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Optical simulation model of the diffuse reflectance near-infrared
spectroscopy for predicting fresh maize quality
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Abstract: The optical properties of fresh maize tissues determine how light interacts with fresh maize cobs, which in turn
affects the measured spectral signals and model accuracy. In this paper, a simulation model was developed to invert the optical
properties of fresh maize cobs and evaluate the effects of different optical layouts on the accuracy of modeling predictions.
First, the uniformity of detector irradiation at various distances (10 mm, 20 mm, 30 mm, 40 mm, 50 mm) and angles (30°, 45°,
60°) with different optical properties was analyzed using optical simulation methods. Then, the spectra of fresh maize cobs
were collected at different light source angles and detection distances, and the spectral area polarization was calculated. Finally,
the optical properties of the cob were estimated by establishing a link between irradiation uniformity and spectral area
polarization, which resolved the distribution of light flux in edible maize cobs under different optical structures. The results
show that the model of light transport mimicking the organizational structure of maize cob has been successfully simulated. The
estimated optical properties of the cob are: absorption 4=37%, transmission 7=20%, and diffuse reflectance D=40%. This
verifies that the accuracy and precision of the prediction model for the water content of fresh maize are best achieved under an
optical structure with a detection distance of 40 mm and a light source angle of 45°. The establishment of the simulation model
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provides theoretical support for near-infrared detection of the intrinsic quality of fresh maize.
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1 Introduction

Fresh maize combines the characteristics of grain, fruit, and
vegetable, offering high nutritional value and good taste. China
ranks first in the world for both the production and consumption of
fresh maize, with the planting area exceeding 1.34 million hectares
in recent years!'”. However, the grade classification of fresh maize
remains confusing.

Near-infrared spectroscopy is widely used for detecting the
internal quality of agricultural products because it allows for the
acquisition of information and the evaluation and analysis of the
intrinsic quality of specimens without destroying the samples. Near
infrared spectroscopy technology is the use of fruit and vegetable
tissues to measure the Near Infrared (NIR) reflection, scattering,
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transmission, and absorption characteristics, which can reflect the
internal tissue composition information of fruits and vegetables. For
example, it can measure the soluble solid content of korla fragrant
pears”®, the moisture content of walnut kernels”, and the soluble
sugar content in super sweet maize®. Additionally, near-infrared
spectroscopy has been widely used for non-destructive quality
evaluation of agricultural products, such as detecting the ripeness of
pineapple pulp® and identifying mold in walnuts”. Recently, NIR
spectroscopy techniques have relied on chemometrics for modeling
and analyzing signals and agricultural quality indicators®. However,
NIR measurements describe the combined effect of absorption and
scattering, which cannot separate the absorption and scattering
effects, weakening the ability to reflect the structural properties of
tissues and easily leading to the loss of key information, which
creates difficulties and challenges in the accuracy, stability, and
versatility of prediction models®'". Optical characterization helps to
understand the mechanism of interaction between light and fruits
and vegetables, providing information related to physical structure
(particle size, shape, distribution density) and chemical composition
(moisture, soluble solids content)!>"”], and thus providing a
theoretical basis for quality testing of agricultural products.

So far, many scholars have explored the optical properties of
fruits and vegetables. Pan et al.'’ studied a method for detecting the
quality of fruits and vegetables based on optical characteristic
parameters, finding that this method is very effective for quality
detection applications. Fruits and vegetables are complex turbid
organisms that cause multilayer scattering of light in transmission,
and Monte Carlo model theory is often used to study the
transmission properties of light energy in biological tissues. Monte
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Carlo simulation can effectively deal with the complex propagation
behavior of light in inhomogeneous media, which is often difficult
to accurately describe with traditional analytical methods'”. Instead
of solving the radiative transfer equation, the Monte Carlo (MC)
method estimates the optical properties of tissues by simulating the
process of light propagation through a medium, and is a
computational technique used to understand the interaction of
photons with tissues!'®. Tan et al."” used Monte Carlo simulation of
a three-layer kernel model to evaluate the effects of probe geometry
and fiber parameters on near-infrared spectral measurements. Zhang
et al.”” used the Monte Carlo method to simulate photon trajectories
within apples and then applied this method to real apple sample data
for learning and prediction, enabling them to analyze the
characteristics of the apple kernel layer through the simulated
luminosity map. These studies have demonstrated that Monte Carlo
methods can effectively invert the optical properties of fruits and
vegetables. However, there are few studies exploring the inversion
of optical properties specifically for fresh maize cobs in the existing
literature on maize.

