
nonlinear  relationship  between  crop  yield  and  various  independent
variables[10]. Kheir et al.[11] stated that machine learning is superior to
crop  growth  models  as  it  adapts  to  diverse  data  and  features,  can
accurately  capture  complex  relationships  in  the  data,  and  provides
more accurate predictions. Neural network—a powerful tool used to
solve complex problems in the field of machine learning—can learn
relationship  mapping  from input  to  output  by  adjusting  weights  in
the  network  and  has  strong  adaptability  and  modeling  ability  in
dealing  with  complex  nonlinear  problems[12].  Extreme  learning
machine  (ELM)  is  a  novel  single  hidden-layer  feedforward  neural
network algorithm proposed by Huang et al.[13].  ELM combines the
advantages  of  machine  learning  and  neural  networks,  with  its
primary  feature  being  the  fact  that  its  input  weights  are  randomly
selected, which gives ELM algorithms improved training speed and
generalization  ability[13]  compared  to  back  propagation  (BP)  neural
networks,  support  vector  machines  (SVM),  and  other  state-of-the-
art algorithms[14,15].

To  further  improve  the  performance  of  the  ELM  model,
researchers  have  combined  the  ELM algorithm with  deep  learning
ideas  and  kernel  functions  to  obtain  two  models  with  better
performance,  i.e.,  deep  extreme  learning  machine  (DELM)  and
kernel  extreme  learning  machine  (KELM).  The  DELM  algorithm
uses  ELM–Autoencoder  (ELM-AE)  as  the  basic  learning  unit,  to
train  the  data  layer  by  layer,  so  that  the  model  exhibits  stronger
fitting  ability  and  adaptability,  and  also  prevents  model
overfitting[16]. In contrast, KELM is an ELM algorithm based on the
kernel  function  that  uses  kernel  mapping  instead  of  random
mapping, which improves the learning speed, generalization ability,
and  prediction  performance  of  the  ELM  model[17].  The  choice  of
kernel  function  plays  a  crucial  role  in  KELM,  which  is  directly
related to the performance of the model[18]. However, a single kernel
function  may  face  difficulty  adapting  to  complex  changes  in  the
data.  To  overcome  this  limitation,  researchers  have  proposed  the
hybrid  kernel  extreme learning machine  (HKELM),  which aims to
improve  the  prediction  accuracy  and  generalization  ability  of  the
model  by  combining  multiple  kernel  functions.  The  hybrid  kernel
function  of  HKELM enables  the  model  to  better  capture  complex
fluctuations in the data, thus demonstrating stronger learning ability
and better  generalization performance in  prediction tasks[19].  In  this
study,  the  DELM  and  HKELM  algorithms  were  combined  to
constitute  the  deep  hybrid  kernel  extreme  learning  machine
(DHKELM)  algorithm  for  maize  yield  prediction,  which  is  an
HKELM algorithm with ELM–AE as the basic training unit that can
further  improve  the  performance  of  the  model  while  retaining  the
advantages of the DELM and HKELM algorithms.

The performance of a machine learning model heavily depends
on hyperparameter settings, and manual parameter tuning is a time-
consuming and laborious process. To address this issue, researchers
have  combined  machine  learning  algorithms  with  optimization
algorithms,  which  systematically  determine  the  optimal  parameter
configuration  to  minimize  the  loss  function  and  achieve  more
accurate  predictions[20,21].  The  bald  eagle  search  (BES)  algorithm
simulates  the  hunting  strategy  of  bald  eagles  when  searching  for
prey,  which  is  characterized  by  high  search  efficiency,  finding  the
optimal  solution  in  a  short  time,  and  is  suitable  for  dealing  with  a
variety of complex optimization problems[22]. Huang[23] used the BES
algorithm to optimize the hyperparameters in the SVM model,  and

the  results  verified  that  the  optimized  model  exhibited  good
prediction  performance  and  generalization  ability.  The  theme  of
another algorithm—chaos game optimization (CGO) algorithm—is
based  on  a  few  principles  of  the  chaos  theory,  providing  the
algorithm  with  high  convergence  speed  and  the  ability  to  not  get
easily  affected  by  the  local  optimal  solution  and  quickly  obtain  a
better  solution,  making  it  an  optimization  algorithm  with  strong
search ability and adaptability[24]. He et al.[25] combined the CGO and
multi-output  least  squares  support  vector  regression  machine
(MLSSVR)  algorithm  and  found  that  the  CGO–MLSSVR
prediction  model  was  able  to  make effective  predictions  with  high
accuracy. The carnivorous plant algorithm (CPA) is a meta-heuristic
algorithm inspired by the predation process of carnivorous plants on
their  prey,  which avoids  falling into  local  optimal  solutions  due to
the diversity of their population and exhibits a greater advantage in
solving  global  optimization  problems[26].  Wang  et  al.[27]  used  the
CPA algorithm to optimize the BP neural network and showed that
CPA  effectively  reduced  the  prediction  error  of  the  BP  neural
network.  Therefore,  in  this  study,  BES,  CGO,  and  CPA  were
selected  to  optimize  the  hyperparameters  in  the  DHKELM  model
and construct a high-precision maize yield prediction model.

