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Abstract: Field experiments were carried out to investigate the soil infiltration rates in different soil textures (clay loam, clay,
and  silty  clay  loam)  with  five  infiltration  models  (Kostiakov,  Modified  Kostiakov,  Philip,  Horton,  and  Green-Ampt).  Field
experiments were conducted at the experimental stations of Sindh Agriculture University, Tandojam (Station No. 1, Faculty of
Agricultural Engineering; 25°25′28′′N, 68°32′24′′E), (Station No. 2, Latif Experimental Farm; 25°26′14′′N, 68°32′30′′E) and
Agriculture Research, Tandojam, (Station No. 3, Barley and Wheat Research Institute, 25° 24′ 59′′ N 68° 32′ 40′′ E), Sindh,
Pakistan.  These  stations  were  selected  to  meet  the  need  of  three  different  soil  textures.  The  composted  soil  samples  were
collected  at  the  depth  of  0-30 cm,  and their  textural  classes  were  determined with  the  Bouyoucos  hydrometer  method.  Field
infiltration rates were measured using a double ring infiltrometer method. The results showed that the initial infiltration rates
were high and gradually decreased until they reached a steady state. Using statistical parameters (NSE, RMSE, CC, and R2), the
measured infiltration rates were compared with the predicted infiltration rates of the selected infiltration models. For clay loam
soil, Philip’s model had the lowest RMSE and highest NSE, CC, and R2 values, followed by Horton’s model. For both clay and
silty clay loam soils,  Horton’s model was the most accurate in predicting the infiltration rate with lowest RMSE and highest
NSE, CC, and R2 values, followed by Philip’s model. The other three models (Kostiakov’s, Modified Kostiakov’s, and Green-
Ampt’s) performed poorly with higher errors and lower agreements compared to Horton’s and Philip’s models. In conclusion,
Horton’s  model  demonstrated  the  highest  accuracy  and  agreement  for  clay  and  silty  clay  loam  soils,  while  Philip’s  model
showed the best performance for clay loam soil. These findings contribute to understanding the behavior of soil infiltration rate
and provide valuable insights for land and water management practices in the studied area.
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 1    Introduction
The  swift  expansion  of  the  world’s  population  has  heightened

the  necessity  for  greater  quantities  of  food,  water,  and  land.
Concurrently,  the  shifting  climate  is  significantly  disrupting  the
equilibrium  between  available  water  resources  and  demands,
resulting in a constrained supply of water for agricultural purposes

on  a  global  scale,  particularly  impacting  developing  nations.
According  to  data  from  the  World  Bank,  irrigated  agriculture
contributes  to  40%  of  global  food  production,  and  in  Pakistan
almost 90% of food grain production relies on it[1]. To address both
current and future food requirements, it is imperative to enhance the
productivity  of  food  grains  while  dealing  with  the  constraints  of
limited  land  and  water  resources[2].  To  attain  this  objective,  it  is
imperative  to  implement  well-designed on-farm irrigation systems,
where the soil’s  infiltration characteristics  assume a critical  role in
guaranteeing superior  water-use efficiency,  the ideal  application of
fertilizers, and effective irrigation scheduling[3].

Recent  advances  in  infiltration  modeling  have  shown  a
significant  shift  toward  integrating  machine  learning  approaches
with traditional  empirical  models  to  enhance predictive accuracy[4].
Contemporary  research  trends  emphasize  the  importance  of  site-
specific  model  validation,  as  demonstrated  by  recent  studies  that
have  highlighted  the  varying  performance  of  infiltration  models
across different climatic zones and soil conditions[5,6]. The evolution
of  infiltration  modeling  has  also  seen  increased  attention  to  the
physical  realism  of  model  assumptions,  with  researchers  favoring
models  that  better  represent  the  complex  interactions  between  soil
structure, moisture dynamics, and hydraulic properties[7]. Furthermore,
recent  technological  advances  have  enabled  more  precise  field
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measurements  and  real-time  monitoring  of  infiltration  processes,
contributing  to  improved  model  calibration  and  validation
procedures[8].