According to Tan et al.?"l, existing optical inversion models are
based on the assumption that the turbid medium is homogeneous
and semi-infinite. In reality, fruit and vegetable tissues exhibit
various geometrical shapes, while the Monte Carlo method is a purely
numerical calculation that does not account for these geometric
influences. As a result, achieving accurate optical resolution is
challenging. This study proposed a new approach to address the
problem of low optical resolution accuracy. LightTools and
SolidWorks software were used to construct the geometric shape
and optical structure of maize cob, while Monte Carlo simulation
was employed to achieve the optical inversion of the maize cob.

LightTools is an optical simulation software based on Monte
Carlo simulation, which can effectively simulate the photon
transport process in non-homogeneous media (e.g. biological
tissues). Models of fruit and vegetable tissues can be defined
according to practical applications. Fruit and vegetable tissues
usually consist of different layers of tissues, such as skin in the
outermost layer, pulp in the middle layer, and core in the innermost
layer. Each layer of tissue has different optical properties
(absorption, scattering, transmission)””. Vaudelle et al.” used
Monte Carlo simulations to model the propagation properties of
light inside and at the boundaries of two layers of apple tissue,
modeling the apples as two centrally homogeneous spheres, with
radii differing only by an amount equal to the thickness of the skin,
while the inner layer contains the pulp. LightTools can define the
optical properties of different layer organizations and simulate the
propagation of light through different layers. The software provides
a variety of scattering models to describe the propagation of
photons in non-homogeneous media, the common ones being the
Lambertian scattering model and the Gaussian scattering model.
The Lambertian model is applied to ideal diffusely reflecting
surfaces, assumes that the intensity of light scattering is uniformly
distributed in all directions, and only light absorption is considered,
while scattering effects are neglected™; Gaussian scattering models,
on the other hand, are suitable for describing the non-uniform
scattering of light in inhomogeneous media, and are particularly
suitable for the simulation of light propagation in complex
structures such as biological tissues”. Through Monte Carlo
simulation, LightTools can trace the propagation paths of photons
through different layers and tissues, simulate their absorption,
scattering and reflection processes, and statistically analyze the
transmission, reflection, and scattering characteristics of light in

each media layer. It is possible to view the distribution of light
energy in different tissue structures and assess the absorption and
scattering of light in each layer® . Therefore, LightTools is able to
fulfill the simulation needs of the cob spectral detection system. In
order to improve the efficiency of detecting vascular browning
(VAB) detection in apples, Sun et al.” used LightTools software to
build two different optical geometries of NIR measurement devices
and perform ray tracing; this simulation study shows the suitable
optical layout for internal defect detection. Han et al.’” used
LightTools to establish a model for optical detection of water-core
apples and compared the optical structures of two- and four-light
sources. It was found that a detection system with a four-light
source layout could mitigate the effects of apple size and water core
distribution on the prediction of SSC and WSI.

Combined with an actuality spectral acquisition device, this
study simplifies the fresh maize cob tissue model. A detection
system was established in which photons are emitted from a
halogen lamp, propagated through the cob tissue, and then captured
by an optical fiber. The uniformity of detector irradiation was
observed under different optical structures. The aim is to gain a
better understanding of internal quality testing methods for fruits
and vegetables based on spectral analysis techniques. This approach
ultimately enhances the resolution of spectral features and verifies
model accuracy. The purpose of this paper is to analyze the
mechanism of interaction between near-infrared light and fresh
maize cob materials, and to provide theoretical basis for the
detection mechanism and the design of detection system for
nondestructive testing of the intrinsic quality of fresh maize cobs.