In  constructing  a  high-precision  yield  prediction  model,  the
analysis of input factor importance can reduce data dimensions and
improve  model  estimation  efficiency,  which  can  lead  to  the
optimization  of  model  accuracy[28,29].  Tree-based  models  can  select
the  most  influential  features  based  on  the  intrinsic  structure  of  the
data,  can  accurately  capture  complex  relationships,  and  are  less
prone  to  overfitting[30].  Common  tree-based  models  include
classification  and  regression  tree  (CART),  gradient  boosting
decision  tree  (GBDT),  random  forest  (RF),  and  extreme  gradient
boosting  (XGBoost)  models.  Peng  et  al.[31]  used  Pearson’s
correlation  coefficient,  least  absolute  shrinkage  and  selection
operator,  and  GBDT  algorithms  to  determine  the  characteristic
variables  to  estimate  soil  nutrient  content,  and  the  results  of  the
study  verified  that  the  selection  of  the  characteristic  variables  was
the  key  to  estimating  the  soil  nutrient  content  with  high  accuracy,
and  the  GBDT  algorithm  provided  accurate  information  about  the
characteristic  variables.  Mohammadi  and  Mehdizadeh[32]  utilized
relief,  RF,  principal  component  analysis,  and Pearson’s  correlation
methods  to  preprocess  data  and  construct  a  support  vector
regression-based  daily  reference  evapotranspiration  prediction
model, and showed that input variables identified by the RF method
produced  more  accurate  results.  Zheng  et  al.[33]  analyzed  the
influence  coefficients  of  soil  parameters  and  other  factors  on
soybean  yield  using  a  general  linear  model  and  CART  algorithm
and  demonstrated  that  the  prediction  results  of  the  CART  model
exhibited  low error  rates.  Gill  et  al.[34]  suggested  that  the  XGBoost
model  exhibited  superior  predictive  performance  and  provided  a
highly  accurate  ranking  of  factor  importance.  Thus,  in  this  study,
CART,  GBDT,  RF,  and  XGBoost  algorithms  were  selected  to
analyze  the  importance  of  the  characteristic  factors  affecting  the
yield of spring and summer maize. The complementary advantages
of  multiple  models  can  be  used  to  obtain  more  complete  and
accurate  results  of  factor  importance  analysis  and  determine  the
optimal input feature combinations.

To obtain an operable maize-yield prediction model, this study
first  utilized  the  CART,  GBDT,  RF,  and  XGBoost  algorithms  to
rank the importance of multiple factors affecting the yield of spring
and  summer  maize,  and  then  combined  them  into  different
combinations  of  input  features  based  on  the  results  of  the
importance ranking, for model construction. In the process of model
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construction,  this  study  used  the  DHKELM  model  as  the  base
model,  and applied three optimization algorithms (BES, CGO, and
CPA) to tune the hyperparameters of the model.

The  purpose  of  this  study  was  as  follows:  1)  To  rank  the
importance  of  factors  affecting  the  yield  of  spring  and  summer
maize  using  four  tree-based  factor  analysis  methods  (CART,
GBDT, RF, and XGBoost) and analyze the results. 2) To determine
the  optimal  combination  of  input  factors  affecting  the  yield  of
spring and summer maize according to the results of the importance
analysis. 3) To construct a hybrid model using BES, CGO, and CPA
optimization algorithms to adjust and optimize the parameters in the
DHKELM  model,  and  to  analyze  the  comprehensive  prediction
performance of the independent and the hybrid models.

 2    Materials and methods
 2.1    Study area

Data for this study were obtained from the National Ecological
Science  Data  Center,  China,  and  included  meteorological,
phenological,  and  yield  data  of  spring  and  summer  maize.  The
different  types  of  sample  plots  set  up  within  each  site  exhibited
different  soil  and  crop  management  conditions,  which  led  to
differences  in  phenotypic  characteristics  of  the  crop.  The  sites
exhibited  different  meteorological  conditions  owing  to  their
geographic  locations,  and  these  differences  resulted  in  a  greater
diversity  in  maize  yield  data.  The  data  used  in  this  study  included
planting density and plant height, as well as net solar radiation (Rn),
mean  temperature  (Tmean),  maximum temperature  (Tmax),  minimum
temperature  (Tmin),  cumulative  temperature  (Ta),  relative  humidity
(RH),  wind  speed  (U),  and  precipitation  (Pre)  during  the
reproductive period.

In  the  modeling  process,  the  spring  maize  dataset  used  in  this
study  contained  865  samples,  and  the  summer  maize  dataset
contained  921  samples.  Among  them,  80%  of  the  input  data  was
used as the training set, and 20% of the input data was used as the
test  set.  The  coordinates  of  the  spring  and  summer  maize  study
sites,  along  with  the  annual  means  of  the  meteorological  data,  are
listed in Table 1.
  

Table 1    Geographic location and annual mean values of
meteorological data of the spring and summer maize study sites

Station Longitude
(E)/(°)

Latitude
(N)/(°)

Elevation/
m

Rn/
MJ∙m–2

Tmean/
°C RH

U/
m∙s–1

Pre/
mm

Ansai 109.19 36.53 1068.3 1320.85 19.18 64.53 0.87 419.56

Changwu 107.48 35.12 1206.5 1383.21 19.02 70.19 1.25 363.94

Fengqiu 114.25 35.02 69.6 1043.85 24.94 77.28 1.10 306.77

Hailun 126.58 47.27 239.2 1329.36 17.88 69.25 2.34 422.02

Huanjiang 108.32 24.73 208.5 919.46 22.57 79.94 0.66 482.64

Linze 100.10 39.09 1453.7 1229.65 19.97 40.79 1.87 102.37

Luancheng 114.38 37.53 52.9 1068.79 24.24 71.44 1.46 329.25

Naiman 120.39 42.51 362.9 1494.53 20.26 43.78 1.72 249.03

Shapotou 104.95 37.45 1225.7 1261.60 20.87 45.06 2.38 150.85

Yanting 105.45 31.27 421.3 935.93 25.21 78.61 0.50 502.77
Yucheng 116.34 36.56 23.6 1114.19 24.89 76.15 1.40 300.31

