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Abstract: The  optical  properties  of  fresh  maize  tissues  determine  how  light  interacts  with  fresh  maize  cobs,  which  in  turn
affects the measured spectral signals and model accuracy. In this paper, a simulation model was developed to invert the optical
properties  of  fresh  maize  cobs  and  evaluate  the  effects  of  different  optical  layouts  on  the  accuracy  of  modeling  predictions.
First, the uniformity of detector irradiation at various distances (10 mm, 20 mm, 30 mm, 40 mm, 50 mm) and angles (30°, 45°,
60°)  with  different  optical  properties  was  analyzed  using  optical  simulation  methods.  Then,  the  spectra  of  fresh  maize  cobs
were collected at different light source angles and detection distances, and the spectral area polarization was calculated. Finally,
the  optical  properties  of  the  cob  were  estimated  by  establishing  a  link  between  irradiation  uniformity  and  spectral  area
polarization,  which  resolved  the  distribution  of  light  flux  in  edible  maize  cobs  under  different  optical  structures.  The  results
show that the model of light transport mimicking the organizational structure of maize cob has been successfully simulated. The
estimated  optical  properties  of  the  cob  are:  absorption A=37%,  transmission T=20%,  and  diffuse  reflectance D=40%.  This
verifies that the accuracy and precision of the prediction model for the water content of fresh maize are best achieved under an
optical structure with a detection distance of 40 mm and a light source angle of 45°. The establishment of the simulation model
provides theoretical support for near-infrared detection of the intrinsic quality of fresh maize.
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 1    Introduction
Fresh  maize  combines  the  characteristics  of  grain,  fruit,  and

vegetable,  offering  high  nutritional  value  and  good  taste.  China
ranks first in the world for both the production and consumption of
fresh maize, with the planting area exceeding 1.34 million hectares
in recent years[1,2].  However,  the grade classification of fresh maize
remains confusing.

Near-infrared  spectroscopy  is  widely  used  for  detecting  the
internal  quality  of  agricultural  products  because  it  allows  for  the
acquisition  of  information  and  the  evaluation  and  analysis  of  the
intrinsic quality of specimens without destroying the samples. Near
infrared  spectroscopy  technology  is  the  use  of  fruit  and  vegetable
tissues  to  measure  the  Near  Infrared  (NIR)  reflection,  scattering,

transmission,  and  absorption  characteristics,  which  can  reflect  the
internal tissue composition information of fruits and vegetables. For
example,  it  can measure the soluble solid content  of  korla  fragrant
pears[3],  the  moisture  content  of  walnut  kernels[4],  and  the  soluble
sugar  content  in  super  sweet  maize[5].  Additionally,  near-infrared
spectroscopy  has  been  widely  used  for  non-destructive  quality
evaluation of agricultural products, such as detecting the ripeness of
pineapple  pulp[6]  and  identifying  mold  in  walnuts[7].  Recently,  NIR
spectroscopy techniques have relied on chemometrics for modeling
and analyzing signals and agricultural quality indicators[8]. However,
NIR measurements describe the combined effect of absorption and
scattering,  which  cannot  separate  the  absorption  and  scattering
effects,  weakening  the  ability  to  reflect  the  structural  properties  of
tissues  and  easily  leading  to  the  loss  of  key  information,  which
creates  difficulties  and  challenges  in  the  accuracy,  stability,  and
versatility of prediction models[9-11]. Optical characterization helps to
understand  the  mechanism  of  interaction  between  light  and  fruits
and  vegetables,  providing  information  related  to  physical  structure
(particle size, shape, distribution density) and chemical composition
(moisture,  soluble  solids  content)[12-15],  and  thus  providing  a
theoretical basis for quality testing of agricultural products.

So  far,  many  scholars  have  explored  the  optical  properties  of
fruits and vegetables. Pan et al.[16] studied a method for detecting the
quality  of  fruits  and  vegetables  based  on  optical  characteristic
parameters,  finding  that  this  method  is  very  effective  for  quality
detection  applications.  Fruits  and  vegetables  are  complex  turbid
organisms that  cause  multilayer  scattering  of  light  in  transmission,
and  Monte  Carlo  model  theory  is  often  used  to  study  the
transmission properties of light energy in biological tissues. Monte
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Carlo simulation can effectively deal with the complex propagation
behavior of light in inhomogeneous media,  which is  often difficult
to accurately describe with traditional analytical methods[17]. Instead
of  solving  the  radiative  transfer  equation,  the  Monte  Carlo  (MC)
method estimates the optical properties of tissues by simulating the
process  of  light  propagation  through  a  medium,  and  is  a
computational  technique  used  to  understand  the  interaction  of
photons with tissues[18]. Tan et al.[19] used Monte Carlo simulation of
a three-layer kernel model to evaluate the effects of probe geometry
and fiber parameters on near-infrared spectral measurements. Zhang
et al.[20] used the Monte Carlo method to simulate photon trajectories
within apples and then applied this method to real apple sample data
for  learning  and  prediction,  enabling  them  to  analyze  the
characteristics  of  the  apple  kernel  layer  through  the  simulated
luminosity map. These studies have demonstrated that Monte Carlo
methods  can  effectively  invert  the  optical  properties  of  fruits  and
vegetables.  However,  there are few studies exploring the inversion
of optical properties specifically for fresh maize cobs in the existing
literature on maize.