2 Materials and methods

2.1 Simulation modeling process

In the simulation modeling, maize cob, halogen lamp, and fiber
optic probe were modeled in three dimensions using SolidWorks
software. Then, the model was transferred to LightTools 8.6
software for optical simulation, as shown in Figure la. The fiber
optic probe in the simulation model is simplified as a straight
model. A receiver is placed on the receiving surface of the fiber
optic probe to collect light data, to evaluate the luminous flux
received by the probe under different optical structures, and to
calculate the irradiation uniformity of its receiving surface. In the
process of three-dimensional modeling of fresh maize cob, a model
of the mid-section of maize cob with surface texture information
was established. In the modeling of the detection system, the model
was appropriately simplified according to the characteristics of the
actual system. Based on the structure of halogen lamps, a model of
a lamp cup type halogen lamp was constructed, and the light source
was simplified to a surface light source, focused at the origin. In the
specific structure modeling, the parameters are set for each
component as shown in Figure 2. The diameter of the receiving
surface (d) is 0.5 mm, the detection angle (0) is set to 12.5°, and the
specific structure is shown in Figure 2a. The halogen lamp
simplifies the light source as a surface light source and sets the focal
point to be located at the coordinate origin, and the light-emitting
parameters are set according to the data provided by the
manufacturer, in which the luminous flux (I) is 200 Im and the light-
emitting angle (¢) is 180°, as shown in Figure 2b. According to the
actual physical dimensions and structural characteristics of the cob
of fresh maize, a three-dimensional model of the middle part of the
cob was established, with the radius of the cob (R) of 50 mm, the
length of the kernel (L) of 10 mm, and the width of the kernel (H)
of 5 mm, the structure of which is shown in Figure 2c.
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The origin of the coordinate axis was set at the center of the
maize cob, and the centerline of the fiber optic detector was
perpendicular to the Z-axis. By adjusting the Z-axis coordinates,
detection at different distances / can be realized. The halogen lamp
light source is in the same plane as the fiber optic probe, and the
angle between the halogen lamp and the fiber optic probe is used to
define different angles of the incident light source. The angle of the
incident light source is changed by adjusting the clamp angle as
shown in Figure 1b. The experiment was conducted by diffuse
reflection detection using a homemade multidimensional integrated

Light
Incident
Eg;ggi&d 1 Specular reflection

3 » Reflected from
the corn cobs
S Absorption

—» Corn Seed

——— > Corn Cob

Transmitted
a. Fruit cob light path

Framework diagram of the simulation process

experimental setup as shown in Figure 1c. Fresh maize spectral data
were collected at different distances (10 mm, 20 mm, 30 mm,
40 mm, 50 mm) and different light source angles (30°, 45°, 60°),
and the spectral area polarization was calculated. In order to match
the appropriate optical properties of fresh maize cobs, the
experimental and simulation data were verified and fitted as shown
in Figure 1d. Finally, the optical properties of fresh maize were
estimated by minimizing the relative errors of irradiation uniformity
and spectral area polarization.
2.2 Attribute measurement

Optical characterization parameters of fresh maize include
absorption and scattering coefficients and anisotropy factor (g). g is
a dimensionless parameter characterizing the inhomogeneity of the
light distribution in the tissue and the probability of forward
scattering, taking values in the range [-1,1]. Most of the fruit and
vegetable food and produce tissues g range in 0.7-0.9. This paper
selected the reference value of 0.85 to approximate moisture content
and cellular structure of fruit and vegetable tissues (such as apples,
citrus) in the 900-1700 nm band of optical properties. The related
research anisotropy factor g is between 0.8-0.95 so this paper
takes a compromise value of 0.85. Since light is anisotropic during
propagation, a reduced scattering coefficient (1) is used®**. Light
reflects, scatters, absorbs, and transmits on the surface of the
sample®, which are shown in Figure 3. The backward scattering of
the seeds is the diffuse signal received by the detector.