 

 2.2    Tree-based algorithms for factor importance analysis
 2.2.1    Classification and regression tree

CART is an algorithm based on decision trees, where variance
minimization methods are used to obtain increasingly homogeneous
subsets by recursively partitioning the dataset  into subsets[33,35].  The
CART  algorithm  needs  to  consider  the  degree  of  contribution  of
each  feature  in  the  construction  of  the  decision  tree  when

performing  the  importance  analysis.  The  algorithm  usually  uses
node purity to measure the relative importance of each feature. The
information  gain  of  each  feature  is  an  indicator  of  the  degree  of
node purity improvement.
 2.2.2    Random forest

RF is  a  nonparametric  estimation  algorithm based on decision
tree  integration,  which  provides  more  accurate  and  comprehensive
importance assessment results.  The Gini index is the primary basis
used  for  measuring  the  importance  of  each  feature  in  random
forests.  The  relative  importance  of  features  is  assessed  by
comparing  the  reduction  in  the  average  Gini  index  for  different
features[30].
 2.2.3    Gradient boosting decision tree

GBDT  is  an  iterative  decision  tree  algorithm  that  consists  of
multiple  decision  tree  models[36].  When  the  frequency  of
segmentation  of  a  feature  in  constructing  decision  tree  models  is
high, the information gain is greater and the feature exhibits higher
importance. The GBDT model takes the average of the importance
of the features in each tree as the final importance result.
 2.2.4    Extreme gradient boosting

XGBoost  is  an  efficient  gradient-boosting  algorithm  that
focuses  on  optimizing  the  objective  function  and  evaluating  the
importance of each feature by calculating its gain in a decision tree
split[37]. If a feature is used multiple times for key decision points, its
importance  score  increases  accordingly.  The  XGBoost  algorithm
takes  the  weighted  average  of  the  results  of  the  feature  across  all
decision trees as its result.
 2.3    Machine learning algorithms

The  DELM  algorithm  uses  ELM–AE  as  the  basic  unit  and
combines  the  idea  of  deep  learning  to  form  a  deep  network
structure,  which  can  improve  the  learning  ability  and  prediction
performance  of  the  model.  ELM–AE  can  orthogonalize  the
randomly generated weights and biases and map the input data as it
achieves feature extraction for different requirements,  and can also
effectively reduce the noise in the data to enhance the generalization
ability  of  the  model.  The  DELM  uses  ELM–AE  to  initialize  the
weights of the hidden layer, and the layer-by-layer training can get
more  comprehensive  feature  information.  However,  unlike
traditional deep learning models, the DELM model does not need to
fine-tune the parameters and exhibits an increased training speed.

KELM  is  a  neural  network  algorithm  obtained  by  combining
the kernel function and ELM. The kernel function exhibits excellent
nonlinear mapping ability, which enhances the divisibility of data in
high-dimensional  space  and  effectively  improves  the  learning
ability  and  generalization  ability  of  ELM.  The  KELM  algorithm
utilizes kernel mapping instead of random mapping in ELM to map
low-dimensional  space  data  to  high-dimensional  space  through
kernel  function,  which  further  improves  the  generalization  ability
and  prediction  performance  while  retaining  the  advantages  of
ELM[38,39].

The  predictive  performance  of  the  KELM  model  is  greatly
affected by the type of kernel function, and a single kernel function
is relatively weak for large-scale and multi-featured datasets. Thus,
to  further  improve  the  performance  of  the  KELM model,  scholars
proposed  the  HKELM  algorithm,  which  uses  a  hybrid  kernel
function obtained from the combination of multiple kernel functions
instead  of  a  single  kernel  function  of  the  KELM,  effectively
improving  the  overall  performance  of  the  model.  Commonly  used
kernel  functions  include  radial  basis  function  kernel  function,
polynomial  kernel  function,  and  wavelet  kernel  function.  The
polynomial  kernel  function  shows  good  global  feature  capture
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ability  and  strong  generalization  ability[40],  whereas  the  wavelet
kernel function is good at local feature capture. The combination of
these  two  kernel  functions  is  used  to  obtain  more  comprehensive
data information and improve the learning ability of the model.

The  DHKELM  algorithm  used  in  this  study  is  the  HKELM

algorithm  with  ELM–AE  as  the  basic  unit,  which  has  the  feature
extraction  capability  of  deep  learning  as  well  as  the  powerful
mapping capability of kernel  functions,  enabling the model to deal
with  complex  nonlinear  problems  more  efficiently[41-43].  The
structure of the DHKELM model is shown in Figure 1.
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 2.4    Meta-heuristic optimization algorithms
 2.4.1    Bald eagle search algorithm

BES  algorithm,  a  meta-heuristic  optimization  algorithm  with
strong search capability,  simulates  the  hunting strategy of  the  bald
eagle  in  searching  for  prey  and  searches  for  the  optimal  solution
through iterative search in the hunting process[22].  The optimization
search  of  the  BES  algorithm  is  divided  into  three  phases,  namely
selection, searching, and swooping. In the selection phase, the bald
eagle  selects  a  search  space  based  on  individual  fitness  value  to
facilitate the search for prey. The bald eagle then searches for prey
within the selected search space and flies in a spiral form to speed
up the search process and determine the optimal swooping location.
In  the  swooping  phase,  the  bald  eagle  flies  from  the  optimal
location  in  the  search  space  to  the  target  in  a  fast  swoop,  and  the
other individuals also move toward the optimal location and attack
the prey.
 2.4.2    Chaos game optimization algorithm