According to Tan et al.[21], existing optical inversion models are
based  on  the  assumption  that  the  turbid  medium  is  homogeneous
and  semi-infinite.  In  reality,  fruit  and  vegetable  tissues  exhibit
various geometrical shapes, while the Monte Carlo method is a purely
numerical  calculation  that  does  not  account  for  these  geometric
influences.  As  a  result,  achieving  accurate  optical  resolution  is
challenging.  This  study  proposed  a  new  approach  to  address  the
problem  of  low  optical  resolution  accuracy.  LightTools  and
SolidWorks  software  were  used  to  construct  the  geometric  shape
and  optical  structure  of  maize  cob,  while  Monte  Carlo  simulation
was employed to achieve the optical inversion of the maize cob.

LightTools  is  an  optical  simulation  software  based  on  Monte
Carlo  simulation,  which  can  effectively  simulate  the  photon
transport  process  in  non-homogeneous  media  (e.g.  biological
tissues).  Models  of  fruit  and  vegetable  tissues  can  be  defined
according  to  practical  applications.  Fruit  and  vegetable  tissues
usually  consist  of  different  layers  of  tissues,  such  as  skin  in  the
outermost layer, pulp in the middle layer, and core in the innermost
layer.  Each  layer  of  tissue  has  different  optical  properties
(absorption,  scattering,  transmission)[22].  Vaudelle  et  al.[23]  used
Monte  Carlo  simulations  to  model  the  propagation  properties  of
light  inside  and  at  the  boundaries  of  two  layers  of  apple  tissue,
modeling  the  apples  as  two  centrally  homogeneous  spheres,  with
radii differing only by an amount equal to the thickness of the skin,
while  the  inner  layer  contains  the  pulp.  LightTools  can  define  the
optical  properties  of  different  layer  organizations  and  simulate  the
propagation of light through different layers. The software provides
a  variety  of  scattering  models  to  describe  the  propagation  of
photons  in  non-homogeneous  media,  the  common  ones  being  the
Lambertian  scattering  model  and  the  Gaussian  scattering  model.
The  Lambertian  model  is  applied  to  ideal  diffusely  reflecting
surfaces,  assumes that  the  intensity  of  light  scattering is  uniformly
distributed in all directions, and only light absorption is considered,
while scattering effects are neglected[24]; Gaussian scattering models,
on  the  other  hand,  are  suitable  for  describing  the  non-uniform
scattering  of  light  in  inhomogeneous  media,  and  are  particularly
suitable  for  the  simulation  of  light  propagation  in  complex
structures  such  as  biological  tissues[25].  Through  Monte  Carlo
simulation,  LightTools  can  trace  the  propagation  paths  of  photons
through  different  layers  and  tissues,  simulate  their  absorption,
scattering  and  reflection  processes,  and  statistically  analyze  the
transmission,  reflection,  and  scattering  characteristics  of  light  in

each  media  layer.  It  is  possible  to  view  the  distribution  of  light
energy  in  different  tissue  structures  and  assess  the  absorption  and
scattering of light in each layer[26-28]. Therefore, LightTools is able to
fulfill the simulation needs of the cob spectral detection system. In
order  to  improve  the  efficiency  of  detecting  vascular  browning
(VAB) detection in apples, Sun et al.[29] used LightTools software to
build two different optical geometries of NIR measurement devices
and  perform  ray  tracing;  this  simulation  study  shows  the  suitable
optical  layout  for  internal  defect  detection.  Han  et  al.[30]  used
LightTools to establish a model  for  optical  detection of  water-core
apples  and  compared  the  optical  structures  of  two-  and  four-light
sources.  It  was  found  that  a  detection  system  with  a  four-light
source layout could mitigate the effects of apple size and water core
distribution on the prediction of SSC and WSI.