Soil water, although a minor component within the Earth’s total
water  reservoirs,  holds  immense  significance  as  it  governs  the
accessibility  of  water  for  plants  across  diverse  soil  layers[9].  It  is  a
fundamental element that has a significant impact on soil infiltration
characteristics. Rainfall and irrigation are the key inputs to the soil
water[10,11].  Rainfall  and  irrigation  water  that  falls  on  the  surface  is
subsequently  split  into  two  parts:  surface  runoff,  which  travels  to
the  sea  via  overland  flow  and  stream  channels,  and  infiltration,
which  enters  the  soil  first.  The  mechanism  through  which  water
enters the soil from the surface is termed infiltration, representing a
significant element within the hydrological cycle[12].

According to  Angelaki[13]  infiltration  constitutes  a  multifaceted
phenomenon  influenced  by  numerous  factors,  including  soil  type,
its texture, density, moisture content, impurities within the soil, the
presence  of  vegetation,  and  plant  root  density.  Soil  texture  is  an
inherent  factor  that  influences  soil  infiltration;  it  cannot  be
changed[14].  Understanding  the  process  of  infiltration  and  its
influencing factors holds significance not only for assessing surface
runoff but also for gaining insights into subsurface water movement
and  the  storage  of  water[15].  A  reduced  infiltration  rate  suggests  a
potential  for increased runoff and erosion,  which can have adverse
effects  on  the  water-holding  capacity  of  soil[16].  This  makes  it
difficult  for  the  soil  to  meet  the  required  water  demand  for  crop
production[17].  Moreover,  in  the  pursuit  of  enhancing  the  efficiency
and uniformity of surface irrigation systems when delivering water
to  agricultural  fields,  the  process  of  infiltration  stands  out  as
exceptionally  crucial[18].  Comprehending  the  phenomenon  of
infiltration holds paramount status in the framework of  forecasting
the  requisite  water  volume  for  achieving  root  zone  saturation,
ascertaining  the  suitable  irrigation  duration,  and  approximating
seepage  losses  within  diverse  surface  irrigation  systems[19].  Hence,
having  comprehensive  insights  into  soil  infiltration  rates  and  their
attributes  is  of  utmost  importance  for  improving  irrigation  water
utilization efficiency while  minimizing water  wastage[20].  Likewise,
infiltration  data  serves  as  a  vital  parameter  in  the  context  of  field
drainage  applications[12].  As  a  result,  irrigation  engineering  places
significant reliance on understanding infiltration for the purpose of
planning and constructing effective irrigation systems[19].

The  infiltration  properties  of  soils  can  be  assessed  through
direct  field  measurements  or  by  mathematically  fitting  field
infiltration data to infiltration models[21].  In the field the infiltration
process has been measured using several types of instruments such
as  single-ring,  double-ring,  tension,  and  mini  disk  infiltrometers.
But the experimental estimation of infiltration poses challenges as it
is  costly,  labor-intensive,  and  time-consuming[4].  Consequently,  to
determine  soil  infiltration,  numerous  infiltration  models  have  been
developed,  and  these  models  have  undergone  thorough  and
comprehensive  reviews,  presentations,  and  summaries[10].  These
models  are  grouped  into  three  categories:  empirical  (Kostiakov,
Modified Kostiakov), semi-empirical (Horton), and physical (Philip,
Green-Ampt) models[5].

Numerous  infiltration  models  exist,  but  their  applicability  to
real-world  data  remains  uncertain[6].  The  applicability  of  models
varies depending on soil types due to the dependence of infiltration
rate on soil texture[7]. Choosing the right model to precisely estimate
the  infiltration  rate  for  a  specific  field  condition  can  be  a
challenging task due to the existence of numerous available models,
each  with  distinct  origins,  underlying  assumptions,  and

parameters[8].  To  establish  model  parameters  and  compare
efficiencies  of  infiltration  models  for  different  soil  conditions,
several  studies  have  been  conducted[20].  Several  researchers  have
performed a comparative analysis of the performance of models for
different regions and soil types[6,15,22,23]. Building upon the previously
mentioned  information,  this  study  aims  to  assess  the  efficacy  of
diverse infiltration models customized for distinct soil textures. The
primary purpose of this study is to evaluate the performance of five
widely  used  infiltration  models—Kostiakov,  Modified  Kostiakov,
Philip,  Horton,  and  Green-Ampt—for  accurately  predicting  soil
infiltration rates across different  soil  textures (clay loam, clay,  and
silty  clay  loam)  under  field  conditions  in  Tandojam,  Sindh,
Pakistan.  The  study  aims  to  identify  the  most  suitable  infiltration
model  for  each  soil  type  by  comparing  measured  infiltration  data
with  model  predictions  using  statistical  indices  (NSE,  RMSE,  CC,
and R2). This analysis provides critical insights into the selection of
appropriate  models  for  effective  land  and  water  management  in
varying soil conditions.

