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Abstract: Crop yield prediction helps to enhance the stability of agricultural product supply and promote sustainable
agricultural development, both of which are crucial for food production and security. To develop simple yet highly accurate
crop yield prediction models, this study proposed a spring- and summer-maize yield prediction model based on the deep hybrid
kernel extreme learning machine (DHKELM) algorithm. In this study, four tree-based feature importance analysis algorithms,
including classification and regression tree, gradient boosting decision tree, random forest, and extreme gradient boosting
algorithms, were utilized to analyze the importance of the factors affecting the yield of spring and summer maize. Then, based
on the analysis of the four algorithms, different combinations of factors were established to obtain the optimal combination of
features. Moreover, to improve the prediction accuracy of the machine learning model, this study utilized three optimization
algorithms, including the bald eagle search algorithm, chaos game optimization (CGO) algorithm, and carnivorous plant
algorithm, to optimize the hyperparameters in the DHKELM algorithm. The results of the study showed that planting density
and plant height were important factors affecting maize yield, and net solar radiation (R,) received during the reproductive
period exhibited the highest relative importance. Appropriate feature combinations can effectively improve model prediction
accuracy. The optimal feature combination for spring maize included planting density, plant height, R,, mean temperature
(Tpean), minimum temperature (7,,;,), and cumulative temperature, and the optimal feature combination for summer maize
included R,, plant height, planting density, 7., and 7., Among the three optimization algorithms, the CGO algorithm
exhibited the best optimization effect and could significantly improve the prediction accuracy of the DHKELM algorithm.
When the optimal combination of features was used as input, the CGO-DHKELM model used for maize yield prediction
provided the following values: RMSE=1.488 t/hm’, R*=0.862, MAE=1.051 t/hm’, and NSE=0.852 for spring maize;
RMSE=1.498 t/hm’, R*=0.892, MAE=1.055 t/hm?, and NSE=0.891 for summer maize. Thus, the findings of the study provide a
reference for high-precision prediction of spring and summer maize yields in China.
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1 Introduction

Crop yield prediction, which provides information on crop
growth to farmers and related enterprises, as well as the
government, is beneficial for the rational formulation of agricultural
production policies as it can guarantee food safety and reduce
economic losses caused by production risks'. Furthermore, accurate
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and efficient crop yield prediction is the key to sustainable food
production and guaranteeing national food security and can provide
a reliable reference for agricultural policy adjustment and scientific
planning of agricultural production decisions™. Therefore, highly
operational and accurate crop yield prediction models are necessary
for the development of sustainable agriculture in China.

Crop yield prediction is a multivariate, nonlinear process, as
crop yield is affected by a variety of factors such as climatic
conditions, soil conditions, and planting management measures®.
Traditional crop yield prediction builds on farmers’ labor and
expertise, a method that is inefficient and destructive!. In recent
years, with the improvement in the efficiency of data extraction and
the increase in the amount of available data, previously developed
linear analysis methods have also failed to meet the requirements of
complex yield prediction”. To address this issue, researchers have
developed models for simulating crop growth processes based on
their physiological characteristics and immediate environment, and
these models have been widely used for crop yield prediction*.
These crop growth models accurately describe crop growth and
development in relation to the environment and management
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practices, but they are data-driven, with uncertainty in the input
parameters, and need to be simulated under specific conditions".

In this regard, machine learning, a powerful data analysis
technique, has exhibited better performance in dealing with the
nonlinear relationship between crop yield and various independent
variables!’. Kheir et al.'" stated that machine learning is superior to
crop growth models as it adapts to diverse data and features, can
accurately capture complex relationships in the data, and provides
more accurate predictions. Neural network—a powerful tool used to
solve complex problems in the field of machine learning—can learn
relationship mapping from input to output by adjusting weights in
the network and has strong adaptability and modeling ability in
dealing with complex nonlinear problems'?. Extreme learning
machine (ELM) is a novel single hidden-layer feedforward neural
network algorithm proposed by Huang et al."”. ELM combines the
advantages of machine learning and neural networks, with its
primary feature being the fact that its input weights are randomly
selected, which gives ELM algorithms improved training speed and
generalization ability!” compared to back propagation (BP) neural
networks, support vector machines (SVM), and other state-of-the-
art algorithms!"*""l.

To further improve the performance of the ELM model,
researchers have combined the ELM algorithm with deep learning
ideas and kernel functions to obtain two models with better
performance, i.e., deep extreme learning machine (DELM) and
kernel extreme learning machine (KELM). The DELM algorithm
uses ELM—Autoencoder (ELM-AE) as the basic learning unit, to
train the data layer by layer, so that the model exhibits stronger
fitting ability and adaptability, and also prevents model
overfitting". In contrast, KELM is an ELM algorithm based on the
kernel function that uses kernel mapping instead of random
mapping, which improves the learning speed, generalization ability,
and prediction performance of the ELM model"”. The choice of
kernel function plays a crucial role in KELM, which is directly
related to the performance of the model"®. However, a single kernel
function may face difficulty adapting to complex changes in the
data. To overcome this limitation, researchers have proposed the
hybrid kernel extreme learning machine (HKELM), which aims to
improve the prediction accuracy and generalization ability of the
model by combining multiple kernel functions. The hybrid kernel
function of HKELM enables the model to better capture complex
fluctuations in the data, thus demonstrating stronger learning ability
and better generalization performance in prediction tasks!". In this
study, the DELM and HKELM algorithms were combined to
constitute the deep hybrid kernel extreme learning machine
(DHKELM) algorithm for maize yield prediction, which is an
HKELM algorithm with ELM-AE as the basic training unit that can
further improve the performance of the model while retaining the
advantages of the DELM and HKELM algorithms.