Combined  with  an  actuality  spectral  acquisition  device,  this
study  simplifies  the  fresh  maize  cob  tissue  model.  A  detection
system  was  established  in  which  photons  are  emitted  from  a
halogen lamp, propagated through the cob tissue, and then captured
by  an  optical  fiber.  The  uniformity  of  detector  irradiation  was
observed  under  different  optical  structures.  The  aim  is  to  gain  a
better  understanding  of  internal  quality  testing  methods  for  fruits
and vegetables based on spectral analysis techniques. This approach
ultimately  enhances  the  resolution  of  spectral  features  and  verifies
model  accuracy.  The  purpose  of  this  paper  is  to  analyze  the
mechanism  of  interaction  between  near-infrared  light  and  fresh
maize  cob  materials,  and  to  provide  theoretical  basis  for  the
detection  mechanism  and  the  design  of  detection  system  for
nondestructive testing of the intrinsic quality of fresh maize cobs.

 2    Materials and methods
 2.1    Simulation modeling process

ϕ

In the simulation modeling, maize cob, halogen lamp, and fiber
optic  probe  were  modeled  in  three  dimensions  using  SolidWorks
software.  Then,  the  model  was  transferred  to  LightTools  8.6
software  for  optical  simulation,  as  shown  in  Figure  1a.  The  fiber
optic  probe  in  the  simulation  model  is  simplified  as  a  straight
model.  A  receiver  is  placed  on  the  receiving  surface  of  the  fiber
optic  probe  to  collect  light  data,  to  evaluate  the  luminous  flux
received  by  the  probe  under  different  optical  structures,  and  to
calculate  the  irradiation  uniformity  of  its  receiving  surface.  In  the
process of three-dimensional modeling of fresh maize cob, a model
of  the  mid-section  of  maize  cob  with  surface  texture  information
was established. In the modeling of the detection system, the model
was appropriately simplified according to the characteristics  of  the
actual system. Based on the structure of halogen lamps, a model of
a lamp cup type halogen lamp was constructed, and the light source
was simplified to a surface light source, focused at the origin. In the
specific  structure  modeling,  the  parameters  are  set  for  each
component  as  shown  in  Figure  2.  The  diameter  of  the  receiving
surface (d) is 0.5 mm, the detection angle (θ) is set to 12.5°, and the
specific  structure  is  shown  in  Figure  2a.  The  halogen  lamp
simplifies the light source as a surface light source and sets the focal
point  to  be  located  at  the  coordinate  origin,  and  the  light-emitting
parameters  are  set  according  to  the  data  provided  by  the
manufacturer, in which the luminous flux (I) is 200 lm and the light-
emitting angle ( ) is 180°, as shown in Figure 2b. According to the
actual physical dimensions and structural  characteristics of the cob
of fresh maize, a three-dimensional model of the middle part of the
cob was established,  with  the  radius  of  the  cob (R)  of  50 mm, the
length of the kernel (L) of 10 mm, and the width of the kernel (H)
of 5 mm, the structure of which is shown in Figure 2c.
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Figure 1    Framework diagram of the simulation process
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The  origin  of  the  coordinate  axis  was  set  at  the  center  of  the
maize  cob,  and  the  centerline  of  the  fiber  optic  detector  was
perpendicular  to  the  Z-axis.  By  adjusting  the  Z-axis  coordinates,
detection at different distances h can be realized. The halogen lamp
light  source  is  in  the  same  plane  as  the  fiber  optic  probe,  and  the
angle between the halogen lamp and the fiber optic probe is used to
define different angles of the incident light source. The angle of the
incident  light  source  is  changed  by  adjusting  the  clamp  angle  as
shown  in  Figure  1b.  The  experiment  was  conducted  by  diffuse
reflection detection using a homemade multidimensional integrated

experimental setup as shown in Figure 1c. Fresh maize spectral data
were  collected  at  different  distances  (10  mm,  20  mm,  30  mm,
40  mm,  50  mm)  and  different  light  source  angles  (30°,  45°,  60°),
and the spectral area polarization was calculated. In order to match
the  appropriate  optical  properties  of  fresh  maize  cobs,  the
experimental and simulation data were verified and fitted as shown
in  Figure  1d.  Finally,  the  optical  properties  of  fresh  maize  were
estimated by minimizing the relative errors of irradiation uniformity
and spectral area polarization.
 2.2    Attribute measurement

µ′s

Optical  characterization  parameters  of  fresh  maize  include
absorption and scattering coefficients and anisotropy factor (g). g is
a dimensionless parameter characterizing the inhomogeneity of the
light  distribution  in  the  tissue  and  the  probability  of  forward
scattering,  taking  values  in  the  range  [–1,1].  Most  of  the  fruit  and
vegetable  food  and  produce  tissues g  range  in  0.7-0.9.  This  paper
selected the reference value of 0.85 to approximate moisture content
and cellular structure of fruit and vegetable tissues (such as apples,
citrus)  in  the  900-1700  nm band  of  optical  properties.  The  related
research  anisotropy  factor  g  is  between  0.8-0.9[31,32],  so  this  paper
takes a compromise value of 0.85. Since light is anisotropic during
propagation, a reduced scattering coefficient ( ) is used[33,34].  Light
reflects,  scatters,  absorbs,  and  transmits  on  the  surface  of  the
sample[35], which are shown in Figure 3. The backward scattering of
the seeds is the diffuse signal received by the detector.