 2    Materials and methods
 2.1    Study area

The lab experiments were conducted in the department of Land
and Water  Management  and  the  field  experiments  were  conducted
at experimental stations in the vicinity of Sindh Agriculture Univer-
sity,  Tandojam.  Three  stations  (Figure  1)  were  selected  for  field
experiment, i.e. Station No. 1 (Faculty of Agricultural Engineering;
25°25′28′′N, 68°32′24′′E), Station No. 2 (Latif Experimental Farm;
25°26 ′14 ′ ′N,  68°32 ′30 ′ ′E),  and  Station  No.  3  (Barley  and  Wheat
Research  Institute,  Agriculture  Research  Institute,  Tandojam;
25°24′59′′N, 68°32′40′′E). These stations were selected on the basis
of three various soil textures and were within easy reach.
  

a. Station 1

b. Station 2

c. Station 3

N
27°00′N

26°00′N

25°00′N

24°00′N

Hyderabad

Mirpur Khas

Thatta

25°25′28′′N,
68°32′24′′E

67°40′E 68°00′E 68°20′E 68°40′E 69°00′E

N
27°00′N

26°00′N

25°00′N

24°00′N

Hyderabad

Mirpur Khas

Thatta

25°26′14′′N,
68°32′30′′E

67°40′E 68°00′E 68°20′E 68°40′E 69°00′E

N

26°00′N

25°00′N

24°00′N

Hyderabad Mirpur Khas

67°00′E 68°00′E 69°00′E

In
d
u
s

Karachi

25°24′59′′N,
68°32′40′′E

Figure 1    Location map of study area
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 2.2    Soil analysis
The composted soil  samples were collected from experimental

stations  with  an  auger  at  0-30  cm  depths  for  the  determination  of
soil  texture  (Table  1).  The  samples  were  oven  dried,  grinded,  and
sieved  through  a  2  mm  mesh  to  separate  the  soil  fractions.  The
textural  class  of  the  soil  was  determined  in  the  laboratory  by
Bouyoucos hydrometer method[24] using USDA textural triangle.
  

Table 1    Effect of soil physical properties on soil
permeability character

Indicator Unit Sand Silt Clay Effect on Permeability
Bulk density
(ρb) g∙cm–3 1.50-

1.70
1.30-
1.50

1.10-
1.30

Higher density reduces pore
space and water movement

Particle size
distribution % >70 40-50 >40 Coarse particles→high K;

fine→low K
Particle mass
(0-2 mm) % 90-95 85-90 75-85 Higher fine particles reduce

permeability

Porosity (n) % 35-40 40-50 50-60 Higher porosity generally
improves infiltration

Moisture
content (W)

% (by
wt.) 5-10 15-25 30-40 High water content fills pores,

reducing air-filled space
Organic matter
content % 0.5-1.0 1.5-3.0 2.0-4.0 Improves structure and

infiltration
Hydraulic
conductivity (K) cm∙h

–1 5.00-
20.00

1.00-
5.00

0.01-
0.50

Direct measure of
permeability

 