The performance of a machine learning model heavily depends
on hyperparameter settings, and manual parameter tuning is a time-
consuming and laborious process. To address this issue, researchers
have combined machine learning algorithms with optimization
algorithms, which systematically determine the optimal parameter
configuration to minimize the loss function and achieve more
accurate predictions®?!. The bald eagle search (BES) algorithm
simulates the hunting strategy of bald eagles when searching for
prey, which is characterized by high search efficiency, finding the
optimal solution in a short time, and is suitable for dealing with a
variety of complex optimization problems"””. Huang* used the BES
algorithm to optimize the hyperparameters in the SVM model, and

the results verified that the optimized model exhibited good
prediction performance and generalization ability. The theme of
another algorithm—chaos game optimization (CGO) algorithm—is
based on a few principles of the chaos theory, providing the
algorithm with high convergence speed and the ability to not get
easily affected by the local optimal solution and quickly obtain a
better solution, making it an optimization algorithm with strong
search ability and adaptability®". He et al.” combined the CGO and
multi-output least squares support vector regression machine
(MLSSVR) algorithm and found that the CGO-MLSSVR
prediction model was able to make effective predictions with high
accuracy. The carnivorous plant algorithm (CPA) is a meta-heuristic
algorithm inspired by the predation process of carnivorous plants on
their prey, which avoids falling into local optimal solutions due to
the diversity of their population and exhibits a greater advantage in
solving global optimization problems®. Wang et al.?” used the
CPA algorithm to optimize the BP neural network and showed that
CPA effectively reduced the prediction error of the BP neural
network. Therefore, in this study, BES, CGO, and CPA were
selected to optimize the hyperparameters in the DHKELM model
and construct a high-precision maize yield prediction model.

In constructing a high-precision yield prediction model, the
analysis of input factor importance can reduce data dimensions and
improve model estimation efficiency, which can lead to the
optimization of model accuracy®?*!. Tree-based models can select
the most influential features based on the intrinsic structure of the
data, can accurately capture complex relationships, and are less
prone to overfitting®™. Common tree-based models include
classification and regression tree (CART), gradient boosting
decision tree (GBDT), random forest (RF), and extreme gradient
boosting (XGBoost) models. Peng et all" used Pearson’s
correlation coefficient, least absolute shrinkage and selection
operator, and GBDT algorithms to determine the characteristic
variables to estimate soil nutrient content, and the results of the
study verified that the selection of the characteristic variables was
the key to estimating the soil nutrient content with high accuracy,
and the GBDT algorithm provided accurate information about the
characteristic variables. Mohammadi and Mehdizadeh®™ utilized
relief, RF, principal component analysis, and Pearson’s correlation
methods to preprocess data and construct a support vector
regression-based daily reference evapotranspiration prediction
model, and showed that input variables identified by the RF method
produced more accurate results. Zheng et al.®®! analyzed the
influence coefficients of soil parameters and other factors on
soybean yield using a general linear model and CART algorithm
and demonstrated that the prediction results of the CART model
exhibited low error rates. Gill et al.®¥ suggested that the XGBoost
model exhibited superior predictive performance and provided a
highly accurate ranking of factor importance. Thus, in this study,
CART, GBDT, RF, and XGBoost algorithms were selected to
analyze the importance of the characteristic factors affecting the
yield of spring and summer maize. The complementary advantages
of multiple models can be used to obtain more complete and
accurate results of factor importance analysis and determine the
optimal input feature combinations.

To obtain an operable maize-yield prediction model, this study
first utilized the CART, GBDT, RF, and XGBoost algorithms to
rank the importance of multiple factors affecting the yield of spring
and summer maize, and then combined them into different
combinations of input features based on the results of the
importance ranking, for model construction. In the process of model
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construction, this study used the DHKELM model as the base
model, and applied three optimization algorithms (BES, CGO, and
CPA) to tune the hyperparameters of the model.

The purpose of this study was as follows: 1) To rank the
importance of factors affecting the yield of spring and summer
maize using four tree-based factor analysis methods (CART,
GBDT, RF, and XGBoost) and analyze the results. 2) To determine
the optimal combination of input factors affecting the yield of
spring and summer maize according to the results of the importance
analysis. 3) To construct a hybrid model using BES, CGO, and CPA
optimization algorithms to adjust and optimize the parameters in the
DHKELM model, and to analyze the comprehensive prediction
performance of the independent and the hybrid models.