 
 

a. Fruit cob light path b. Light scattering model
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Figure 3    MCML simulation of light interaction with fresh maize tissues
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µa

µs

dz dhs

mm−1 cm−1

Absorption  of  light  by  fresh  maize  cobs  is  mainly  due  to  the
functional groups of the chemical constituents. Scattering is mainly
due to  inhomogeneous refractive indices  of  the tissue components.
The absorption coefficient   represents the optical energy lost per
unit path of photon due to absorption. The scattering coefficient 
expresses the optical  energy    lost  by photons on path   due to
scattering[36]. The formulas are given in (1)(2)(3) and common units
are   or  .

µa =
dha

dz

(1)

µs =
dhs

dz

(2)

µ′s = µs(1−g) (3)

Monte Carlo methods are used to capture the average behavior
of  light  traces  and  describe  the  optical  properties  (reflectance,
transmittance)  of  the  sample.  During  the  simulation,  individual
photons are gradually tracked through the sample medium while the
light  distribution  characteristics  are  recorded.  The  parameters  of
each  step  (e.g.,  step  size,  scattering  direction,  photon  energy,
internal reflection, and boundary effects) are computed from known
or  estimated  distributions  by  means  of  a  random number  function.
The optical properties of the kernels of the fresh maize cob were set
to  elliptical  Gaussian  scattering,  while  the  cob  portion  was  set  to
full  absorption  and  no  scattering.  Elliptical  Gaussian  scatterers  are
similar  to  conventional  Gaussian  scatterers.  The  difference,
however, is that the former can model anisotropic distributions (i.e.,
non-rotational  symmetry).  The  energy  scattering  distribution  of  an
elliptical  Gaussian  scatterer  can  be  described  by  the  following
Equation (4)[37]:

p (θ) = p0exp
ï(
− θ

2

)Å cos2ϕ

σ2
x

+
sin2ϕ

σ2
y

ãò
(4)

p (θ) p0
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ϕÅ
cos2ϕ

σ2
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+
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σ2
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ã
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θ  is  the  scattering  angle,  also  the  angle  of  deviation  from  the
direction of incidence; the larger θ, the faster the scattering intensity
decays.    is  the  intensity  in  the  theta  direction  and    is  the
maximum  intensity  of  the  scattered  intensity  in  the  specular
direction;  ,    denote  the  standard  deviation  of  the  Gaussian
distribution in the direction of the elliptical principal axes (long and
short axes), respectively, controlling for anisotropy. If   then
it exhibits anisotropic scattering.   is the azimuthal scattering angle

in  the  cosine  space  direction;    determines  the

directional  dependence  of  the  scattered  intensity.  When  ϕ=0,  the
intensity  is  dominated  by  ;  when  ϕ  =  90°,  the  intensity  is
dominated by  .

The elliptic  Gaussian model  allows defining the ratio  between
the  absorption  and  scattering  coefficients  of  the  scatterer,  thus
regulating the diffuse reflection and transmission components of the
energy  partitioning  relation  of  the  light  propagation  process  in  the
sample.  Absorption (A)  denotes  the percentage of  energy absorbed
by  the  scatterer,  while  propagation  (C)  refers  to  the  percentage  of
energy  transmitted  or  reflected  by  the  scatterer,  and  both  satisfy
A+C=100%.  Reflection  (R)  refers  to  the  percentage  of  energy
reflected  by  the  scatterer,  and  transmission  (T)  refers  to  the
percentage  of  transmitted  energy  that  passes  through  the  surface,
both of which satisfy R+T=100%. Diffuse reflection (D) represents
the percentage of propagating reflected energy calculated according
to the Lambertian scatterer model, where light is scattered around a
surface  normal  around  the  point  of  incidence.  The  Gaussian

component  (G)  refers  to  the  propagated  reflected  energy,  obeys  a
Gaussian  distribution,  has  a  standard  deviation  in  degrees,  and
D+G=100%. When a photon enters the tissue, each time the photon
moves one random step, partial absorption and scattering occurs due
to  collisions  with  the  maize  tissue  particles,  resulting  in  a  gradual
decrease in the weight of the photon. The weights w of the photons
are updated according to Equation (5)[19]:

w′ = w× µs

µs +µa

(5)

µa µswhere,   is the coefficient factor of the tissue;   is the scattering
coefficient of the tissue.
 2.3    Simulation experimental design