Surface normal

Po

. Incident ray p(0)

Scattered ray
“——Energy distribution

~

b. Light scattering model

Note: 1 Incident light, 2 Specular reflection, 3 Reflected light from the maize cobs, 4 Backward scattered, 5 Absorption, 6 Transmitted

Figure 3 MCML simulation of light interaction with fresh maize tissues
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Absorption of light by fresh maize cobs is mainly due to the
functional groups of the chemical constituents. Scattering is mainly
due to inhomogeneous refractive indices of the tissue components.
The absorption coefficient y, represents the optical energy lost per
unit path of photon due to absorption. The scattering coefficient y,
expresses the optical energy d. lost by photons on path di, due to

scattering”®. The formulas are given in (1)(2)(3) and common units
1

are mm~' or cm™'.
dh,
=g ()
dh,
/Js - d: (2)
w,=p(1-g) 3)

Monte Carlo methods are used to capture the average behavior
of light traces and describe the optical properties (reflectance,
transmittance) of the sample. During the simulation, individual
photons are gradually tracked through the sample medium while the
light distribution characteristics are recorded. The parameters of
each step (e.g., step size, scattering direction, photon energy,
internal reflection, and boundary effects) are computed from known
or estimated distributions by means of a random number function.
The optical properties of the kernels of the fresh maize cob were set
to elliptical Gaussian scattering, while the cob portion was set to
full absorption and no scattering. Elliptical Gaussian scatterers are
similar to conventional Gaussian scatterers. The difference,
however, is that the former can model anisotropic distributions (i.e.,
non-rotational symmetry). The energy scattering distribution of an
elliptical Gaussian scatterer can be described by the following
Equation (4)F7:

p(0) = pexp {(—g) (COSZQj + ﬂ)} “4)

2 2
o? o}

0 is the scattering angle, also the angle of deviation from the
direction of incidence; the larger 6, the faster the scattering intensity
decays. p(6) is the intensity in the theta direction and p, is the
maximum intensity of the scattered intensity in the specular
direction; o, o, denote the standard deviation of the Gaussian
distribution in the direction of the elliptical principal axes (long and
short axes), respectively, controlling for anisotropy. If o, # o, then
it exhibits anisotropic scattering. ¢ is the azimuthal scattering angle

. cos’p  sin’¢
in the cosine space direction; < = +

= ) determines the
directional dependence of the scattered intensity. When ¢=0, the
intensity is dominated by o,; when ¢ = 90°, the intensity is
dominated by o, .

x

The elliptic Gaussian model allows defining the ratio between
the absorption and scattering coefficients of the scatterer, thus
regulating the diffuse reflection and transmission components of the
energy partitioning relation of the light propagation process in the
sample. Absorption (4) denotes the percentage of energy absorbed
by the scatterer, while propagation (C) refers to the percentage of
energy transmitted or reflected by the scatterer, and both satisfy
A+C=100%. Reflection (R) refers to the percentage of energy
reflected by the scatterer, and transmission (7) refers to the
percentage of transmitted energy that passes through the surface,
both of which satisfy R+7=100%. Diffuse reflection (D) represents
the percentage of propagating reflected energy calculated according
to the Lambertian scatterer model, where light is scattered around a
surface normal around the point of incidence. The Gaussian

component (G) refers to the propagated reflected energy, obeys a
Gaussian distribution, has a standard deviation in degrees, and
D+G=100%. When a photon enters the tissue, each time the photon
moves one random step, partial absorption and scattering occurs due
to collisions with the maize tissue particles, resulting in a gradual
decrease in the weight of the photon. The weights w of the photons
are updated according to Equation (5)":

w=wx (5)
M+ My

where, p, is the coefficient factor of the tissue; y, is the scattering
coefficient of the tissue.
2.3 Simulation experimental design