2 Materials and methods

2.1 Study area

Data for this study were obtained from the National Ecological
Science Data Center, China, and included meteorological,
phenological, and yield data of spring and summer maize. The
different types of sample plots set up within each site exhibited
different soil and crop management conditions, which led to
differences in phenotypic characteristics of the crop. The sites
exhibited different meteorological conditions owing to their
geographic locations, and these differences resulted in a greater
diversity in maize yield data. The data used in this study included
planting density and plant height, as well as net solar radiation (R,),
mean temperature (7;,.,,), maximum temperature (7,,,,), minimum
temperature (7,,;,), cumulative temperature (7,), relative humidity
(Ry), wind speed (U), and precipitation (Pre) during the
reproductive period.

In the modeling process, the spring maize dataset used in this
study contained 865 samples, and the summer maize dataset
contained 921 samples. Among them, 80% of the input data was
used as the training set, and 20% of the input data was used as the
test set. The coordinates of the spring and summer maize study
sites, along with the annual means of the meteorological data, are
listed in Table 1.

Table 1 Geographic location and annual mean values of
meteorological data of the spring and summer maize study sites

Station Longitude Latitude Elevation/ R,/ i Tnean! Ry, U/ﬁ Pre/
EBEYC) N/ m MJm? °C m's' mm

Ansai 109.19 36.53 1068.3  1320.85 19.18 64.53 0.87 419.56
Changwu  107.48 35.12 1206.5 1383.21 19.02 70.19 1.25 363.94
Fengqiu 114.25 35.02 69.6  1043.85 24.94 77.28 1.10 306.77
Hailun 126.58 47.27 239.2  1329.36 17.88 69.25 2.34 422.02
Huanjiang  108.32 24.73 208.5  919.46 22.57 79.94 0.66 482.64

Linze 100.10 39.09 1453.7
114.38 37.53 52.9
Naiman 120.39 42.51 362.9
Shapotou  104.95 37.45 1225.7
Yanting 105.45 31.27 4213
116.34 36.56 23.6

1229.65 19.97 40.79 1.87 102.37
1068.79 24.24 71.44 1.46 329.25
1494.53 20.26 43.78 1.72 249.03
1261.60 20.87 45.06 2.38 150.85
935.93 25.21 78.61 0.50 502.77
1114.19 24.89 76.15 1.40 300.31

Luancheng

Yucheng

2.2 Tree-based algorithms for factor importance analysis
2.2.1 Classification and regression tree

CART is an algorithm based on decision trees, where variance
minimization methods are used to obtain increasingly homogeneous
subsets by recursively partitioning the dataset into subsets**.. The
CART algorithm needs to consider the degree of contribution of
each feature in the construction of the decision tree when

performing the importance analysis. The algorithm usually uses
node purity to measure the relative importance of each feature. The
information gain of each feature is an indicator of the degree of
node purity improvement.

2.2.2 Random forest

RF is a nonparametric estimation algorithm based on decision
tree integration, which provides more accurate and comprehensive
importance assessment results. The Gini index is the primary basis
used for measuring the importance of each feature in random
forests. The relative importance of features is assessed by
comparing the reduction in the average Gini index for different
features™..

2.2.3 Gradient boosting decision tree

GBDT is an iterative decision tree algorithm that consists of
multiple decision tree models®. When the frequency of
segmentation of a feature in constructing decision tree models is
high, the information gain is greater and the feature exhibits higher
importance. The GBDT model takes the average of the importance
of the features in each tree as the final importance result.

2.2.4 Extreme gradient boosting

XGBoost is an efficient gradient-boosting algorithm that
focuses on optimizing the objective function and evaluating the
importance of each feature by calculating its gain in a decision tree
split®”. If a feature is used multiple times for key decision points, its
importance score increases accordingly. The XGBoost algorithm
takes the weighted average of the results of the feature across all
decision trees as its result.

2.3 Machine learning algorithms

The DELM algorithm uses ELM—AE as the basic unit and
combines the idea of deep learning to form a deep network
structure, which can improve the learning ability and prediction
performance of the model. ELM-AE can orthogonalize the
randomly generated weights and biases and map the input data as it
achieves feature extraction for different requirements, and can also
effectively reduce the noise in the data to enhance the generalization
ability of the model. The DELM uses ELM-AE to initialize the
weights of the hidden layer, and the layer-by-layer training can get
more comprehensive feature information. However, unlike
traditional deep learning models, the DELM model does not need to
fine-tune the parameters and exhibits an increased training speed.