CGO  algorithm  is  a  meta-heuristic  optimization  algorithm
based  on  the  principles  of  the  chaos  theory[24].  This  optimization
method approaches the problem by considering candidate solutions
that  are  also  embodiments  of  the  eligible  seeds  in  the  Sierpinski
triangle. In the mathematical model of CGO, the Sierpinski triangle
is  the  search  space  for  candidate  solutions.  During  the  iterative
process,  to  create  a  new  eligible  seed  in  the  search  space,  the
eligible  seed  in  the  search  space  constructs  temporary  triangles
based on three parameters, namely, the position of the ith candidate
solution  as  the  selected  seed,  the  position  of  the  mean  group,  and
the  position  of  the  so-far  found  global  best,  after  which  a  new
eligible seed is created.
 2.4.3    Carnivorous plant algorithm

CPA simulates the process whereby carnivorous plants adapt to
survive  in  harsh  conditions[26].  First,  the  carnivorous  plant
population is initialized, and the individuals are sorted according to
their fitness values in ascending order. Then, the individuals in the
population  are  classified  into  carnivorous  plants  and  prey,  and
grouped.  During  reproduction,  only  the  optimal  group  in  the

population  is  allowed  to  reproduce,  and  the  newly  generated
populations  of  carnivorous  plants  and  prey  will  combine  with  the
previous populations to form new populations, thereby repeating the
process of categorical grouping, growth, and reproduction until the
termination  conditions  are  met.  The  principles  of  the  three
optimization algorithms are shown in Figure 2.

The  implementation  of  the  algorithm  in  this  study  was
performed  using  MATLAB,  while  the  graphics  were  drawn  using
Origin.
 2.5    Model evaluation indices

In  this  study,  root  mean  square  error  (RMSE),  coefficient  of
determination (R2), mean absolute error (MAE), and Nash–Sutcliffe
efficiency  (NSE)  were  used  to  assess  the  accuracy  of  model
prediction results, and global evaluation index (GPI) was used for a
comprehensive assessment of model performance. The formulas for
the indicators are shown below:
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GPI =
4∑

j=1

α j

(
g j − y j

)
(5)

Ti Pi

T̄i

P̄i

g j y j

a j

where,   denotes the true value of yield;   denotes the predicted
value of yield;   denotes the average of the true value of yield; and
 denotes the average of the predicted value of yield. Additionally,
 is the normalized value of RMSE; R2, MAE, and NSE, and   is

the median of each parameter.   was −1 for RMSE and MAE, and
1 for all other cases.

The  larger  the R2  and  NSE values,  the  smaller  the  RMSE and
MAE  values,  and  the  better  the  predictive  performance  of  the
model.  Furthermore,  models  with  higher  GPI  values  or  higher
rankings exhibited better overall performance.

 3    Results and discussion
 3.1    Importance analysis of factors affecting the yield of spring
and summer maize

In  this  study,  four  tree-based  feature  analysis  models,  i.e.,
CART, GBDT, RF, and XGBoost algorithms, were used to estimate
the  relative  importance  of  the  factors  affecting  the  yield  of  spring
and  summer  maize.  This  study  used  the  median  percentage  of  the
analysis  results  for  each  factor  as  the  final  relative  importance
coefficient.  The  median  better  reflects  the  central  tendency  of  the
data and avoids the influence of extreme values on the results. The
specific  results  are  shown  in  Figure  3.  Regarding  the  importance
analysis  of  factors  affecting  the  yield  of  spring  maize,  planting
density  was  the  most  important  influencing  factor,  with  a  relative
importance coefficient of 36.276%, followed by plant height and Rn,
with  relative  importance  coefficients  of  19.469%  and  16.486%,
respectively.  Tmean,  Tmin,  and  Ta  were  ranked  fourth  to  sixth  with

relative  importance  coefficients  of  7.259%,  5.913%,  and  4.882%,
respectively.  These were followed by RH and U,  both with relative
importance  coefficients  of  3.107%,  and  Pre  and Tmax  in  that  order
(with  relative  importance  coefficients  of  1.874%  and  1.627%,
respectively). However, the importance analysis of factors affecting
the yield of summer maize indicated that Rn was the most important
factor, with a relative importance coefficient of 23.612%, and plant
height (23.167%) exhibited a comparable relative importance to Rn.
Planting density ranked third with a relative importance coefficient
of  16.040%,  followed  by  Tmin  and  Tmean  with  relative  importance
coefficients  of  11.004% and 10.248%, respectively. Ta, U,  and Pre
were  sixth  to  eighth  with  relative  importance  coefficients  of
6.208%,  4.743%,  and  2.050%,  respectively.  Additionally,  RH  and
Tmax exhibited the lowest relative importance coefficients of 1.523%
and 1.405%, respectively.