According to the diffuse reflectance spectra of fresh maize cobs
obtained from the near-infrared detection system, the variation
range of absorptivity was statistically analyzed to be 0.2-1.2, and
the step size of absorptivity was 0.2. The transmittance is then
calculated according to the formula. Transmittance 7 of 63%, 25%,
and 6%, respectively, corresponds to the propagation rate in the
elliptic Gaussian model. First, the propagation rate is set to 63%,
25%, and 6%, respectively, and the corresponding absorption rates
are calculated by the simulation software to be 37%, 75%, and 5%,
respectively. The variation range of reflectance is set to 20%-100%
(in steps of 20%). At this point, the diffuse reflectance D is 100%
and the Gaussian component G is 0%. By calculating the detection
irradiance uniformity at different detection distances for different
reflectivities R and transmittances 7, three sets of data were
obtained, totaling 60 data points. Then, the irradiation uniformity
was based on the minimum relative error of the polar aberration of
the spectral area for each optical parameter. The optimal 4, R, and T'
values were matched. On this basis, the variation range of diffuse
reflectance was set to 20%-100% (in steps of 20%). Calculate the
detection irradiance uniformity for different detection distances at
different D values. Get one set of data with 20 data points and
match the D-value in the same way.
2.4 Physical test verification
2.4.1 Disposable material

Wan Nuo 2000 fresh maize was used, which was picked in the
morning of the right season in the field of Wuqing, Tianjin, and
transported to the laboratory in time to be stored in the refrigerator.
The bracts were manually peeled off, maize whiskers and cob
shanks were removed, and 80 cobs of uniform size, full kernels, and
free of pests and diseases were selected as samples.
2.4.2 Test equipment

Near-infrared spectral acquisition of fresh maize cobs was
performed using a homemade synthesized device, defining the
middle surface of the cob as the sampling area and marking it with a
marker pen, as shown in Figure 4a. The middle of the cob is below
the fiber optic probe. Adjust the mechanical device so that the
central axis of the cob is parallel to the Z-axis, the central axis of the
fiber optic probe is parallel to the Y-axis, the material around the
halogen lamp to the fiber optic probe is as the axis of symmetry of
the row, and the three are in the same plane and perpendicular to the
Z-axis, as shown in Figure 4b. The distance between the fiber optic
probe and the material is defined as 4, the angle with the fiber optic
probe is defined as 6, and the halogen lamp light source has 20 W
power.
2.4.3 Data acquisition

Defining the middle surface of the cob as the sampling area, a
circular rotation was made along the cob’s central axis, with the
angle of rotation randomized each time, and 360° for each type of
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trial. The spectra were collected at probe distances 4 of 10 mm,
20 mm, 30 mm, 40 mm, and 50 mm and at light source angles 0 of
30°, 45°, and 60°, respectively. The average spectrum obtained by
averaging the respective spectra was then obtained. Modeling
validation tests for each type of different configuration parameters
for each sample measured three times, three times the average of the
spectra as the original spectra of the sample, then 80 samples 30°
and 45° test were measured 240 times, for a total of 480 data points.

a. Fruit cob samples

b. Spectral acquisition

Figure 4 Acquisition device

2.4.4 Data processing

Firstly, the sample set partitioning based on joint x-y distance
(SPXY) was used to partition the fresh maize samples. The spectral
preprocessing of the fresh maize sample spectra was then performed
using the Standard Normal Variate (SNV) transformation. Finally,
Support Vector Machines (SVM) algorithm was used to correlate
the spectral information with the physical and chemical values of
water content to establish a quantitative analysis and detection
model for water content of fresh maize. SVM has strong
generalization ability, but it is susceptible to kernel function.
Common kernel functions include linear kernel, RBF kernel,
Gaussian kernel, and polynomial kernel. In this paper, linear kernel
is used to construct SVM, and its kernel function is k(x,x')=
x"x x', and the core parameter is the penalty parameter C. The
larger the value of C, the lower the model’s tolerance to
misclassification, which may lead to overfitting; the smaller the
value of C, the higher the model’s tolerance to misclassification,
which may lead to underfitting. In order to obtain the optimal C
value, the particle swarm optimization algorithm (PSO) is used to
automatically find the appropriate penalty parameter C. The
parameters in this paper are set as follows: the number of particles
N=30, the maximum number of iterations 7, =30, the minimum
value of the penalty parameter C,,;, =0.1, and the maximum value of
the penalty parameter C,,, = 100, and the final optimized C value
is 10.5.
2.5 Evaluation indicator design
2.5.1 Simulation evaluation metrics

Irradiance surface uniformity®™ is the relative standard
deviation of irradiance at different locations of the outlet plane
calculated as in Equation (6):

U=1-std(E)/Ex100% (6)

where, U is the irradiance uniformity; E; is the value of irradiance
without using location; E is the mean value of irradiance at
different locations; std(E,) is the standard deviation of irradiance at
different locations.
2.5.2 Waveform evaluation metrics

The spectral area extreme deviation is defined as the
cumulative sum of the curve areas between the highest and lowest
values of absorbance corresponding to each spectral point of a set of
spectral curves™), which is calculated as shown in Equation (7).