 2.3    Determination of infiltration rate in the field
The  double-ring  infiltrometer  method  was  used  to  determine

soil  infiltration.  Two  concentric  rings,  an  inner  ring  of
approximately  30  cm  diameter  and  an  outer  ring  of  about  60  cm
diameter,  were  driven  10-15  cm  into  the  soil  at  a  level,
representative  site  after  removing  surface  debris.  Both  rings  were
sealed at the edges to prevent leakage, and the outer ring was filled
first,  followed  by  the  inner  ring,  to  minimize  lateral  water
movement.  A  constant  ponded  head  of  2-5  cm  was  maintained  in
both  rings  using  a  Mariotte  bottle  or  by  manually  adding  water  as
needed.  The  volume  of  water  added  to  maintain  the  head  was
recorded at short intervals, every 30 s during the first 5 min, every 1-
2 min up to 20 min, every 5 min up to 60 min, and then every 10-
15  min  until  the  infiltration  rate  approached  steady  state.  The
infiltration rate was calculated as the volume of water added divided
by  the  area  of  the  inner  ring  and  the  corresponding  time  interval,
while  cumulative  infiltration  was  obtained  by  summing  the  total
volume  infiltrated  per  unit  area.  Care  was  taken  to  minimize  soil
disturbance during installation, prevent evaporation with protective
covers,  and  ensure  accurate  measurements  until  steady  infiltration
was achieved.
 2.4    Infiltration models

Five  distinct  infiltration  models  were  selected  to  estimate
infiltration rates,  with parameters determined from field data using
graphical  methods[25].  The  models  and  their  key  characteristics  are
shown in the following:
 2.4.1    Empirical models

1)  Kostiakov’s  model:  Kostiakov[26]  introduced  a  simple
empirical  equation  through  curve  fitting  data  that  correlates

infiltration with time using a power function as Equation (1).

f (t) = at−b (1)
where,  parameters  a  and  b  are  determined  by  plotting  ln[f(t)]  vs
ln(t).

2) Modified Kostiakov’s model: Smith[27] made modifications to
Kostiakov’s model by introducing the term (fc) to account for long-
term behavior as Equation (2).

f (t) = a′t−b′ + fc (2)

where, fc represented the steady-state infiltration rate.
 2.4.2    Semi-empirical model

1)  Horton’s  model:  The Horton[28] presented a  model  based on
the  assumption  that  the  infiltration  starts  at  higher  rates,  then
decreases  exponentially  with  time  and  eventually  reaches  a  steady
state when the soil becomes saturated as Equation (3).

f (t) = ( f 0 − fc)× e−βt + fc (3)

This study assumed exponential decay from the initial rate f0 to
the steady rate fc.
 2.4.3    Physical models

1) Philip’s  model:  Philip[29]  introduced an empirical  infiltration
model  derived  by  truncating  the  solution  series  from  a  pounded
surface as Equation (4).

f (t) = 0.5×S × t−0.5 +A (4)
The analysis was based on infiltration theory with sorptivity S

and transmission parameter A.
2)  Green-Ampt  model:  Green  and  Ampt[30]  presented  a  model

based  on  the  assumption  that  soil  may  be  regarded  as  a  bundle  of
tiny  capillary  tubes  irregular  in  area,  direction  and  shape,  as
Equation (5).

f (t) = m+
n
F

(5)

The  research  related  the  infiltration  rate  to  cumulative
infiltration F. m  represents  Saturated  Hydraulic  Conductivity  (K).
This is the rate at which water can move through the soil when it is
fully saturated. n represents the product of three physical parameters.

n = K ×ψ×∆θ (6)

ψ

∆θ

where, K  represents  saturated  hydraulic  conductivity,    represents
wetting  front  soil  suction  head  (capillary  potential),    represents
moisture deficit (or initial moisture deficit).

Parameter  estimation  for  each  model  followed  established
graphical  procedures,  with  detailed  methodologies  available  in  the
literature[9].
 2.5    Comparison  of  field  measured  and  predicted  infiltration
rate

A  comparison  between  the  measured  infiltration  rate  in  the
field  and  the  predicted  values  was  carried  out  using  the  following
statistical  parameters  (Table  2)  to  assess  the  performance  of  the
infiltration models.