KELM is a neural network algorithm obtained by combining
the kernel function and ELM. The kernel function exhibits excellent
nonlinear mapping ability, which enhances the divisibility of data in
high-dimensional space and effectively improves the learning
ability and generalization ability of ELM. The KELM algorithm
utilizes kernel mapping instead of random mapping in ELM to map
low-dimensional space data to high-dimensional space through
kernel function, which further improves the generalization ability
and prediction performance while retaining the advantages of
ELMPE#¥1,

The predictive performance of the KELM model is greatly
affected by the type of kernel function, and a single kernel function
is relatively weak for large-scale and multi-featured datasets. Thus,
to further improve the performance of the KELM model, scholars
proposed the HKELM algorithm, which uses a hybrid kernel
function obtained from the combination of multiple kernel functions
instead of a single kernel function of the KELM, effectively
improving the overall performance of the model. Commonly used
kernel functions include radial basis function kernel function,
polynomial kernel function, and wavelet kernel function. The
polynomial kernel function shows good global feature capture
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ability and strong generalization ability”, whereas the wavelet
kernel function is good at local feature capture. The combination of
these two kernel functions is used to obtain more comprehensive
data information and improve the learning ability of the model.

The DHKELM algorithm used in this study is the HKELM

- Hidden layer

Figure 1

2.4 Meta-heuristic optimization algorithms
2.4.1 Bald eagle search algorithm

BES algorithm, a meta-heuristic optimization algorithm with
strong search capability, simulates the hunting strategy of the bald
eagle in searching for prey and searches for the optimal solution
through iterative search in the hunting process*”. The optimization
search of the BES algorithm is divided into three phases, namely
selection, searching, and swooping. In the selection phase, the bald
eagle selects a search space based on individual fitness value to
facilitate the search for prey. The bald eagle then searches for prey
within the selected search space and flies in a spiral form to speed
up the search process and determine the optimal swooping location.
In the swooping phase, the bald eagle flies from the optimal
location in the search space to the target in a fast swoop, and the
other individuals also move toward the optimal location and attack
the prey.
2.4.2 Chaos game optimization algorithm

CGO algorithm is a meta-heuristic optimization algorithm
based on the principles of the chaos theory®". This optimization
method approaches the problem by considering candidate solutions
that are also embodiments of the eligible seeds in the Sierpinski
triangle. In the mathematical model of CGO, the Sierpinski triangle
is the search space for candidate solutions. During the iterative
process, to create a new eligible seed in the search space, the
eligible seed in the search space constructs temporary triangles
based on three parameters, namely, the position of the ith candidate
solution as the selected seed, the position of the mean group, and
the position of the so-far found global best, after which a new
eligible seed is created.
2.4.3 Carnivorous plant algorithm

CPA simulates the process whereby carnivorous plants adapt to
survive in harsh conditions®. First, the carnivorous plant
population is initialized, and the individuals are sorted according to
their fitness values in ascending order. Then, the individuals in the
population are classified into carnivorous plants and prey, and
grouped. During reproduction, only the optimal group in the

DHKELM

algorithm with ELM—-AE as the basic unit, which has the feature
extraction capability of deep learning as well as the powerful
mapping capability of kernel functions, enabling the model to deal
with complex nonlinear problems more -efficiently**!. The
structure of the DHKELM model is shown in Figure 1.

Structure of the DHKELM algorithm

population is allowed to reproduce, and the newly generated
populations of carnivorous plants and prey will combine with the
previous populations to form new populations, thereby repeating the
process of categorical grouping, growth, and reproduction until the
termination conditions are met. The principles of the three
optimization algorithms are shown in Figure 2.

The implementation of the algorithm in this study was
performed using MATLAB, while the graphics were drawn using
Origin.

2.5 Model evaluation indices

In this study, root mean square error (RMSE), coefficient of
determination (R?), mean absolute error (MAE), and Nash—Sutcliffe
efficiency (NSE) were used to assess the accuracy of model
prediction results, and global evaluation index (GPI) was used for a
comprehensive assessment of model performance. The formulas for
the indicators are shown below:

(M)
2)
> IT-Pi
MAE = 3)
> a@-pry
NSE=1--2 4)
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Figure 2 The principles of the BES, CGO, and CPA algorithms

GPI = Za, (- 6)

where, T, denotes the true value of yield; P; denotes the predicted
value of yield; T; denotes the average of the true value of yield; and
P; denotes the average of the predicted value of yield. Additionally,
g; is the normalized value of RMSE; R?, MAE, and NSE, and y; is
the median of each parameter. a; was —1 for RMSE and MAE, and
1 for all other cases.

The larger the R* and NSE values, the smaller the RMSE and
MAE values, and the better the predictive performance of the
model. Furthermore, models with higher GPI values or higher
rankings exhibited better overall performance.

