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Abstract: Root-knot nematodes can infect over 2000 plants, which causes significant economic losses. Rapid and accurate
detection of root-knot nematode disease is the key to screening resistant varieties and evaluating the effect of prevention and
control. To address the challenge of detecting root-knot nematode disease caused by dense root knots, multiple fibrous roots,
and small root knots, this paper takes cucumber as the research object to propose a detection and grading model Root-YOLOV7.
Specifically, the backbone network of YOLOV7 is restructured, which enables the proposed model to better capture object
information at different scales through a hierarchical structure and a self-attention module based on shifted windows.
Additionally, combined with the Wise-IoU loss function, the proposed model can adaptively adjust the weight of the
overlapping part of the object box, which solves the problem that bounding box regression cannot be optimized effectively
when detecting low-quality objects. Furthermore, an improved head network structure is proposed to compute the attention
weights by capturing the cross-dimension interaction of the root knot feature between the spatial and channel dimensions. To
verify the effectiveness of the proposed model, the performance of Root-YOLOV7 is compared with typical object detection
models. Experimental results show that the 4P@0.5 of Root-YOLOv7 reaches 87.40%, which is 72.67%, 5.60%, 5.28%,
9.68%, 5.83%, and 7.45% higher than Faster R-CNN, RT-DETR, YOLOvVS, YOLOv6, YOLOv7, and YOLOVS, respectively.
The proposed approach is expected to reduce the workload of plant pathologists and provide technical support for the
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cultivation of plant varieties with disease resistance.
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1 Introduction

As one of the major pathogens of infectious plant diseases, root-
knot nematodes have posed a great threat to the production of
vegetables, fruit trees, and other crops worldwide, which has led to
50% or even total crop failure!. According to the statistics, root-
knot nematode diseases cause approximately $160 billion in
economic losses worldwide each year, which has become a global
issue that plant pathologists cannot ignore®?. Cultivating resistant
varieties is one of the effective measures to prevent and control root-
knot nematode disease'”, while the detection, counting, and grading
of root knots in plant root systems are prerequisites for evaluating
resistant varieties. Currently, the counting of root knots and the
grading of disease are performed manually based on experience!*.
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This method is not only time-consuming and laborious but also
greatly influenced by subjective factors®™. Consequently, the
development of efficient methods for the detection and grading of
root-knot nematode disease is an urgent challenge that requires
resolution.

Recent advancements in artificial intelligence technology have
found extensive application across various domains, including
underwater object detection”, industrial processes”*, medical
diagnostics”, food quality inspection'”’, and animal behavior
recognition". Researchers have also engaged in numerous
correlated studies in the field of plant disease detection. For
example, Bohnenkamp et al. established a hyperspectral database of
wheat leaf diseases caused by various fungal pathogens and
employed machine learning techniques for analysis''?. Gomez-Caro
et al."¥ utilized close-range thermal imaging and reflectance
spectroscopy to identify Bacillus anthraci in mangoes. Principal
component analysis and partial least squares regression were used to
discriminate spectral responses, and the spectral bands with disease
characteristics were obtained. Mohammadpoor et al.'* utilized the
Fuzzy C-means algorithm to highlight the diseased areas on grape
leaves and employed support vector machines to ascertain the
presence of disease. To detect common guava plant diseases,
Almadhor et al."¥ applied the DeltaE model to segment the infected
regions, identified the diseases using multiple machine learning
classifiers, and proposed an artificial intelligence-driven framework.
Ostovar et al.' utilized machine learning techniques to realize the
automatic detection of Norwegian spruce stump root rot based on
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RGB images and classify the stump according to whether it is
rotten. Collectively, the aforementioned research studies
demonstrate promising results in the detection of plant diseases
through traditional machine learning methods. However, these
approaches necessitate manual feature extraction and do not have
end-to-end learning capabilities.