According to the diffuse reflectance spectra of fresh maize cobs
obtained  from  the  near-infrared  detection  system,  the  variation
range  of  absorptivity  was  statistically  analyzed  to  be  0.2-1.2,  and
the  step  size  of  absorptivity  was  0.2.  The  transmittance  is  then
calculated according to the formula. Transmittance T of 63%, 25%,
and  6%,  respectively,  corresponds  to  the  propagation  rate  in  the
elliptic  Gaussian  model.  First,  the  propagation  rate  is  set  to  63%,
25%, and 6%, respectively,  and the corresponding absorption rates
are calculated by the simulation software to be 37%, 75%, and 5%,
respectively. The variation range of reflectance is set to 20%-100%
(in steps  of  20%).  At  this  point,  the  diffuse reflectance D  is  100%
and the Gaussian component G is 0%. By calculating the detection
irradiance  uniformity  at  different  detection  distances  for  different
reflectivities  R  and  transmittances  T,  three  sets  of  data  were
obtained,  totaling  60  data  points.  Then,  the  irradiation  uniformity
was based on the minimum relative error of the polar aberration of
the spectral area for each optical parameter. The optimal A, R, and T
values  were  matched.  On  this  basis,  the  variation  range  of  diffuse
reflectance  was  set  to  20%-100% (in  steps  of  20%).  Calculate  the
detection  irradiance  uniformity  for  different  detection  distances  at
different  D  values.  Get  one  set  of  data  with  20  data  points  and
match the D-value in the same way.
 2.4    Physical test verification
 2.4.1    Disposable material

Wan Nuo 2000 fresh maize was used, which was picked in the
morning  of  the  right  season  in  the  field  of  Wuqing,  Tianjin,  and
transported to the laboratory in time to be stored in the refrigerator.
The  bracts  were  manually  peeled  off,  maize  whiskers  and  cob
shanks were removed, and 80 cobs of uniform size, full kernels, and
free of pests and diseases were selected as samples.
 2.4.2    Test equipment

Near-infrared  spectral  acquisition  of  fresh  maize  cobs  was
performed  using  a  homemade  synthesized  device,  defining  the
middle surface of the cob as the sampling area and marking it with a
marker pen, as shown in Figure 4a. The middle of the cob is below
the  fiber  optic  probe.  Adjust  the  mechanical  device  so  that  the
central axis of the cob is parallel to the Z-axis, the central axis of the
fiber  optic  probe  is  parallel  to  the Y-axis,  the  material  around  the
halogen lamp to the fiber optic probe is as the axis of symmetry of
the row, and the three are in the same plane and perpendicular to the
Z-axis, as shown in Figure 4b. The distance between the fiber optic
probe and the material is defined as h, the angle with the fiber optic
probe is defined as θ,  and the halogen lamp light source has 20 W
power.
 2.4.3    Data acquisition

Defining the middle surface of the cob as the sampling area, a
circular  rotation  was  made  along  the  cob’s  central  axis,  with  the
angle of  rotation randomized each time,  and 360° for  each type of
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trial.  The  spectra  were  collected  at  probe  distances  h  of  10  mm,
20 mm, 30 mm, 40 mm, and 50 mm and at light source angles θ of
30°,  45°,  and 60°,  respectively.  The average spectrum obtained by
averaging  the  respective  spectra  was  then  obtained.  Modeling
validation  tests  for  each  type  of  different  configuration  parameters
for each sample measured three times, three times the average of the
spectra  as  the  original  spectra  of  the  sample,  then  80  samples  30°
and 45° test were measured 240 times, for a total of 480 data points.
  

a. Fruit cob samples b. Spectral acquisition

Figure 4    Acquisition device
 

 2.4.4    Data processing

k(x, x′) =
xT × x′

Tmax

Cmin

Cmax = 100

Firstly,  the  sample  set  partitioning  based  on  joint x-y  distance
(SPXY) was used to partition the fresh maize samples. The spectral
preprocessing of the fresh maize sample spectra was then performed
using  the  Standard  Normal  Variate  (SNV)  transformation.  Finally,
Support  Vector  Machines  (SVM)  algorithm  was  used  to  correlate
the  spectral  information  with  the  physical  and  chemical  values  of
water  content  to  establish  a  quantitative  analysis  and  detection
model  for  water  content  of  fresh  maize.  SVM  has  strong
generalization  ability,  but  it  is  susceptible  to  kernel  function.
Common  kernel  functions  include  linear  kernel,  RBF  kernel,
Gaussian kernel, and polynomial kernel. In this paper, linear kernel
is  used  to  construct  SVM,  and  its  kernel  function  is 