 
 

Table 2    Statistical parameters for assessment of infiltration models
No. Statistical Parameter Equation Parameters

1 Nash-Sutcliffe model efficiency
coefficient NSE = 1−

n∑
i=1

(ai −bi)2

n∑
i=1

(ai − ā)2

Where:
a=observed field values
b=model predicted values
n=total number of observations

(To be continued on the next page)
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Table 2 (Continued )
 

No. Statistical Parameter Equation Parameters

2 Root means square error RMSE =

√
1
n

n∑
i=1

(ai −bi)2

3 Coefficient of correlation r =

n ·

(
n∑

i=1

ai ·bi

)
−

(
n∑

i=1

ai

)
·

(
n∑

i=1

bi

)Ã
n ·

(
n∑

i=1

a2
i

)
−

(
n∑

i=1

ai

)2
Ã

n ·

(
n∑

i=1

b2
i

)
−

(
n∑

i=1

bi

)2

4 Coefficient of determination R2 = r2
 

 3    Results and discussion
 3.1    Models estimated parameters

The  estimated  values  were  found  to  be  consistent  with  those

reported in the literature, as summarized in Figures 2-6 and Table 3.

These estimated values of infiltration model parameters are valuable

for developing an infiltration equation specific to the study area.
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Table 3    Estimated values of the model parameters for the
three stations

Models Parameters
Stations

1 2 3

Kostiakov’s
a 1.0230 1.3091 12.1920
b 0.9018 0.9013 1.1696

Modified Kostiakov’s
aʹ 0.3057 0.8857 12.1480
bʹ 1.3529 1.0105 1.1340

Philip’s
A –2.0442 –1.6925 –39.8300
S 5.9908 6.5882 122.2280

Horton’s β 7.1771 3.4166 3.4506

Green-Ampt’s
m –0.1687 0.2907 –23.3240
n 5.4181 6.7080 2928.4000

 

 3.2    Infiltration rate in the field
The  data  of  infiltration  rate  collected  from  each  station  was

then  used  to  plot  the  infiltration  rate  curves,  which  show  the
relationship  between  the  infiltration  rate  and  time.  The  results
showed that the initial infiltration rates were high in the beginning,
which  were  7.56,  8.40,  and  213.40  cm/h  for  stations  1,  2,  and  3,
respectively.  However,  these  rates  decreased  over  time  until  they
reached  a  steady  state,  which  were  1.38,  0.90,  and  4.20  cm/h  for
stations 1, 2, and 3, respectively. Silty clay loam soil exhibits higher
initial  infiltration  rates  because  of  its  relatively  loose  structure
compared  to  other  soil  textures  and  a  higher  concentration  of  silt
particles.  The  infiltration  rates  varied  significantly  across  the  three
locations.
 3.3    Simulated infiltration rate with different models

The  models  showed  their  ability  to  accurately  simulate  the
infiltration process in different soil textures as illustrated in Figures
7-9,  respectively.  As illustrated in Figure 7,  Philip’s model closely
predicted the measured infiltration rate for the clay loam soil,  with
only  minor  deviations  observed.  The  infiltration  rate  is  initially
overpredicted  by  Philip’s  model,  then  underpredicted  in  the
intermediate  stage,  and  overpredicted  again  in  the  final  stage.  The
other  models  also  have  a  similar  trend  of  overestimating  and
underestimating the infiltration rate for the clay loam soil, but with
more deviations than Philip’s model.
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Figure 7    Measured and predicted values for clay loam (Station 1)
 

As illustrated in Figure 8, Horton’s model closely predicted the
measured  infiltration  rate  for  clay  soil,  except  for  some  minor

deviations  at  the  initial  and  final  stages.  Horton’s  model  slightly
over-predicted at the beginning and under-predicted at the end. On
the  other  hand,  Kostiakov’s,  Modified  Kostiakov’s,  and  Philip’s
models  over-predicted  throughout  the  experiment  until  the  final
stage. Green-Ampt’s model over-predicted at the first reading, then
under-predicted  at  the  next  readings,  and  over-predicted  again
towards the end. As illustrated in Figure 9, Horton’s model closely
predicted  the  measured  infiltration  rate  for  silty  clay  loam  soil,
except  for  a  minor  underestimation  at  the  beginning  and  a  minor
overestimation  at  the  end,  while  the  other  models  had  more
deviations  than  Horton’s  model  in  predicting  the  infiltration  rate.
The other models,  namely Kostiakov’s,  Modified Kostiakov’s,  and
Green-Ampt’s, tended to overpredict the infiltration rate for most of
the  duration,  except  for  the  final  stage.  Philip’s  model  showed  a
reverse  pattern,  with  an  initial  overprediction  and  a  final
underprediction.
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The  results  indicate  that  the  values  simulated  by  the  models
align  well  with  the  actual  field  measurements  and  the  studied
models  are  also  consistent  with  the  previous  research  in  this  field,
which  adds  to  their  validity.  Moreover,  the  models  have  been
validated  and  verified  by  Mahapatra[2]  and  Basset[31],  who  have
commended their reliability and accuracy. The models can be used
in  different  classes  of  soil  texture  and  provide  different  levels  of
accuracy, as Sihag[5] has indicated. The models are therefore useful
tools for predicting infiltration in various conditions.
 3.4    Performance of models