Aiming at the aforementioned issues, relevant scholars have
employed deep learning to realize the detection of plant diseases
and pests. For instance, Huang et al. introduced the convolutional
block attention module and an adaptive spatial feature fusion
structure in YOLOvVSs to detect gray planthoppers in crops such as
rice and wheat!'". Li et al. proposed a semantic segmentation model
that combined attention mechanism and transfer learning to segment
lesions in cucumber leaves and assess the disease severity
accurately!¥. Wang et al.'"” enhanced the detection performance of
cucumber leaf diseases by integrating an extraction module, which
consisted of a Swin Transformer backbone network and gradient-
weighted class activation mapping into a generative adversarial
network. Wang et al.” proposed an intelligent typical method for
apple pest identification and enumeration, which solved various
types of pest identification challenges. Liu et al.?! proposed an
algorithm for the identification of tomato pests, which mitigated the
issue of imbalanced sample sizes in images by enhancements to the
attention mechanism and loss function. Qi et al.”” proposed an
improved approach for detecting tomato viruses, which had a good
detection effect on the diseased area. Xue et al.”™ utilized deep
convolutional neural networks to recognize microscopic images of
nematodes and compute ecological indices. Sharma et al.*!
introduced ensemble block sequences in the channel layer to extract
deep features and construct a lightweight model for the detection of
plant leaf disease.

From the aforementioned studies and related research, it is
evident that there exists substantial research focused on the
detection of diseases and pests utilizing deep learning techniques.
However, investigations specifically addressing root-knot nematode
disease are extremely rare. This is because the roots of diseased
plants have the characteristics of dense root knots, numerous fibrous
roots, and significant differences in root knot sizes, which makes it
difficult to count root knots and grade diseases. To the best of our
knowledge, only one study has been reported on root knot detection
based on deep learning, and this research does not involve root knot
counting and grading of disease severity®. Considering that
cucumber is one of the plants severely affected by root-knot
nematode disease, this paper focuses on cucumber as the subject of
investigation and proposes a multi-scale adaptive deep learning
model for root-knot nematode disease detection and grading. The
main contributions of this paper are summarized as follows: (1) A
detection model has been developed using datasets of cucumber
roots with varying degrees of root-knot nematode disease. (2) The
backbone network of YOLOv7 has been reconstructed using a
hierarchical construction to process images of diverse scales and
complexities, thereby enhancing the generalization ability of the
model. (3) An improved network architecture for the head layer has
been proposed, which enables the model to effectively focus on key
features.

2 Materials and methods

2.1 Image data acquisition

The dataset used in this research is obtained from the Qingdao
Dagu River Basin National Agricultural Science and Technology
Park, Jimo District, Qingdao City, Shandong Province, China. A

total of 100 cucumber plants are cultivated in pots within the
greenhouse, with each pot containing an equal volume of nematode-
free sandy loam soil. The potted soil is artificially and quantitatively
inoculated with the root-knot nematode (Meloidogyne incognita).
The pertinent experimental conditions are illustrated in Figure 1.

b. Inoculation of nematodes
utilizing a pipette

a. Configured root-knot
nematode suspension

Figure 1 ~ Schematic diagram of root-knot nematode

inoculation experiment

The experiment comprises nematode treatment and blank
control groups. In the treatment group, the potted soil is inoculated
with the southern root-knot nematode at nine different inoculation
doses, resulting in nine separate nematode dose treatments. In the
blank control group, the soil is inoculated with 100cc of pure water.
In the trial, for each nematode dose treatment and blank control, 10
potted plants are set as replicates. The detailed inoculation design is
presented in Table 1.

Table 1 Inoculation design of root-knot nematodes

Dose treatment Root-knot nematode Number of
(DT) No. inoculation dose potted plants

CK 0/100cc 10
DT 1 0.5/100cc 10
DT2 1/100cc 10
DT3 5/100cc 10
DT 4 10/100cc 10
DTS 20/100cc 10
DT6 50/100cc 10
DT 7 100/100cc 10
DT 8 200/100cc 10
DT 9 500/100cc 10

Following inoculation, cucumber seedlings of uniform size are
selected for transplantation, and labels are affixed to each pot for
marking and indications, as illustrated in Figure 2.