3 Results and discussion

3.1 Importance analysis of factors affecting the yield of spring
and summer maize

In this study, four tree-based feature analysis models, i.e.,
CART, GBDT, RF, and XGBoost algorithms, were used to estimate
the relative importance of the factors affecting the yield of spring
and summer maize. This study used the median percentage of the
analysis results for each factor as the final relative importance
coefficient. The median better reflects the central tendency of the
data and avoids the influence of extreme values on the results. The
specific results are shown in Figure 3. Regarding the importance
analysis of factors affecting the yield of spring maize, planting
density was the most important influencing factor, with a relative
importance coefficient of 36.276%, followed by plant height and R,,,
with relative importance coefficients of 19.469% and 16.486%,
respectively. Tpeans Tmin» and 7, were ranked fourth to sixth with

relative importance coefficients of 7.259%, 5.913%, and 4.882%,
respectively. These were followed by Ry and U, both with relative
importance coefficients of 3.107%, and Pre and T7,,, in that order
(with relative importance coefficients of 1.874% and 1.627%,
respectively). However, the importance analysis of factors affecting
the yield of summer maize indicated that R, was the most important
factor, with a relative importance coefficient of 23.612%, and plant
height (23.167%) exhibited a comparable relative importance to R,,.
Planting density ranked third with a relative importance coefficient
of 16.040%, followed by T, and T, with relative importance
coefficients of 11.004% and 10.248%, respectively. T,, U, and Pre
were sixth to eighth with relative importance coefficients of
6.208%, 4.743%, and 2.050%, respectively. Additionally, Ry and
Tmax €xhibited the lowest relative importance coefficients of 1.523%
and 1.405%, respectively.

These results suggested differences in the results of factor
importance analysis between spring and summer maize, which may
be related to the immediate environment of the crop. Spring maize
may be more dependent on early planting density and growth
conditions, whereas summer maize may be more influenced by
solar radiation. Planting density and plant height are important
factors affecting the yield of both spring and summer maize and are
key parameters for yield prediction**!. Proper plant height and
planting density help improve photosynthetic efficiency in maize so
that maize plants can grow and develop better, thereby increasing
maize yield. Solar radiation is a key energy source for photosynthesis
in crops““*l. The results of factor analysis for both spring and
summer maize demonstrated that the most important meteorological
factor was R,, which is the difference between the amount of solar
radiation reaching the ground and the amount of radiation emitted
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from the ground. This suggests that R, was a crucial determinant of
crop growth and yield and was one of the important parameters for
crop yield prediction.

Nonetheless, R, exhibited different importance coefficients for
spring and summer maize, probably because of the differences in
the fertility periods. Spring maize is mostly productive in the spring
when solar radiation is relatively weak, but as the season changes
and the temperature gradually rises, the growth of the crop
gradually accelerates. Spring maize may require additional
management measures to promote photosynthesis in the early stages
to ensure adequate growth even under reduced solar radiation
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conditions. In contrast, the effect of R, on the yield of summer
maize was particularly significant during the fertility period owing
to the higher intensity of solar radiation. Adequate solar radiation
can promote photosynthesis and increase biomass accumulation in
the crop, thus improving yield. Therefore, monitoring and utilizing
solar radiation for the cultivation and management of summer maize
is of great significance in improving yield*. Moreover, Tc.n"",
T, and T,° during the fertility period were important
meteorological factors affecting maize yield. In addition, Ry, Pre, U,
and T, although less important compared to other factors,
contributed adequately to maize yield.
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Figure 3 Box line plots of the results of the relative importance analysis of factors affecting the yield of spring and summer maize

To select appropriate combinations of input factors and
construct yield prediction models with high operability for spring
and summer maize, this study combined input factors according to
importance of each factor. The
combinations were bound by the sum of relative importance
coefficients of 70%, 80%, 90%, and 100%. The input combinations
for spring and summer maize are listed in Table 2. Spm1 reflects the

the relative coefficients

input combination with the sum of the importance coefficients of
the factors influencing spring maize yield exceeding 70%, and
Suml is the input combination with the sum of the importance
coefficients of the factors influencing summer maize yield
exceeding 70%.

Table 2 Combination of factors affecting the yield of spring
and summer maize

Input factor Input variables

combination

Spm1 Planting density, Plant height, R,

Spm2 Planting density, Plant height, R,, Ticans Timin

Spm3 Planting density, Plant height, R,, Tieans Tmins Ta

Spm4 Planting density, Plant height, R,, Tieans Tmins Las Rips U, P1€, Tiax
Sum1 R,, Plant height, Planting density, T,

Sum?2 R,, Plant height, Planting density, 77, Tinean

Sum3 R,, Plant height, Planting density, 77, Tineans Lu

Sumé4 R,, Plant height, Planting density, Tiyin, Tieans Za> Us Pre, Ry, Thax

3.2 Analysis of optimal factor combinations for the models
predicting spring and summer maize yield

To obtain the optimal combination of input factors, this study
used the DHKELM and hybrid models to predict the yield of spring
and summer maize. Different combinations of inputs can result in
the same machine learning model generating different prediction
results. Figure 4 demonstrates the changes in the accuracy of the
prediction results of the models predicting the yield of spring and
summer maize under different combinations of inputs. The specific

accuracy indices of the prediction results are listed in Tables 3 and
4. From the results, it is noted that the prediction accuracy of the
model for spring and summer maize yield increased gradually with
the increase in the number of input factors. When a certain number
of input factors was reached, the prediction accuracy peaked.
Thereafter, the predictive accuracy of the model did not improve
significantly even if the input factors continued to be added. Thus,
the input combination that resulted in the highest accuracy of the
model was the optimal combination of inputs for predicting spring
and summer maize yield.