These  results  suggested  differences  in  the  results  of  factor
importance analysis between spring and summer maize, which may
be related to the immediate environment of the crop. Spring maize
may  be  more  dependent  on  early  planting  density  and  growth
conditions,  whereas  summer  maize  may  be  more  influenced  by
solar  radiation.  Planting  density  and  plant  height  are  important
factors affecting the yield of both spring and summer maize and are
key  parameters  for  yield  prediction[44,45].  Proper  plant  height  and
planting density help improve photosynthetic efficiency in maize so
that  maize  plants  can  grow  and  develop  better,  thereby  increasing
maize yield. Solar radiation is a key energy source for photosynthesis
in  crops[46,47].  The  results  of  factor  analysis  for  both  spring  and
summer maize demonstrated that the most important meteorological
factor was Rn,  which is the difference between the amount of solar
radiation  reaching  the  ground  and  the  amount  of  radiation  emitted
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from the ground. This suggests that Rn was a crucial determinant of
crop growth and yield and was one of the important parameters for
crop yield prediction.

Nonetheless, Rn exhibited different  importance coefficients for
spring  and  summer  maize,  probably  because  of  the  differences  in
the fertility periods. Spring maize is mostly productive in the spring
when  solar  radiation  is  relatively  weak,  but  as  the  season  changes
and  the  temperature  gradually  rises,  the  growth  of  the  crop
gradually  accelerates.  Spring  maize  may  require  additional
management measures to promote photosynthesis in the early stages
to  ensure  adequate  growth  even  under  reduced  solar  radiation

conditions.  In  contrast,  the  effect  of  Rn  on  the  yield  of  summer
maize was particularly significant  during the fertility  period owing
to  the  higher  intensity  of  solar  radiation.  Adequate  solar  radiation
can  promote  photosynthesis  and  increase  biomass  accumulation  in
the crop, thus improving yield. Therefore, monitoring and utilizing
solar radiation for the cultivation and management of summer maize
is  of  great  significance  in  improving  yield[48].  Moreover,  Tmean

[49],
Tmin

[40],  and  Ta
[50]  during  the  fertility  period  were  important

meteorological factors affecting maize yield. In addition, RH, Pre, U,
and  Tmax,  although  less  important  compared  to  other  factors,
contributed adequately to maize yield.
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Figure 3    Box line plots of the results of the relative importance analysis of factors affecting the yield of spring and summer maize
 

To  select  appropriate  combinations  of  input  factors  and
construct  yield  prediction  models  with  high  operability  for  spring
and summer maize,  this study combined input factors according to
the  relative  importance  coefficients  of  each  factor.  The
combinations  were  bound  by  the  sum  of  relative  importance
coefficients of 70%, 80%, 90%, and 100%. The input combinations
for spring and summer maize are listed in Table 2. Spm1 reflects the
input  combination  with  the  sum  of  the  importance  coefficients  of
the  factors  influencing  spring  maize  yield  exceeding  70%,  and
Sum1  is  the  input  combination  with  the  sum  of  the  importance
coefficients  of  the  factors  influencing  summer  maize  yield
exceeding 70%.
 
 

Table 2    Combination of factors affecting the yield of spring
and summer maize

Input factor
combination Input variables

Spm1 Planting density, Plant height, Rn

Spm2 Planting density, Plant height, Rn, Tmean, Tmin

Spm3 Planting density, Plant height, Rn, Tmean, Tmin, Ta

Spm4 Planting density, Plant height, Rn, Tmean, Tmin, Ta, RH, U, Pre, Tmax

Sum1 Rn, Plant height, Planting density, Tmin

Sum2 Rn, Plant height, Planting density, Tmin, Tmean

Sum3 Rn, Plant height, Planting density, Tmin, Tmean, Ta

Sum4 Rn, Plant height, Planting density, Tmin, Tmean, Ta, U, Pre, RH, Tmax
 

 3.2    Analysis  of  optimal  factor  combinations  for  the  models
predicting spring and summer maize yield

To obtain  the  optimal  combination  of  input  factors,  this  study
used the DHKELM and hybrid models to predict the yield of spring
and  summer  maize.  Different  combinations  of  inputs  can  result  in
the  same  machine  learning  model  generating  different  prediction
results.  Figure  4  demonstrates  the  changes  in  the  accuracy  of  the
prediction  results  of  the  models  predicting  the  yield  of  spring  and
summer maize under different combinations of inputs. The specific

accuracy indices of the prediction results are listed in Tables 3 and
4.  From  the  results,  it  is  noted  that  the  prediction  accuracy  of  the
model for spring and summer maize yield increased gradually with
the increase in the number of input factors. When a certain number
of  input  factors  was  reached,  the  prediction  accuracy  peaked.
Thereafter,  the  predictive  accuracy  of  the  model  did  not  improve
significantly even if  the input factors continued to be added. Thus,
the  input  combination  that  resulted  in  the  highest  accuracy  of  the
model was the optimal combination of inputs for  predicting spring
and summer maize yield.

As shown in Figure  4 and Table  3,  the  prediction accuracy of
the  model  displayed  a  significant  upward  trend  during  the  input
combination  from  Spm1  to  Spm3.  When  Spm1  was  used  as  the
input combination, the accuracy of the model prediction results was
low,  and  the  values  of  the  evaluation  indices  were  as  follows:
RMSE=2.067±0.400  t/hm2, R2=0.715±0.108,  MAE=1.579±0.360  t/
hm2,  and  NSE=0.708±0.101.  When  the  input  combination  of  the
model  was  extended  from Spm1 to  Spm2,  the  prediction  accuracy
of  the  model  improved,  and  the  values  of  the  evaluation  indices
were  as  follows:  RMSE=1.975±0.403  t/hm2,  R2=0.775±0.078,
MAE=1.459±0.308  t/hm2,  and  NSE=0.771±0.076.  The  input
combination  Spm3  was  the  optimal  input  combination,  as  it
performed  best  in  terms  of  reduced  prediction  error  and  enhanced
model  prediction  performance.  The  model’s  prediction  accuracy
was at its highest for Spm3, and the values of the evaluation indices
were  as  follows:  RMSE=1.640±0.152  t/hm2,  R2=0.837±0.025,
MAE=1.206±0.155  t/hm2,  and  NSE=0.832±0.023.  When  the  input
combination  was  changed  to  Spm4,  the  prediction  accuracy  of  the
model  did  not  improve,  and  the  values  of  the  evaluation  indices
were  as  follows:  RMSE=1.844±0.254  t/hm2,  R2=0.804±0.038,
MAE=1.329±0.186  t/hm2,  and  NSE=0.802±0.039.  Similarly,
Figure 4 and Table 4 show that the input combinations for summer
maize  exhibit  similar  trends  to  those  for  spring  maize,  with  Sum2
being the optimal input combination.
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Figure 4    Changes in the precision of prediction results of spring and summer maize yield
 