The extracted roots are washed, and the roots are allowed to
naturally unfold against a well-lighted blue background, ensuring
that the root surfaces are free from water droplets. The camera
(Canon PowerShot SX50 HS) is employed to capture images of the
cucumber roots. A total of 519 images with a resolution of
3000 dpix4000 dpi are obtained through a manual filtering process
of the original images. The dataset comprises images of cucumber
roots with different degrees of disease severity, as illustrated in
Figure 3.

2.2 Data preprocessing

To enhance the diversity of the dataset and mitigate the
phenomenon of overfitting during model
augmentation methods, including brightness transformation, random
rotation, random noise addition, and mirroring, have been employed

training, image

to increase the total number of images to 2595. The effect of data
augmentation is illustrated in Figure 4.
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In this research, the Labelimg image annotation tool is utilized
for the manual annotation of root knots, and the corresponding
annotation files are saved in XML format. Labelimg is an image
annotation software that requires a Python environment to run. In
this research, Python version 3.9 is used. It is widely recognized
that the quality of the dataset significantly influences the training

efficacy of the model®™. To minimize the errors caused by
annotation, the dataset is annotated under the guidance of domain
experts. Furthermore, the dataset is randomly divided into training,
testing, and validation sets at a ratio of 7:2:1 to prevent sample
imbalance, which can adversely affect the detection accuracy of
the model.

b. Growth of potted plants

Figure 2 Schematic diagram of potted plants

a. Mildly infected
Figure 3

Mirroring

Brightness

=)

Noise

Original image

Dataset

Rotation

Figure 4 Effect of data augmentation

2.3 Proposed Root-YOLOV7
The object detection model can be divided into two primary

b. Moderately infected

c. Severely infected

Images of cucumber roots with different degrees of disease severity

types: one-stage detectors and two-stage detectors™ **. Two-stage
detectors are usually slower performance compared to their one-
stage counterparts. Consequently, this paper adopts the one-stage
detector YOLOv7 model as the foundational framework. The
YOLOv7 model incorporates composite model scaling, which
facilitates the initial attributes of the model to be retained, obtaining
the optimal structure™. In addition, the mosaic data augmentation in
the YOLOv7 model preprocessing strategy is suitable for
recognizing small objects™, which meets the needs of detecting
small root knots. Despite the robust capabilities of the YOLOv7
model, its performance in the detection of root knots remains
suboptimal. To enhance the detection of root knots, this paper
proposes the Root-YOLOvV7. The structure diagram of Root-
YOLOV7 is illustrated in Figure 5.

In Figure 5, the red dashed box marked with a red star is the
innovative component. The backbone network is responsible for
extracting features and obtains three different sizes of features of
the object information. Subsequently, the head layer integrates
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features from the backbone layer to construct bounding boxes and
generate feature maps at these three different sizes. Finally, the

RepConv layer employs a reparameterized structure to generate
prediction results of three different sizes.
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2.3.1 Reconstituted backbone module

In the YOLO series of networks, the backbone network is
critical for feature extraction®’. To extract rich features of root
knots, this paper employs the Swin Transformer to reconstruct the
backbone network of YOLOv7, which can effectively utilize large-
scale parallel computing and provide better performance. The Swin
Transformer network is characterized by a hierarchical design, and
its shifted window scheme restricts the self-attention computation to
non-overlapping local windows while permitting connections across
different windows®..

Swin Transformer contains four stages, each of which reduces
the resolution of the input feature map while progressively
expanding the receptive field. The image size remains constant in
the Swin Transformer Block, and only the feature weights are
stage without altering the
dimensions, as illustrated in Figure 6. The Patch Merging module

optimized throughout the entire

effectively reduces dimensions of the feature maps by half while

simultaneously doubling the number of channels, thereby

facilitating the establishment of multi-scale information.
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Figure 6 Schematic diagram of the Swin Transformer blocks

232
The bounding box loss function plays a crucial role in

Improved loss function
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determining the outcomes of object detection®’. WIoU is used in
this research, which enables the model to measure the degree of
overlap of object boxes effectively and prioritize anchor boxes of
ordinary quality. The WIoU loss function provides a gradient gain
allocation strategy that evaluates the quality of anchor boxes by
calculating their outliers and subsequently assigns different gradient
gains based on the evaluation™**.