N-1
SAD _ Z (Xmax,i _Xmin,i) +2(sz|x.i+l _Xmin,iH) x A/ll (7)
i=1

where, SAD is the differential integral absorbance; X; is the
spectral value at each wavelength point; X is the overall average
spectral value; N is the total number of wavelength points; X, is
the absorbance of the highest spectra at the first wavelength point;
X.in; 18 the absorbance of the lowest spectra at the first wavelength
point; and A4; is the distance between neighboring wavelengths.

The performance of the constructed model was evaluated by
correlation coefficient R?, Root Mean Square Error (RMSE), and
Residual Predictive Deviation (RPD)®*, which were calculated as
shown in Equations (8)-(10):

R=1- (8)

RMSE = )
SD

RPD = s (10)

where, SD is the standard deviation of the sample content of the
prediction set.

3 Results and discussion

3.1 Maize optical properties simulation results
3.1.1 Comparative analysis of different 4, R, and T rates

Figure 5a shows the average spectra at 45° incidence angle for
different detection distances, and the average spectra at different
distances are statistically analyzed. Spectral area extremes were
counted and were 697.8, 312.5, 199.0, 87.2, and 145.7, respectively.
The differences between the different distances were 385.3, 113.5,
11.8, and 41.5, in that order. The relative rates of change were
123.3%, 57.0%, 6.3%, and 28.5%, respectively. The results show
that the spectral amplitude decreases with increasing detection
distance in the range of 10 mm to 40 mm, while the amplitude at
50 mm lies between 20 mm and 30 mm. Figure 5b, 5c, and 5d
demonstrate U for different detection distances at 45° with different
optical parameter settings (absorptivity A4, propagation C,
reflectivity R, transmittance 7). The results show that the trend of U
change is more or less the same. However, the amplitude difference
is large. At 10 mm and 20 mm, the detection distance is too close,
with a large scattering of light, higher U but relatively low luminous
flux. The received optical power was 0.002 85 W and 0.0068 W,
respectively. Therefore the main match is a regular trend between
30 mm and 50 mm. It can be seen that as the reflectivity R
increases, U also increases. However, there is significant variability
in the degree of U attenuation at different detection distances as the
absorptivity 4 increases.

In order to accurately match the optical property parameters
(absorptivity 4, reflectance R, transmittance 7)) of fresh maize cobs,
a conclusion can be drawn by analyzing the relative error between
the relative rate of change of spectral area polarization (SADR) and
the relative rate of change of irradiance uniformity (UR) for
different optical properties. As shown in Figure 6, the optical
attribute parameters corresponding to the smallest relative error,
those that best fit the characteristics of the fresh maize cob, are
shown to be A=37%, T=20%, and R=80%.
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3.1.2 Comparative analysis of different diffuse reflectance rates
The optical properties of fresh maize cobs were identified in
Section 3.1.1 as: absorptivity 4=37%, transmittance 7=20%, and
reflectance R=80%, where R=80% contains forward scattering (G)
and diffuse reflection (D). Thus, the contribution of diffuse
reflections is further distinguished. As shown in Figure 7, there is a
large difference in U between different detection distances for
different D values. Calculating the average error of the relative error
under different reflectance combinations gives the following results:
when D=20% and G=80%, the average error is 108%; when
D=40% and G=60%, the average error is 52.94%; when D=60%
and G=40, the average error is 63.77%; and when D=20% and
G=80%, the average error is 53.19%. From the results, it can be
seen that the average error is the smallest when D=40% and
G=60%, so this parameter is the most matching parameter for this
model, as shown in Figure 8. The spectral information measured by
NIR spectroscopy is a combination of light absorption and
scattering. However the exact mechanism of interaction between
light and tissue is not clear'''. For this reason, this paper analyzes
the interaction between fresh maize cob and light by means of
optical simulation of the inversion. The results show that the

proportion of reflected light accounted for by the diffuse reflection
of the kernel was analyzed, 4=37%, T=20%, and D=40%.
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Figure 7 Diffuse reflection parameter difference
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Figure 8 Relative differences of diffuse reflection parameters