The performance indices for the five infiltration models at three
distinct stations are outlined in Table 4.
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Table 4    Performance indices between measured and predicted
infiltration rate under different soil textures

Models Kostiakov’s Modified Kostiakov’s Philip’s Horton’s Green-Ampt’s
Clay loam (Station 1)

NSE 0.800 0.654 0.916 0.869 0.767
RMSE 1.106 1.454 0.718 0.894 1.194
CC 0.923 0.875 0.957 0.954 0.876
R2 0.852 0.766 0.916 0.909 0.767

Clay (Station 2)
NSE 0.688 0.713 0.893 0.963 0.712
RMSE 1.618 1.552 0.945 0.556 1.553
CC 0.897 0.882 0.945 0.981 0.844
R2 0.805 0.777 0.893 0.963 0.712

Silty clay loam (Station 3)
NSE 0.294 0.529 0.967 0.970 0.836
RMSE 59.623 48.705 12.859 12.257 28.733
CC 0.908 0.914 0.983 0.990 0.914
R2 0.825 0.835 0.967 0.980 0.836

 

 3.4.1    Clay loam soil (Station 1)
Philip’s  model  exhibited  the  highest  accuracy  (NSE=0.916,

RMSE=0.718  cm/h)  for  clay  loam soil,  which  can  be  attributed  to
the  model’s  ability  to  capture  the  dual-phase  infiltration  behavior
characteristic  of  medium-textured  soils.  The  relatively  balanced
pore  size  distribution  in  clay  loam  allows  for  both  rapid  initial
infiltration  through  macropores  and  sustained  infiltration  through
micropores,  which  aligns  well  with  Philip’s  theoretical  framework
that considers both gravity and capillary forces. The moderate bulk
density  and  intermediate  hydraulic  conductivity  of  clay  loam soils
provide  conditions  where  Philip’s  sorptivity  parameter  effectively
represents  the  soil’s  water  retention  characteristics.  Surprisingly,
this finding contrasted with previous research[32,33]. These studies had
highlighted  Horton’s  model  as  superior  to  Philip’s  model  for  clay
loam  soils.  However,  in  the  present  study,  Philip’s  model
outperformed Horton’s model, indicating its greater effectiveness.
 3.4.2    Clay soil (Station 2)

Horton’s  model  demonstrated  superior  performance  (NSE=
0.963,  RMSE=0.556  cm/h)  for  clay  soil,  primarily  due  to  its
exponential  decay  function  that  effectively  captures  the  rapid
transition  from  initial  high  infiltration  to  steady-state  conditions
typical  of  fine-textured  soils.  Clay  soils,  with  their  predominant
micropore  structure  and  low  hydraulic  conductivity,  exhibit
infiltration  behavior  that  closely  matches  Horton’s  assumption  of
exponential decrease. The high clay content results in swelling upon
wetting, which creates a more pronounced transition between initial
and  final  infiltration  rates,  making  Horton’s  exponential  decay
parameter  (β)  particularly  effective  in  representing  this  behavior.
This  finding  found  consonance  with  earlier  studies  conducted[14,34],
where  Horton’s  model  exhibited  impressive  agreement  with
measured  data.  Adding  to  the  strength  of  Horton’s  model,  some
scholars  investigated  the  infiltration  behavior  of  clay  soil  under
various conditions[35-38].
 3.4.3    Silty clay loam soil (Station 3)