There are low-quality instances in training data, and geometric
attributes will amplify the impact of these instances, which reduces
the generalization ability of the model. The implementation of an
effective loss function is essential for mitigating the adverse impact
of such instances. In this context, a distance attention mechanism
has been constructed, leading to the formulation of WIoU vl
through the application of a dual-layer attention mechanism:

Lyiount = RwiouLisu (1)
Where, RWIOU € [13 e)7 LIoU € [Oa 1]

The gradient gain L}, is the monotonic focusing coefficient for
Lwiui- The LY, decreases as L,y decreases, affecting the
convergence speed of the model in the late stage of training.

Therefore, the L,y is introduced to obtain WloU v2:

1
Li.(
Lyouvz = (ﬂ> X Lyiouvt 2

ToU

where, L,y is the exponential moving average, which keeps

*

L A
(ﬂ) at a high level.

ToU

The S is defined to describe the quality of the anchor box, as
follows:

*

B= % € [0, +00) 3)

ToU

A non-monotonic focusing coefficient is constructed and
combined with WloU vl to obtain WloU v3:

B

/Ja/ﬁ*}‘

4)

Lyiouvs = PLwiouvts Y =

where, ¢ makes y=1 when S=u. The anchor box will enjoy the
highest gradient gain when g is a constant value.

This paper undertakes a series of experiments aimed at
identifying the optimal variant of the WIoU loss function.
Comprehensive details regarding the experiments can be found in
Section 4.1.

2.3.3 Enhanced head module

The main function of the attention mechanism is to highlight
significant features and suppress general features. To enhance the
correlation between the key root knot features captured by the
model and the representation of feature information, this paper
introduces the Triplet Attention mechanism in the head layer. This
mechanism emphasizes the significance of multidimensional
interactions without reducing dimensionality and effectively
eliminates indirect correspondences between channels and weights.

The Triplet Attention employs three dedicated branches to
capture the dependencies among the dimensions of the input tensor
of (C, H), (C, W), and (H, W) to achieve cross-dimensional
interaction. Thus, the associations among different parts are
captured more accurately, and the feature extraction ability of the
model to the root knot is improved. Ultimately, a refined attention
tensor y of an input tensor is obtained, and the process is delineated
as follows:

1
y= g(fu o(&1(X7) + £,0(&2(%3)) + x07(85(13))) (%)

where, o represents the sigmoid activation function; &, &,, and &;
represent the standard two-dimensional convolutional layers.
Simplify Eq. (5) to obtain y:

1 — 1
y= §(31W1+22W2+XW3)= g(}Tl"')Tz"'}@) (6)

where, w;, w,, and w; are the three cross-dimensional attention
weights computed in Triplet Attention. The y; and y, denote the 90’
clockwise rotation to preserve the original input shape.
2.4 Network performance evaluation indicators

This paper introduces Precision (P), Recall (R), Average
Precision (4P), and F1 as performance evaluation indicators for
models, and their definitions are as follows:

TP
P=Tp rp ™
TP
R=Tprin ®
Fl = 2XPXR )
P+R
1
AP = jo P(R)dR (10)

where, TP, FP, and FN represent the number of samples correctly
predicted as positive, incorrectly predicted as positive, and
incorrectly predicted as negative, respectively.

In addition, AP@0.5 is the average accuracy value of 0.5 IoU
thresholds. AP@0.5:0.95 is the average of 10 IoU thresholds with
IoUE[0.5: 0.05: 0.95].