3.2 Verification of optical properties of maize cob

From Section 3.1, the optical properties of fresh maize cob are:
absorptivity A=37%, transmittance 7=20%, reflectance R=80%,
diffuse reflectance D=40%, and Gaussian reflectance G=60%. In
acquiring NIR spectra, the middle surface of the cob was defined as
the sampling area and rotated circumferentially along the cob’s
central axis. The angle of each rotation was randomized, so the
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optical simulation model for fresh maize was rotated accordingly in
the LightTools software. Specifically, the simulation is set up for
the following five scenarios: the center is located in the center of the
seed; the center is located between the transverse axial gaps of the
seed; the center is located halfway between the transverse axial gaps
of the seed and the surface of the seed; the center is located between
the longitudinal axial gaps of the seed; the center is located halfway
between the longitudinal axial gaps of the seed and the surface of
the seed. Simulate U at different distances under dynamics and find
the relative change in its value. Under the cob dynamics, the relative
trends of the mean values of U and SADR were consistent, as
shown in Figure 9, which verified the accuracy of the optical
attributes of fresh maize cobs.

FigurelOa shows the average spectra collected when the light
source angle @ is 30°, 45°, 60°, and the detection distance % is
40 mm. The trends of the overall curves were consistent, but there
was significant variance in the magnitude of absorbance. Statistical
analysis of spectra is required from different angles. The results
show that the spectral area polar deviation and standard deviation

20
—30°

I —45°

15 o

Absorbance
=

0.5

0 I I I
800 1200 1600 2000

Wavelength/nm

a. Spectrum averaged over different angles

Trradiance/mm?
6.240E—4
5.616E—4
4.992E—4
4.368E—4

Irradiance

c. Spot diagram of 45° irradiation

Figure 10

Table 1 Statistical analysis of different light source angles and
irradiance uniformity

Anele Spectral area extreme Standard Trradiance

g difference deviation uniformity
30° 149.2 0.57 50%
45° 187.2 0.83 54%
60° 291.4 1.24 42%

The optical properties of fresh maize cobs were evaluated by
simulation as A=37%, 7=20%, D=40%. When the light intensity
enters the interior of the maize cob, 37% of the light intensity is
absorbed by the chemical composition of the cob, 20% is
transmitted through the maize kernel, and 40% is accepted by the
detector on a diffusely reflecting surface. Figure 9 shows the

gradually become larger as the angle of clamping increases. The
standard deviation was less than 1 for both 30° and 45°, and 1.24
for 60°. The simulation results are that 45° has the highest U,
followed by 30°, and the worst is 60°, as listed in Table 1. The
simulation results are consistent with the change rule of spectral
statistics, which further verifies the rationality of the optical
properties.

1.0f —=— Spectral area
—e— Dynamic spot uniformity

0.5F

Rate of change

10-20 mm 20-30 mm 30-40 mm 40-50 mm
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Figure 9 Relative changes in irradiation uniformity
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b. Spot diagram of 60° irradiation
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d. Spot diagram of 30° irradiation

Irradiated light spot map at different angles

irradiated spot map received by the detector at a detection distance
of 40 mm and light source angles of 60°, 45°, and 30°.
3.3 Simulation results analysis