As shown in Figure 4 and Table 3, the prediction accuracy of
the model displayed a significant upward trend during the input
combination from Spml to Spm3. When Spml was used as the
input combination, the accuracy of the model prediction results was
low, and the values of the evaluation indices were as follows:
RMSE=2.067+0.400 t/hm? R>=0.715+0.108, MAE=1.579+0.360 t/
hm’, and NSE=0.708+0.101. When the input combination of the
model was extended from Spml to Spm2, the prediction accuracy
of the model improved, and the values of the evaluation indices
were as follows: RMSE=1.975+0.403 t/hm? R=0.775+0.078,
MAE=1.459+0.308 t/hm’, and NSE=0.771+0.076. The
combination Spm3 was the optimal input combination, as it
performed best in terms of reduced prediction error and enhanced
model prediction performance. The model’s prediction accuracy
was at its highest for Spm3, and the values of the evaluation indices
were as follows: RMSE=1.640+0.152 t/hm? R>=0.837+0.025,
MAE=1.206+0.155 t/hm?, and NSE=0.8324+0.023. When the input
combination was changed to Spm4, the prediction accuracy of the
model did not improve, and the values of the evaluation indices
were as follows: RMSE=1.844+0.254 t/hm? R>=0.804+0.038,
MAE=1.329+0.186 t/hm’, and NSE=0.802+0.039. Similarly,
Figure 4 and Table 4 show that the input combinations for summer
maize exhibit similar trends to those for spring maize, with Sum2
being the optimal input combination.

input
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Figure 4 Changes in the precision of prediction results of spring and summer maize yield
Table 3 Values of evaluation indices for model prediction results under different combinations of inputs for spring maize
L Training Testing
Model Input combination
RMSE/thm* R MAE/t-hm*? NSE RMSE/thm*? R MAE/thm? NSE
DHKELM 2.524 0.623 1.905 0.622 2.467 0.608 1.939 0.607
Spml BES-DHKELM 1.541 0.852 1.066 0.851 2.168 0.753 1.546 0.750
m
P CGO-DHKELM 1.434 0.880 0.999 0.879 1.666 0.823 1.219 0.808
CPA-DHKELM 1.933 0.776 1.424 0.776 2.124 0.728 1.533 0.723
DHKELM 2.003 0.751 1.463 0.750 2.378 0.698 1.767 0.696
Som? BES-DHKELM 1.328 0.892 0.974 0.892 1.990 0.777 1.363 0.777
7.
P CGO-DHKELM 1.354 0.890 0.978 0.890 1.572 0.853 1.151 0.847
CPA-DHKELM 1.557 0.854 1.147 0.853 1.834 0.805 1.274 0.801
DHKELM 1.655 0.835 1.236 0.834 1.792 0.812 1.361 0.809
Som3 BES-DHKELM 1.203 0911 0.858 0.910 1.635 0.858 1.127 0.854
.
P CGO-DHKELM 1.119 0.926 0.771 0.926 1.488 0.862 1.051 0.852
CPA-DHKELM 1.387 0.885 1.021 0.885 1.530 0.855 1.145 0.853
DHKELM 1.781 0.805 1.308 0.803 2.098 0.765 1.515 0.762
Spmé BES-DHKELM 1.213 0.910 0.891 0.909 1.722 0.835 1.172 0.833
-
P CGO-DHKELM 1.206 0.913 0.862 0.913 1.590 0.842 1.143 0.841
CPA-DHKELM 1.488 0.859 1.107 0.859 1.808 0.837 1.302 0.834
Table 4 Values of evaluation indices for model prediction results under different combinations of inputs for summer maize
L Training Testing
Model Input combination
RMSE/t-hm™ R MAE/t-hm” NSE RMSE/thm™ R MAE/t-hm? NSE
DHKELM 2.149 0.750 1.653 0.748 2.411 0.724 1.806 0.717
Suml BES-DHKELM 1.545 0.869 1.188 0.868 2.056 0.806 1.561 0.805
um
CGO-DHKELM 1.573 0.862 1.159 0.862 1.829 0.848 1.361 0.848
CPA-DHKELM 1.933 0.806 1.463 0.797 2.067 0.801 1.515 0.792
DHKELM 1.499 0.874 1.101 0.874 1.978 0.831 1.426 0.831
Sum2 BES-DHKELM 1.182 0.924 0.795 0.924 1.672 0.868 1.225 0.866
um.
CGO-DHKELM 1.267 0.913 0.880 0.913 1.498 0.892 1.055 0.891
CPA-DHKELM 1.532 0.874 1.147 0.874 1.621 0.870 1.221 0.869
DHKELM 2.075 0.771 1.605 0.770 2.151 0.761 1.750 0.760
Sum3 BES-DHKELM 1.299 0.913 0.924 0.912 1.767 0.819 1.245 0.819
um.
CGO-DHKELM 1.435 0.886 1.068 0.886 1.747 0.862 1.326 0.860
CPA-DHKELM 1.657 0.842 1.276 0.842 2.051 0.831 1.538 0.830
DHKELM 1.866 0.822 1.398 0.820 1.925 0.778 1.482 0.778
Sumd BES-DHKELM 1.159 0.928 0.759 0.927 1.868 0.830 1.243 0.827
um-
CGO-DHKELM 1.364 0.902 0.955 0.902 1.654 0.853 1.145 0.850
CPA-DHKELM 1.402 0.895 1.029 0.895 1.900 0.837 1.263 0.813