2.5 Experimental configuration

The image size is standardized to 640 x 640 pixels for the input
during the model training process. The training procedure
encompasses 300 iterations with a batch size of 16. The momentum
for the learning rate is established at 0.937, and the optimizer
utilized is SGD. Detailed hardware and software configurations for
the experimentation are presented in Table 2.

Table 2 Hardware and software configuration

Configuration
Windows10 (64-bit)

Software/Hardware

Operating system

CPU Intel(R) Xeon(R) CPU E5-4627 v4
RAM 64 GB
Programming language Python
Framework Pytorch 2.10
Label software Labelimg

3 Results

3.1 Experimental results and analysis

The training results of Root-YOLOvV7 and YOLOvV7 are
illustrated in Figure 7. It can be seen from Figure 7 that the P, R,
AP@0.5, and AP@0.5:0.95 values of Root-YOLOv7 are
significantly higher than those of YOLOv7, and the changing trend
of values of Root-YOLOV7 is relatively stable. In addition, the
curve of the original YOLOv7 model has a large fluctuation in the
process of the first 100 iterations, while the curve of the Root-
YOLOvV7 model is relatively flat as a whole. This indicates that the
research in this paper improves the robustness of the model. The
partial detection results of YOLOv7 and Root-YOLOvV7 on root
knots are illustrated in Figure 8.

From Figure 8b and 8d, it can be seen that the Root-YOLOV7
model demonstrates superior capabilities in detecting small object
root knots and densely clustered root knots that are overlooked in
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the YOLOv7 model. The missed detection in the latter may be
attributed to the reduced pixel count in images of small objects,
which consequently leads to a diminished extraction of features
during the convolution process. In Figure 8c, the presence of two
overlapping root knots can obscure the significance of their
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02 = YOLOV7

= Root-YOLOV7

0 50 100 150 200 250 300
Epoch
a. P curves

1.0

AP@0.5

= YOLOV7
=== Root-YOLOV7

0 50 100 150 200 250 300
Epoch
c. AP@0.5 curves

features. However, the Root-YOLOv7 model is still able to
accurately differentiate between them. The detection performance
and anti-interference ability of the Root-YOLOv7 model have
shown marked improvement. In conclusion, Root-YOLOv7 has
better performance in detecting root-knot nematode disease.
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Figure 7 Training results of Root-YOLOV7
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Figure 8 Comparison of detection results of YOLOv7 and Root-YOLOv7

3.2 Ablation experiments

To assess the effectiveness of the enhanced method, eight
groups of ablation experiments utilizing YOLOv7 were designed,
incorporating various combinations of the improved modules. The

experimental results are presented in Table 3, in which the symbol
“+” denotes the inclusion of a module, while signifies its
exclusion. The data presented in bold indicates the optimal
performance achieved during the experiments.

“_%
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Table 3 Ablation experiments

Models Tra:s“fltl)l;mer WioU v2 A{:;Eiie;n Pl RI% (1)415’)/"% A(f9@5?%5
YOLOvV7 - - - 78.78 76.49 81.57 4294
Modell + - - 85.28 80.94 87.16 48.31
Model2 - + - 80.98 79.44 84.56 45.14
Model3 - - + 85.06 78.29 85.14 47.16
Model4 + + - 81.41 76.70 83.62 43.99
Model5 + - + 77.54 75.37 81.20 42.58
Model6 - + + 76.21 71.99 7826 40.48
Ours + + 86.62 80.31 87.40 47.50

From Table 3, it can be seen that there is a significant

enhancement in the overall performance of the model when the
Swin Transformer, WIoU v2 loss function, and Triplet Attention
module are applied independently. The Swin Transformer module
has an extremely positive impact on the model, which benefits from
its hierarchical design and shifted window scheme. The model
captures the cross-dimension interaction of the root knot feature
between the spatial and channel dimensions after introducing the
Triplet Attention module, which makes the model show satisfactory
performance. The variations in P and F1 values of the eight models

are illustrated in Figure 9.