,  and  the  core  parameter  is  the  penalty  parameter  C.  The
larger  the  value  of  C,  the  lower  the  model’s  tolerance  to
misclassification,  which  may  lead  to  overfitting;  the  smaller  the
value  of C,  the  higher  the  model’s  tolerance  to  misclassification,
which  may  lead  to  underfitting.  In  order  to  obtain  the  optimal C
value,  the  particle  swarm  optimization  algorithm  (PSO)  is  used  to
automatically  find  the  appropriate  penalty  parameter  C.  The
parameters in this paper are set as follows: the number of particles
N=30,  the  maximum number  of  iterations    =30,  the  minimum
value of the penalty parameter   =0.1, and the maximum value of
the  penalty  parameter  ,  and  the  final  optimized C  value
is 10.5.
 2.5    Evaluation indicator design
 2.5.1    Simulation evaluation metrics

Irradiance  surface  uniformity[38]  is  the  relative  standard
deviation  of  irradiance  at  different  locations  of  the  outlet  plane
calculated as in Equation (6):

U = 1− std(Ei)/Ē×100% (6)
Ei

Ē
std (Ei)

where, U  is  the irradiance uniformity;    is the value of irradiance
without  using  location;    is  the  mean  value  of  irradiance  at
different locations;   is the standard deviation of irradiance at
different locations.
 2.5.2    Waveform evaluation metrics

The  spectral  area  extreme  deviation  is  defined  as  the
cumulative sum of  the curve areas  between the highest  and lowest
values of absorbance corresponding to each spectral point of a set of
spectral curves[39], which is calculated as shown in Equation (7).

S AD =
N−1∑
i=1

(
Xmax,i −Xmin,i

)
+
(

Xmax,i+1 −Xmin,i+1

)
2

×∆λi (7)

S AD Xi

X̄
Xmax,i

Xmin,i

∆λi

where,    is  the  differential  integral  absorbance;    is  the
spectral  value  at  each  wavelength  point;    is  the  overall  average
spectral value; N is the total number of wavelength points;   is
the absorbance of the highest  spectra at  the first  wavelength point;

 is the absorbance of the lowest spectra at the first wavelength
point; and   is the distance between neighboring wavelengths.

The  performance  of  the  constructed  model  was  evaluated  by
correlation  coefficient  R2,  Root  Mean  Square  Error  (RMSE),  and
Residual  Predictive  Deviation  (RPD)[33],  which  were  calculated  as
shown in Equations (8)-(10):

R2 = 1−

∑
(yi − ŷi)

2∑
(yi − ȳ)2

(8)

RMSE =

Õ
n∑

i=1

(yi − ŷi)
2

n−1
(9)

RPD =
SD

RMSEP
(10)

where,  SD  is  the  standard  deviation  of  the  sample  content  of  the
prediction set.

 3    Results and discussion
 3.1    Maize optical properties simulation results
 3.1.1    Comparative analysis of different A, R, and T rates

Figure 5a shows the average spectra at 45° incidence angle for
different  detection  distances,  and  the  average  spectra  at  different
distances  are  statistically  analyzed.  Spectral  area  extremes  were
counted and were 697.8, 312.5, 199.0, 87.2, and 145.7, respectively.
The differences  between the  different  distances  were  385.3,  113.5,
11.8,  and  41.5,  in  that  order.  The  relative  rates  of  change  were
123.3%,  57.0%,  6.3%,  and  28.5%,  respectively.  The  results  show
that  the  spectral  amplitude  decreases  with  increasing  detection
distance  in  the  range  of  10  mm to  40  mm,  while  the  amplitude  at
50  mm  lies  between  20  mm  and  30  mm.  Figure  5b,  5c,  and  5d
demonstrate U for different detection distances at 45° with different
optical  parameter  settings  (absorptivity  A,  propagation  C,
reflectivity R, transmittance T). The results show that the trend of U
change is more or less the same. However, the amplitude difference
is large. At 10 mm and 20 mm, the detection distance is too close,
with a large scattering of light, higher U but relatively low luminous
flux.  The  received  optical  power  was  0.002 85 W  and  0.0068  W,
respectively.  Therefore  the  main  match  is  a  regular  trend  between
30  mm  and  50  mm.  It  can  be  seen  that  as  the  reflectivity  R
increases, U also increases. However, there is significant variability
in the degree of U attenuation at different detection distances as the
absorptivity A increases.