The prediction models with Spml and Suml as input
combinations for both spring and summer maize presented high

errors and uncertainty, which may be attributed to the limitations of
the input features. Spml included three factors, namely, planting
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density, plant height, and R,, whereas Sum]1 included four factors,
namely, R,, plant height, planting density, and 7,;,. Although these
features were significantly correlated with the yield of both spring
and summer maize, such feature sets were not sufficient to provide
the model with enough information to make accurate predictions.
Spm2 exhibited increased 7T),.,, and 7, compared to Spml, with
relative importance coefficients of 7.259% and 5.913%,
respectively; Sum2 exhibited increased 7T}, compared to Suml,
with a relative importance coefficient of 10.248%. With the
introduction of more relevant features, the prediction accuracy of
the models significantly improved, probably because Spm2 and
Sum?2 included more temperature-related environmental factors,
which provided ample information to help the prediction models
capture yield variations more accurately.

The prediction models were more likely to achieve the highest
accuracy when the input combination (Spm3 and Sum?2) contained
the key factors affecting maize yield. Thus, the introduction of Ry
(3.107%), U (3.107%), Pre (1.874%), and T, (1.627%) to the
yield prediction model of spring maize, and 7, (6.208%), U
(4.743%), Pre (2.050%), Ry (1.523%), and Tp,, (1.405%) to the
yield prediction model of summer maize did not lead to further
improvement in the prediction accuracy of the models. This
suggested that the prediction model may have captured the primary
information in the data after a certain level of complexity, that the
introduction of additional factors did not provide significant
accuracy gains, and that the introduction of several features may
have led to model overfitting. These findings demonstrated that,
when constructing a model, the more critical input factors need to
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be selected to avoid model overfitting and unnecessary complexity.
Feature selection techniques, which can effectively determine the
most helpful factors for prediction, can simplify the model while
maintaining high prediction accuracy.
3.3 Analysis of optimal yield prediction models for spring and
summer maize

To improve the accuracy of the maize yield prediction model,
three optimization algorithms (BES, CGO, and CPA) were used in
this study to adjust and optimize the hyperparameters in the
DHKELM model, which included, but were not limited to, penalty
coefficients, regularization coefficients, and the number of nodes in
the hidden layer, and which exhibited an important impact on the
learning process of the model and the final prediction performance.
By optimizing these parameters, the model could use the most
useful features of the data for data training and obtain the best
generalization ability. Thus, to display the prediction performance
of the model intuitively, this study used scatter plots for the
prediction results under different combinations of inputs (shown in
Figure 5), and used GPI values to evaluate the comprehensive
performance of the model (as listed in Tables 5 and 6). The GPI
value accounted for multiple aspects of the predicted results and
provided a more comprehensive view of the overall performance of
the model. This study revealed that the application of the
optimization algorithm resulted in a significant improvement in the
prediction accuracy of the DHKELM model, which could provide
the expected results. Among the three hybrid models, the CGO—
DHKELM model exhibited the optimal prediction performance,
followed by the CPA-DHKELM and BES-DHKELM models.
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Figure 5 Scatter plot of predicted and true values of spring and summer maize yield

Table 5 GPI and ranking of yield prediction results for spring
maize under different input combinations

Input DHKELM BES-DHKELM CGO-DHKELM CPA-DHKELM
combination GPI Rank GPI Rank GPI Rank  GPI  Rank
Spml  —2.000 16 -0.100 13 1.290 7 0252 14
Spm2  -1.004 15 0485 11 1737 4 0.954 10
Spm3 0960 9 1749 3 1.991 1 1818 2
Spm4  0.103 12 1435 6 1.658 5 1214 8

Take the spring maize yield prediction model as an example.
The accuracy of the independent DHKELM model in predicting the
yield of spring maize provided the following values: RMSE=

2.130+0.337 t/hm?, R*=0.710+0.102, MAE=1.650+0.289 t/hm’, and
NSE=0.708+0.101. Among the three optimization algorithms, the
CGO algorithm best optimized the DHKELM model, providing the
following values: RMSE=1.577+0.089 t/hm* R*=0.843%0.019,
MAE=1.135+0.084 t/hm’, and NSE=0.830+0.022. The CPA also
improved the accuracy of the DHKELM model substantially, with
the following values: RMSE=1.827+0.297 t/hm?, R*=0.791+0.063,
MAE=1.339+0.194 t/hm?, and NSE=0.788+0.065. Furthermore, the
prediction performance of the BES-DHKELM model was better
than that of the independent DHKELM model, with the following
values: RMSE=1.902+0.266 t/hm’, R=0.806+0.053, MAE=1.337+
0.209 t/hm?, and NSE=0.802+0.052.
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Table 6 GPI and ranking of yield prediction results for
summer maize under different input combinations
Input DHKELM BES-DHKELM CGO-DHKELM CPA-DHKELM
combination GPI Rank GPI Rank GPI Rank  GPI  Rank
Suml  -2.000 16 —0.295 12 0.716 6 —0.354 13
Sum?2 0268 10 1.294 3 2.000 1 1.381 2
Sum3  —-1.180 15 0.604 8 1.004 5 0.029 11
Sum4 —-0.366 14  0.606 7 1.240 4 0.504 9