As shown in Figure 11a, there is a significant difference in the
detector received luminous flux at different detection distances. The
highest luminous flux was found at 10 mm and 40 mm, followed by
20 mm and 50 mm, and the lowest received flux was found at
30 mm, which indicates that the signal strength is weakest at this
distance condition. The spike response area varied with increasing
detection distance. Figure 11b-11f show the received irradiated spot
maps for 10 mm, 20 mm, 30 mm, 40 mm, and 50 mm detectors,
respectively. It was found that at a detection distance of 40 mm and
a light source angle of 45°, the luminous flux was higher and
centered, and the top of the seed could cover more light, so the
detector not only obtained more information but was also more
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comprehensive. Therefore, the detection distance of 40 mm and the
light source angle of 45° can obtain the information of the top of the
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Figure 11

3.4 Analysis of modeling results

The water content of fresh maize cobs was modeled with a
detection distance of 40 mm and light source angles of 30° and 45°,
and the effects of different optical structures on the water content
detection accuracy of fresh maize cobs were analyzed. The SNV-
SVM model was used to predict the water content of fresh maize
cobs, and the results are listed in Table 2. Comparing the modeling
accuracies at 30° and 45°, the R} and RPD values of the modeling
results at 45° were 0.880 and 2.956, respectively, and those at 30°
were 0.845 and 2.608, respectively. R3 is 4% higher than the 30°
angle, and the RPD is 0.348 higher than the 30° angle; therefore,
45° modeling is better than 30°. According to the standards related
to the spectral detection of grains, the coefficient of determination is
required to be greater than 0.85 to meet the accuracy requirements
of daily detection, and the model prediction performance is better
when the RPD is >2.5, which can be used for preliminary prediction
applications in practice™. It can be used for quantitative analysis
and has the potential for practical application, but the accuracy
needs to be further improved to provide a technical basis for the
development of near-infrared detection of fresh maize.

grain more stably and thus have a certain superiority in modeling
effect.

Irradiance/mm?
5.960E—4

5.215E-4
4.470E-4
3.725E-4
2.980E—4
2.235E-4
1.490E—4
7.450E-5
0
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b. 10 mm Irradiation spot map

Irradiance/mm?
4.460E—4
3.903E—4
3.345E-4
2.788E—4
2.230E—4
1.673E—4
1.115E-4
5.575E-5

Irradiance/mm?
4.840E—4
4.235E-4
3.630E-4
3.025E-4
2.420E-4
1.815E—4
1.210E—4
6.050E—5

Table 2 Results of water content modeling test of fresh maize
at different angles

f. 50 mm Irradiation spot map

Irradiated spot and luminous flux at different detection distances

Calibration set Prediction set

Angle Model Pre-processing 2 >
Rz RMSEC R; RMSEC RPD
30°  SVM SNV 0.945  0.697 0.845 0910 2.608
45°  SVM SNV 0.943  0.708  0.880 0932 2.956

4 Conclusions

This study evaluated the optical properties of fresh maize cobs
based on their diffuse reflectance spectral signals under different
collection conditions and explored the effect of multiple optical
structures on the prediction model of fresh maize water content. A
support vector machine (SVM) combined with a spectral
preprocessing technique (SNV) was used for modeling. The
conclusions are as follows:

Development of an optical simulation model for fresh maize
cobs. The uniformity of irradiation received by the detector under
different optical configurations was optically simulated to match the
degree of attenuation of the diffusely reflected signals from the
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actual collected cob. The optical properties of fresh maize cobs
were matched to A=37%, T=20%, and D=40%.

Modeling the water content of fresh maize cobs at a detection
distance of 40 mm and light source angles of 30° and 45° using
SNV+SVM. 45° modeling is better than 30°. Optical simulations
verified that more stable access to the top of the seed could be
obtained at a detection distance of 40 mm and a light source angle
of 45°.

This study provides a reference for understanding the
relationship between the optical properties of fresh maize cobs and
the detection of optical structures by contributing to the
understanding of light interactions with fresh maize cobs and
analyzing the mechanism of model prediction of water content. It
also contributes to the development of more effective NDT
methods. In the future, the actual optical measurement methods can
be combined to systematically analyze the influence of curvature
change, arrangement and epidermal structure of the maize kernel
surface on the light propagation path, scattering intensity
distribution and diffuse reflection signal acquisition stability in
different wavelength bands, so as to improve the applicability of the
water content prediction model and the accuracy of the detection.
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