In  order  to  accurately  match  the  optical  property  parameters
(absorptivity A, reflectance R, transmittance T) of fresh maize cobs,
a conclusion can be drawn by analyzing the relative error between
the relative rate of change of spectral area polarization (SADR) and
the  relative  rate  of  change  of  irradiance  uniformity  (UR)  for
different  optical  properties.  As  shown  in  Figure  6,  the  optical
attribute  parameters  corresponding  to  the  smallest  relative  error,
those  that  best  fit  the  characteristics  of  the  fresh  maize  cob,  are
shown to be A=37%, T=20%, and R=80%.
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Figure 5    Irradiation uniformity at different absorptivity rates
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Figure 6    Relative detection distance error for different
absorption rates

 

 3.1.2    Comparative analysis of different diffuse reflectance rates
The  optical  properties  of  fresh  maize  cobs  were  identified  in

Section  3.1.1  as:  absorptivity  A=37%,  transmittance  T=20%,  and
reflectance R=80%,  where R=80% contains  forward  scattering  (G)
and  diffuse  reflection  (D).  Thus,  the  contribution  of  diffuse
reflections is further distinguished. As shown in Figure 7, there is a
large  difference  in  U  between  different  detection  distances  for
different D values. Calculating the average error of the relative error
under different reflectance combinations gives the following results:
when  D=20%  and  G=80%,  the  average  error  is  108%;  when
D=40%  and G=60%,  the  average  error  is  52.94%;  when D=60%
and  G=40,  the  average  error  is  63.77%;  and  when  D=20%  and
G=80%,  the  average  error  is  53.19%.  From  the  results,  it  can  be
seen  that  the  average  error  is  the  smallest  when  D=40%  and
G=60%, so  this  parameter  is  the  most  matching parameter  for  this
model, as shown in Figure 8. The spectral information measured by
NIR  spectroscopy  is  a  combination  of  light  absorption  and
scattering.  However  the  exact  mechanism  of  interaction  between
light  and  tissue  is  not  clear[11].  For  this  reason,  this  paper  analyzes
the  interaction  between  fresh  maize  cob  and  light  by  means  of
optical  simulation  of  the  inversion.  The  results  show  that  the

proportion of reflected light accounted for by the diffuse reflection
of the kernel was analyzed, A=37%, T=20%, and D=40%.
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Figure 7    Diffuse reflection parameter difference
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Figure 8    Relative differences of diffuse reflection parameters
 
 3.2    Verification of optical properties of maize cob

From Section 3.1, the optical properties of fresh maize cob are:
absorptivity  A=37%,  transmittance  T=20%,  reflectance  R=80%,
diffuse  reflectance  D=40%,  and  Gaussian  reflectance  G=60%.  In
acquiring NIR spectra, the middle surface of the cob was defined as
the  sampling  area  and  rotated  circumferentially  along  the  cob’s
central  axis.  The  angle  of  each  rotation  was  randomized,  so  the
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optical simulation model for fresh maize was rotated accordingly in
the  LightTools  software.  Specifically,  the  simulation  is  set  up  for
the following five scenarios: the center is located in the center of the
seed; the center is located between the transverse axial gaps of the
seed; the center is located halfway between the transverse axial gaps
of the seed and the surface of the seed; the center is located between
the longitudinal axial gaps of the seed; the center is located halfway
between  the  longitudinal  axial  gaps  of  the  seed  and  the  surface  of
the seed. Simulate U at different distances under dynamics and find
the relative change in its value. Under the cob dynamics, the relative
trends  of  the  mean  values  of  U  and  SADR  were  consistent,  as
shown  in  Figure  9,  which  verified  the  accuracy  of  the  optical
attributes of fresh maize cobs.

Figure10a  shows  the  average  spectra  collected  when  the  light
source  angle  θ  is  30°,  45°,  60°,  and  the  detection  distance  h  is
40 mm. The trends of the overall  curves were consistent,  but there
was significant variance in the magnitude of absorbance. Statistical
analysis  of  spectra  is  required  from  different  angles.  The  results
show  that  the  spectral  area  polar  deviation  and  standard  deviation

gradually  become  larger  as  the  angle  of  clamping  increases.  The
standard  deviation  was  less  than  1  for  both  30°  and  45°,  and  1.24
for  60°.  The  simulation  results  are  that  45°  has  the  highest  U,
followed  by  30°,  and  the  worst  is  60°,  as  listed  in  Table  1.  The
simulation  results  are  consistent  with  the  change  rule  of  spectral
statistics,  which  further  verifies  the  rationality  of  the  optical
properties.
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Figure 10    Irradiated light spot map at different angles
 
 

Table 1    Statistical analysis of different light source angles and
irradiance uniformity

Angle Spectral area extreme
difference

Standard
deviation

Irradiance
uniformity

30° 149.2 0.57 50%

45° 187.2 0.83 54%

60° 291.4 1.24 42%
 

The  optical  properties  of  fresh  maize  cobs  were  evaluated  by
simulation  as  A=37%,  T=20%,  D=40%.  When  the  light  intensity
enters  the  interior  of  the  maize  cob,  37%  of  the  light  intensity  is
absorbed  by  the  chemical  composition  of  the  cob,  20%  is
transmitted  through  the  maize  kernel,  and  40% is  accepted  by  the
detector  on  a  diffusely  reflecting  surface.  Figure  9  shows  the

irradiated spot map received by the detector at a detection distance
of 40 mm and light source angles of 60°, 45°, and 30°.
 3.3    Simulation results analysis