Similar  to  clay  soil,  Horton’s  model  emerged  as  the  most
accurate (NSE=0.970, RMSE=12.257 cm/h) for silty clay loam. The
high  silt  content  in  this  soil  type  creates  a  unique  pore  structure
characterized  by  intermediate-sized  pores  that  maintain  relatively
high  initial  infiltration  rates  but  quickly  approach  steady-state
conditions.  The  exponential  decay  function  in  Horton’s  model
effectively  captures  this  transition,  while  the  model’s  flexibility  in
accommodating different initial  and final  infiltration rates makes it

well-suited for the complex infiltration dynamics of silty clay loam
soils.  This  conclusion  corresponds  with  the  findings  of  the
literatures[39,40],  whose  authors  also  noted  Horton’s  model’s
superiority over Philip’s model in silty clay loam soil.
 3.5    Model limitations and soil property interactions

The comparative analysis showed that the poor performance of
Kostiakov’s,  Modified  Kostiakov’s,  and  Green–Ampt’s  models
across all  soil  types could be traced to their  structural  assumptions
and  mismatch  with  field  heterogeneity:  Kostiakov’s  empirical
power-law  was  simplistic  and  lacked  a  physical  representation  of
pore-scale  sorption  and  redistribution  processes,  which  limited  its
ability  to  reproduce  the  slow,  often  exponential-like  decay  of
infiltration  in  fine-textured  soils[41].  Green–Ampt,  although
physically  based,  assumed  a  uniform  initial  water  content  and  a
sharp,  piston-like  wetting  front,  so  it  systematically  overpredicted
early-time fluxes and failed to capture the gradual moisture-profile
development and layered or heterogeneous media common in clay-
rich field soils[42,43]. The Modified Kostiakov model improved fits by
adding  a  steady-state  term  but  still  depended  on  the  underlying
power-law form and therefore could not fully reproduce macropore-
dominated  or  strongly  retarded  infiltration  behavior  observed  in
many measured datasets, which explained why comparative studies
frequently  found  its  skill  limited  or  soil-dependent[44,45].  From  a
methodological  viewpoint,  the  literature  indicated  that  best  results
were  obtained  when  empirical  flexibility  was  combined  with
physically  meaningful  constraints,  and  that  hybrid  or  generalized
forms  consistently  improved  fits  across  textures[43,45].  In  summary,
the  innovative  points  to  emerge  for  future  work  are  to:  1)  retain
physically interpretable parameters, 2) allow explicit representation of
heterogeneity/ponding time, and 3) adopt hybrid fitting frameworks
that combine a parsimonious empirical term for early-time behavior
with a physics-based asymptotic term for long-time conductivity, an
approach  that  the  reviewed  studies  showed  produced  more  robust,
transferable infiltration predictions across soil types[44,45].

 4    Conclusions
From the results  of the model predictions and correlation with

field data, it is concluded that the performance of infiltration models
is  strongly  influenced  by  soil  physical  properties,  particularly
texture,  pore  structure,  and  hydraulic  characteristics.  Horton’s
model consistently predicted accurate infiltration rates for both clay
and  silty  clay  loam  soil,  primarily  due  to  its  exponential  decay
function  that  effectively  captures  the  rapid  transition  from  initial
high  infiltration  to  steady-state  conditions  characteristic  of  fine-
textured  soils.  The  predictions  of  Philip’s  model  exhibited  the
highest accuracy for clay loam soil, attributed to the model’s ability
to  represent  the  dual-phase  infiltration  behavior  through  its
sorptivity  parameter,  which  effectively  accounts  for  the  balanced
pore size distribution in medium-textured soils.

The  remaining  three  models,  namely  Kostiakov’s,  Modified
Kostiakov’s,  and  Green-Ampt’s  models,  demonstrated  inferior
performance with larger errors as compared to Horton’s and Philip’s
models.  This  can  be  attributed  to  their  oversimplified  assumptions
that  fail  to  capture  the  complex  pore-scale  processes  and  hetero-
geneous nature of field soils. The study highlights the importance of
considering  soil  physical  properties  when  selecting  infiltration
models,  as  the  interaction  between  model  assumptions  and  soil
characteristics  significantly  influences  predictive  accuracy.  Future
research  should  focus  on  developing  more  comprehensive  models
that explicitly incorporate soil structure parameters and consider the
effects of soil layering and temporal moisture variations.
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