 

Table 3    Values of evaluation indices for model prediction results under different combinations of inputs for spring maize

Model Input combination
Training Testing

RMSE/t∙hm–2 R2 MAE/t∙hm–2 NSE RMSE/t∙hm–2 R2 MAE/t∙hm–2 NSE

Spm1

DHKELM 2.524 0.623 1.905 0.622 2.467 0.608 1.939 0.607
BES–DHKELM 1.541 0.852 1.066 0.851 2.168 0.753 1.546 0.750
CGO–DHKELM 1.434 0.880 0.999 0.879 1.666 0.823 1.219 0.808
CPA–DHKELM 1.933 0.776 1.424 0.776 2.124 0.728 1.533 0.723

Spm2

DHKELM 2.003 0.751 1.463 0.750 2.378 0.698 1.767 0.696
BES–DHKELM 1.328 0.892 0.974 0.892 1.990 0.777 1.363 0.777
CGO–DHKELM 1.354 0.890 0.978 0.890 1.572 0.853 1.151 0.847
CPA–DHKELM 1.557 0.854 1.147 0.853 1.834 0.805 1.274 0.801

Spm3

DHKELM 1.655 0.835 1.236 0.834 1.792 0.812 1.361 0.809
BES–DHKELM 1.203 0.911 0.858 0.910 1.635 0.858 1.127 0.854
CGO–DHKELM 1.119 0.926 0.771 0.926 1.488 0.862 1.051 0.852
CPA–DHKELM 1.387 0.885 1.021 0.885 1.530 0.855 1.145 0.853

Spm4

DHKELM 1.781 0.805 1.308 0.803 2.098 0.765 1.515 0.762
BES–DHKELM 1.213 0.910 0.891 0.909 1.722 0.835 1.172 0.833
CGO–DHKELM 1.206 0.913 0.862 0.913 1.590 0.842 1.143 0.841
CPA–DHKELM 1.488 0.859 1.107 0.859 1.808 0.837 1.302 0.834

 
 

Table 4    Values of evaluation indices for model prediction results under different combinations of inputs for summer maize

Model Input combination
Training Testing

RMSE/t∙hm–2 R2 MAE/t∙hm–2 NSE RMSE/t∙hm–2 R2 MAE/t∙hm–2 NSE

Sum1

DHKELM 2.149 0.750 1.653 0.748 2.411 0.724 1.806 0.717
BES–DHKELM 1.545 0.869 1.188 0.868 2.056 0.806 1.561 0.805
CGO–DHKELM 1.573 0.862 1.159 0.862 1.829 0.848 1.361 0.848
CPA–DHKELM 1.933 0.806 1.463 0.797 2.067 0.801 1.515 0.792

Sum2

DHKELM 1.499 0.874 1.101 0.874 1.978 0.831 1.426 0.831
BES–DHKELM 1.182 0.924 0.795 0.924 1.672 0.868 1.225 0.866
CGO–DHKELM 1.267 0.913 0.880 0.913 1.498 0.892 1.055 0.891
CPA–DHKELM 1.532 0.874 1.147 0.874 1.621 0.870 1.221 0.869

Sum3

DHKELM 2.075 0.771 1.605 0.770 2.151 0.761 1.750 0.760
BES–DHKELM 1.299 0.913 0.924 0.912 1.767 0.819 1.245 0.819
CGO–DHKELM 1.435 0.886 1.068 0.886 1.747 0.862 1.326 0.860
CPA–DHKELM 1.657 0.842 1.276 0.842 2.051 0.831 1.538 0.830

Sum4

DHKELM 1.866 0.822 1.398 0.820 1.925 0.778 1.482 0.778
BES–DHKELM 1.159 0.928 0.759 0.927 1.868 0.830 1.243 0.827
CGO–DHKELM 1.364 0.902 0.955 0.902 1.654 0.853 1.145 0.850
CPA–DHKELM 1.402 0.895 1.029 0.895 1.900 0.837 1.263 0.813

 

The  prediction  models  with  Spm1  and  Sum1  as  input
combinations  for  both  spring  and  summer  maize  presented  high

errors and uncertainty, which may be attributed to the limitations of
the  input  features.  Spm1  included  three  factors,  namely,  planting
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density,  plant  height,  and Rn,  whereas  Sum1 included four  factors,
namely, Rn, plant height, planting density, and Tmin. Although these
features  were  significantly  correlated  with  the  yield  of  both  spring
and summer maize, such feature sets were not sufficient to provide
the  model  with  enough  information  to  make  accurate  predictions.
Spm2  exhibited  increased Tmean  and Tmin  compared  to  Spm1,  with
relative  importance  coefficients  of  7.259%  and  5.913%,
respectively;  Sum2  exhibited  increased  Tmean  compared  to  Sum1,
with  a  relative  importance  coefficient  of  10.248%.  With  the
introduction  of  more  relevant  features,  the  prediction  accuracy  of
the  models  significantly  improved,  probably  because  Spm2  and
Sum2  included  more  temperature-related  environmental  factors,
which  provided  ample  information  to  help  the  prediction  models
capture yield variations more accurately.