As shown in Figure 11a, there is a significant difference in the
detector received luminous flux at different detection distances. The
highest luminous flux was found at 10 mm and 40 mm, followed by
20  mm  and  50  mm,  and  the  lowest  received  flux  was  found  at
30  mm,  which  indicates  that  the  signal  strength  is  weakest  at  this
distance  condition.  The  spike  response  area  varied  with  increasing
detection distance. Figure 11b-11f show the received irradiated spot
maps  for  10  mm,  20  mm,  30  mm,  40  mm,  and  50  mm  detectors,
respectively. It was found that at a detection distance of 40 mm and
a  light  source  angle  of  45°,  the  luminous  flux  was  higher  and
centered,  and  the  top  of  the  seed  could  cover  more  light,  so  the
detector  not  only  obtained  more  information  but  was  also  more
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comprehensive. Therefore, the detection distance of 40 mm and the
light source angle of 45° can obtain the information of the top of the

grain  more  stably  and  thus  have  a  certain  superiority  in  modeling
effect.
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Figure 11    Irradiated spot and luminous flux at different detection distances
 

 3.4    Analysis of modeling results

R2
P

R2
P

The  water  content  of  fresh  maize  cobs  was  modeled  with  a
detection distance of 40 mm and light source angles of 30° and 45°,
and  the  effects  of  different  optical  structures  on  the  water  content
detection  accuracy  of  fresh  maize  cobs  were  analyzed.  The  SNV-
SVM model  was  used  to  predict  the  water  content  of  fresh  maize
cobs, and the results are listed in Table 2. Comparing the modeling
accuracies at 30° and 45°, the   and RPD values of the modeling
results  at  45° were 0.880 and 2.956,  respectively,  and those at  30°
were  0.845  and  2.608,  respectively.    is  4%  higher  than  the  30°
angle,  and  the  RPD  is  0.348  higher  than  the  30°  angle;  therefore,
45° modeling is better than 30°. According to the standards related
to the spectral detection of grains, the coefficient of determination is
required to be greater than 0.85 to meet the accuracy requirements
of  daily  detection,  and  the  model  prediction  performance  is  better
when the RPD is >2.5, which can be used for preliminary prediction
applications  in  practice[40].  It  can  be  used  for  quantitative  analysis
and  has  the  potential  for  practical  application,  but  the  accuracy
needs  to  be  further  improved  to  provide  a  technical  basis  for  the
development of near-infrared detection of fresh maize.

 
 

Table 2    Results of water content modeling test of fresh maize
at different angles

Angle Model Pre-processing
Calibration set Prediction set

R2
C RMSEC R2

P RMSEC RPD

30° SVM SNV 0.945 0.697 0.845 0.910 2.608
45° SVM SNV 0.943 0.708 0.880 0.932 2.956

 4    Conclusions
This study evaluated the optical properties of fresh maize cobs

based  on  their  diffuse  reflectance  spectral  signals  under  different
collection  conditions  and  explored  the  effect  of  multiple  optical
structures on the prediction model of fresh maize water content.  A
support  vector  machine  (SVM)  combined  with  a  spectral
preprocessing  technique  (SNV)  was  used  for  modeling.  The
conclusions are as follows:

Development  of  an  optical  simulation  model  for  fresh  maize
cobs.  The  uniformity  of  irradiation  received  by  the  detector  under
different optical configurations was optically simulated to match the
degree  of  attenuation  of  the  diffusely  reflected  signals  from  the
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actual  collected  cob.  The  optical  properties  of  fresh  maize  cobs
were matched to A=37%, T=20%, and D=40%.

Modeling the water  content  of  fresh maize cobs at  a  detection
distance  of  40  mm  and  light  source  angles  of  30°  and  45°  using
SNV+SVM.  45°  modeling  is  better  than  30°.  Optical  simulations
verified  that  more  stable  access  to  the  top  of  the  seed  could  be
obtained at a detection distance of 40 mm and a light source angle
of 45°.

This  study  provides  a  reference  for  understanding  the
relationship between the optical properties of fresh maize cobs and
the  detection  of  optical  structures  by  contributing  to  the
understanding  of  light  interactions  with  fresh  maize  cobs  and
analyzing  the  mechanism  of  model  prediction  of  water  content.  It
also  contributes  to  the  development  of  more  effective  NDT
methods. In the future, the actual optical measurement methods can
be  combined  to  systematically  analyze  the  influence  of  curvature
change,  arrangement  and  epidermal  structure  of  the  maize  kernel
surface  on  the  light  propagation  path,  scattering  intensity
distribution  and  diffuse  reflection  signal  acquisition  stability  in
different wavelength bands, so as to improve the applicability of the
water content prediction model and the accuracy of the detection.
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