As listed in Tables 5 and 6, the yield prediction models for
spring and summer maize exhibited the highest GPI values for each
model with the optimal combination of factors as inputs; and the
hybrid model exhibited higher GPI values than the independent
DHKELM model for the same combination of input factors. This
indicated that the optimization algorithm effectively adjusted the
parameters of the independent DHKELM model and significantly
improved its overall performance. All of these CGO-DHKELM
models presented the most significant optimization results with the
highest GPI ranking, which may be attributed to the high efficiency
of the CGO algorithm regarding parameter optimization. This
algorithm is a parameter-free meta-heuristic algorithm that explores
the parameter space based on some principles of the chaos theory
and determines the optimal model parameters without requiring set
internal parameters®’. Nonetheless, the BES-DHKELM and CPA—
DHKELM models outperformed the unoptimized DHKELM model
in terms of prediction performance but exhibited slightly lower
performance than the CGO-DHKELM model. This may be
because, although CPA could perform parallel computation and was
easy to implement, the optimization search of the algorithm, which
was based on the predation behavior of carnivorous plants, lacked
mathematical support and may have been affected by the initial
population. In addition, CPA may be affected by the attraction rate
parameter and may converge prematurely, making it difficult to find
a globally optimal solution®”. The BES algorithm presents a strong
global search capability and can cope with large-scale optimization
problems. However, the BES algorithm tends to reduce local
optimization, which may cause the algorithm to fall into local
optimal solutions. In addition, the BES algorithm may use
unnecessary repetitive searches, which can reduce its convergence
speed®.

From these findings, it is revealed that the introduction of the
optimization and feature analysis algorithms improved the
performance of the DHKELM model in predicting the yield of
spring and summer maize. The CGO algorithm exhibited the most
outstanding performance at addressing this optimization problem
and effectively improved the prediction accuracy and reliability of
the DHKELM algorithm. Thus, the CGO-DHKELM model with
Spm3 and Sum?2 as input combinations was the optimal yield
prediction model for spring and summer maize.

4 Conclusions

The aim of this study was to develop an accurate and highly
operational maize-yield prediction model based on the DHKELM
algorithm. In this regard, to understand the correlation of each
factor affecting the yield of spring and summer maize, four feature
importance analysis algorithms were used in this study, including
CART, RF, GBDT, and XGBoost, which could provide reliable and
accurate results. Based on the results of the analysis, this study used
different combinations of input factors to determine the optimal
combination. To further improve the prediction accuracy and
generalization ability of the model, three optimization algorithms

(BES, CGO, and CPA) were combined with the DHKELM model
and determined the optimal parameter configurations, to construct a
maize yield prediction model with higher accuracy and good
applicability. The results of the study were as follows:

1) Four tree-based feature analysis models (CART, RF, GBDT,
and XGBoost) provided important information, thus improving the
accuracy of the yield prediction model. It is noted that planting
density and plant height were the most important factors and R, was
the main meteorological factor affecting maize yield during the
fertility period. These were followed by Tpcan, Tmin» and 7.
However, the relative importance of Ry, Pre, U, and T,,,, was less.

2) The optimal combination of factors for predicting the yield
of spring maize included planting density, plant height, R,, T
Tmin» and T, whereas that for predicting the yield of summer maize
included R, plant height, planting density, 7,,;,, and 7pcan-

3) The BES, CGO, and CPA algorithms effectively adjusted
and optimized the hyperparameters of the DHKELM model, thereby
significantly improving the prediction accuracy of the model.
Among the three optimization algorithms, the CGO algorithm
optimization was the best. When the optimal factor combination
was used, the CGO-DHKELM model showed optimal performance
at predicting the yield of both spring and summer maize, with the
following values: RMSE=1.488 t/hm?, R*=0.862, MAE=1.051 t/hm?,
and NSE=0.852 (spring maize); RMSE=1.498 t/hm’, R>=0.892,
MAE=1.055 t/hm?, and NSE=0.891 (summer maize).

This study also compared the yield prediction performance of
the independent DHKELM and hybrid models under different input
combinations and constructed a high-precision maize-yield
prediction system. The findings of this study can thus provide
farmers and agricultural specialists with accurate crop yield-
prediction results to develop effective planting strategies and
resource management plans. Nonetheless, the applicability of these
models to multi-region and multi-year datasets and the performance
of models under different agricultural management strategies can be
further explored. Additionally, exploring the performance of similar
predictive models for crop yield estimation can simplify the model
application process for farmers.
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