The prediction models were more likely to achieve the highest
accuracy when the input  combination (Spm3 and Sum2) contained
the  key  factors  affecting  maize  yield.  Thus,  the  introduction  of RH

(3.107%),  U  (3.107%),  Pre  (1.874%),  and  Tmax  (1.627%)  to  the
yield  prediction  model  of  spring  maize,  and  Ta  (6.208%),  U
(4.743%),  Pre  (2.050%),  RH  (1.523%),  and  Tmax  (1.405%)  to  the
yield  prediction  model  of  summer  maize  did  not  lead  to  further
improvement  in  the  prediction  accuracy  of  the  models.  This
suggested that the prediction model may have captured the primary
information in the data after  a  certain level  of  complexity,  that  the
introduction  of  additional  factors  did  not  provide  significant
accuracy  gains,  and  that  the  introduction  of  several  features  may
have  led  to  model  overfitting.  These  findings  demonstrated  that,
when  constructing  a  model,  the  more  critical  input  factors  need  to

be selected to avoid model overfitting and unnecessary complexity.
Feature  selection  techniques,  which  can  effectively  determine  the
most  helpful  factors  for  prediction,  can  simplify  the  model  while
maintaining high prediction accuracy.
 3.3    Analysis of optimal yield prediction models for spring and
summer maize

To improve the  accuracy of  the  maize yield  prediction model,
three optimization algorithms (BES, CGO, and CPA) were used in
this  study  to  adjust  and  optimize  the  hyperparameters  in  the
DHKELM model, which included, but were not limited to, penalty
coefficients, regularization coefficients, and the number of nodes in
the  hidden  layer,  and  which  exhibited  an  important  impact  on  the
learning process of the model and the final prediction performance.
By  optimizing  these  parameters,  the  model  could  use  the  most
useful  features  of  the  data  for  data  training  and  obtain  the  best
generalization  ability.  Thus,  to  display  the  prediction  performance
of  the  model  intuitively,  this  study  used  scatter  plots  for  the
prediction results under different combinations of inputs (shown in
Figure  5),  and  used  GPI  values  to  evaluate  the  comprehensive
performance  of  the  model  (as  listed  in  Tables  5  and  6).  The  GPI
value  accounted  for  multiple  aspects  of  the  predicted  results  and
provided a more comprehensive view of the overall performance of
the  model.  This  study  revealed  that  the  application  of  the
optimization algorithm resulted in a significant improvement in the
prediction  accuracy  of  the  DHKELM model,  which  could  provide
the  expected  results.  Among  the  three  hybrid  models,  the  CGO–
DHKELM  model  exhibited  the  optimal  prediction  performance,
followed by the CPA–DHKELM and BES–DHKELM models.
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Figure 5    Scatter plot of predicted and true values of spring and summer maize yield
 
 
 

Table 5    GPI and ranking of yield prediction results for spring
maize under different input combinations

Input
combination

DHKELM BES–DHKELM CGO–DHKELM CPA–DHKELM
GPI Rank GPI Rank GPI Rank GPI Rank

Spm1 −2.000 16 −0.100 13 1.290 7 −0.252 14
Spm2 −1.004 15 0.485 11 1.737 4 0.954 10
Spm3 0.960 9 1.749 3 1.991 1 1.818 2
Spm4 0.103 12 1.435 6 1.658 5 1.214 8

 

Take  the  spring  maize  yield  prediction  model  as  an  example.
The accuracy of the independent DHKELM model in predicting the
yield  of  spring  maize  provided  the  following  values:  RMSE=

2.130±0.337 t/hm2, R2=0.710±0.102, MAE=1.650±0.289 t/hm2,  and
NSE=0.708±0.101.  Among  the  three  optimization  algorithms,  the
CGO algorithm best optimized the DHKELM model, providing the
following  values:  RMSE=1.577±0.089  t/hm2,  R2=0.843±0.019,
MAE=1.135±0.084  t/hm2,  and  NSE=0.830±0.022.  The  CPA  also
improved  the  accuracy  of  the  DHKELM model  substantially,  with
the  following  values:  RMSE=1.827±0.297  t/hm2, R2=0.791±0.063,
MAE=1.339±0.194 t/hm2, and NSE=0.788±0.065. Furthermore, the
prediction  performance  of  the  BES–DHKELM  model  was  better
than  that  of  the  independent  DHKELM model,  with  the  following
values:  RMSE=1.902±0.266  t/hm2, R2=0.806±0.053,  MAE=1.337±
0.209 t/hm2, and NSE=0.802±0.052.
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Table 6    GPI and ranking of yield prediction results for
summer maize under different input combinations

Input
combination

DHKELM BES–DHKELM CGO–DHKELM CPA–DHKELM
GPI Rank GPI Rank GPI Rank GPI Rank

Sum1 −2.000 16 −0.295 12 0.716 6 −0.354 13
Sum2 0.268 10 1.294 3 2.000 1 1.381 2
Sum3 −1.180 15 0.604 8 1.004 5 0.029 11
Sum4 −0.366 14 0.606 7 1.240 4 0.504 9

 

As  listed  in  Tables  5  and  6,  the  yield  prediction  models  for
spring and summer maize exhibited the highest GPI values for each
model  with  the  optimal  combination  of  factors  as  inputs;  and  the
hybrid  model  exhibited  higher  GPI  values  than  the  independent
DHKELM model  for  the  same  combination  of  input  factors.  This
indicated  that  the  optimization  algorithm  effectively  adjusted  the
parameters  of  the  independent  DHKELM  model  and  significantly
improved  its  overall  performance.  All  of  these  CGO–DHKELM
models presented the most significant optimization results with the
highest GPI ranking, which may be attributed to the high efficiency
of  the  CGO  algorithm  regarding  parameter  optimization.  This
algorithm is a parameter-free meta-heuristic algorithm that explores
the  parameter  space  based  on  some  principles  of  the  chaos  theory
and determines the optimal model parameters without requiring set
internal parameters[51].  Nonetheless,  the BES–DHKELM and CPA–
DHKELM models outperformed the unoptimized DHKELM model
in  terms  of  prediction  performance  but  exhibited  slightly  lower
performance  than  the  CGO–DHKELM  model.  This  may  be
because, although CPA could perform parallel computation and was
easy to implement, the optimization search of the algorithm, which
was  based  on  the  predation  behavior  of  carnivorous  plants,  lacked
mathematical  support  and  may  have  been  affected  by  the  initial
population. In addition, CPA may be affected by the attraction rate
parameter and may converge prematurely, making it difficult to find
a globally optimal solution[52]. The BES algorithm presents a strong
global search capability and can cope with large-scale optimization
problems.  However,  the  BES  algorithm  tends  to  reduce  local
optimization,  which  may  cause  the  algorithm  to  fall  into  local
optimal  solutions.  In  addition,  the  BES  algorithm  may  use
unnecessary  repetitive  searches,  which  can  reduce  its  convergence
speed[53].

From these  findings,  it  is  revealed  that  the  introduction  of  the
optimization  and  feature  analysis  algorithms  improved  the
performance  of  the  DHKELM  model  in  predicting  the  yield  of
spring and summer maize.  The CGO algorithm exhibited  the  most
outstanding  performance  at  addressing  this  optimization  problem
and effectively  improved  the  prediction  accuracy  and  reliability  of
the  DHKELM  algorithm.  Thus,  the  CGO–DHKELM  model  with
Spm3  and  Sum2  as  input  combinations  was  the  optimal  yield
prediction model for spring and summer maize.

 4    Conclusions
The  aim  of  this  study  was  to  develop  an  accurate  and  highly

operational  maize-yield  prediction  model  based  on  the  DHKELM
algorithm.  In  this  regard,  to  understand  the  correlation  of  each
factor affecting the yield of spring and summer maize, four feature
importance  analysis  algorithms  were  used  in  this  study,  including
CART, RF, GBDT, and XGBoost, which could provide reliable and
accurate results. Based on the results of the analysis, this study used
different  combinations  of  input  factors  to  determine  the  optimal
combination.  To  further  improve  the  prediction  accuracy  and
generalization  ability  of  the  model,  three  optimization  algorithms

(BES,  CGO,  and  CPA)  were  combined  with  the  DHKELM model
and determined the optimal parameter configurations, to construct a
maize  yield  prediction  model  with  higher  accuracy  and  good
applicability. The results of the study were as follows:

1) Four tree-based feature analysis models (CART, RF, GBDT,
and XGBoost)  provided important  information,  thus improving the
accuracy  of  the  yield  prediction  model.  It  is  noted  that  planting
density and plant height were the most important factors and Rn was
the  main  meteorological  factor  affecting  maize  yield  during  the
fertility  period.  These  were  followed  by  Tmean,  Tmin,  and  Ta.
However, the relative importance of RH, Pre, U, and Tmax was less.

2)  The optimal  combination of  factors  for  predicting the  yield
of  spring  maize  included  planting  density,  plant  height, Ra, Tmean,
Tmin, and Ta, whereas that for predicting the yield of summer maize
included Ra, plant height, planting density, Tmin, and Tmean.

3)  The  BES,  CGO,  and  CPA  algorithms  effectively  adjusted
and optimized the hyperparameters of the DHKELM model, thereby
significantly  improving  the  prediction  accuracy  of  the  model.
Among  the  three  optimization  algorithms,  the  CGO  algorithm
optimization  was  the  best.  When  the  optimal  factor  combination
was used, the CGO–DHKELM model showed optimal performance
at  predicting  the  yield  of  both  spring  and  summer  maize,  with  the
following values: RMSE=1.488 t/hm2, R2=0.862, MAE=1.051 t/hm2,
and  NSE=0.852  (spring  maize);  RMSE=1.498  t/hm2,  R2=0.892,
MAE=1.055 t/hm2, and NSE=0.891 (summer maize).

This  study  also  compared  the  yield  prediction  performance  of
the independent DHKELM and hybrid models under different input
combinations  and  constructed  a  high-precision  maize-yield
prediction  system.  The  findings  of  this  study  can  thus  provide
farmers  and  agricultural  specialists  with  accurate  crop  yield-
prediction  results  to  develop  effective  planting  strategies  and
resource management plans. Nonetheless, the applicability of these
models to multi-region and multi-year datasets and the performance
of models under different agricultural management strategies can be
further explored. Additionally, exploring the performance of similar
predictive models for crop yield estimation can simplify the model
application process for farmers.
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