F1
0.8330

0.8237
0.8144
0.8051
0.7958
0.7865
0.7772
0.7679
0.7586
0.7493
0.7400

Figure 9 3D heat map of P and F1 value of eight models
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It is evident from Figure 9 that the P and F'1 value of the Root-
YOLOV7 model attain their maximum values following the fusion
of three improved methods. The ablation experiments indicate that
the proposed approach significantly optimizes the detection ability

of the YOLOvV7 model.

3.3 Comparison with other object detection models

To further validate the detection effectiveness of the Root-
YOLOvV7 model, this paper conducts a comparative analysis with
several prominent object detection models, including Faster R-
CNNP RT-DETRP, YOLOvSP®, YOLOv6™, YOLOv7“) and
YOLOv8"!. The comparative experiments are all based on the same
dataset, and the comparison results of the seven models are

presented in Table 4.

Table 4 Comparison of the performances of seven models

Models PM% R (1)4153/% A(fg@s?%S GFLc?PS/ Pararlr\l/leters/
Faster R-CNN  27.89 24.63 14.73 4.70 251.40 41.30
RT-DETR 80.30 7522 81.80  43.07 110.00 31.99
YOLOV5 79.85 7474 82.12 44.55 15.80 7.01
YOLOv6 73.85 71.24 77.72 45.09 11.80 423
YOLOv7 78.78 76.49 81.57 42.94 120.70 37.35
YOLOvV8 75.67 7279 79.95 47.23 8.10 3.01
Root-YOLOv7 86.62 80.31 87.40 47.50 183.80 50.18

The data presented in Table 4 indicates that Root-YOLOvV7
exhibits superior accuracy compared to the other six models.
Notably, Root-YOLOV7 achieves the highest P, R, and AP values
among the YOLO series models. In particular, when compared to
therecentY OLOv8,Root-YOLOv7alsodemonstratesremarkableperfor-
mance improvements, with P, R, and AP@0.5 increased by 10.95%,
7.52%, and 7.45%, respectively. Furthermore, in comparison to
YOLOvV7, Root-YOLOvV7 achieves higher accuracy with a slight
increase in the number of model parameters. A comprehensive
analysis leads to the conclusion that the Root-YOLOv7 model
possesses significant advantages in the specific context of root
knots, thereby enhancing its applicability in the detection domain.

To more intuitively evaluate the effect of different models in
the detection of root knots, the confusion matrices of different
models are plotted in this research, as shown in Figure 10.
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From Figure 10, it can be seen that the Root-YOLOvV7 model
performs the best. Compared with other models, Root-YOLOvV7
achieves the highest 7P, which indicates its excellent ability to
correctly detect root knot objects. Meanwhile, its FP and FN are
significantly lower than the other models. These results fully
demonstrate that Root-YOLOvV7 can not only achieve more
comprehensive detection but also effectively reduce the occurrence
of false and missed detections, providing a more reliable solution
for root knot object detection tasks.

3.4 Grading of root-knot nematode disease

The reliable and accurate assessment of plant disease is
essential for enabling farmers to implement early prevention and
management, predict yield loss, and evaluate plant resistance. On
the basis of achieving the optimal root knot detection effect, it is
necessary to quantify the number of root knots and subsequently
assess the degree of root-knot nematode disease through the root
knot counting method™. Figure 11 illustrates the disease grading
results derived from randomly selected root images.

Figure 11

Root knot index (RKI) is a comprehensive index that
incorporates both the incidence rate and the disease severity into
account. It can be derived from the root-knot nematode disease
grade obtained above, and then the corresponding prevention and
control effect (PCE) of the plant can be calculated, as illustrated in
the following equation:

x 100% (11)

PCE =

% 100% (12)

where, N represents the number of plants at a certain disease level,
D represents the disease level, T represents the total number of
plants, H represents the highest level, C represents the RK/ in the
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control group, and E represents the RKT in the experimental group.
In addition, the RKI can also be used to evaluate the resistance
of plants to root-knot nematode disease. Therefore, the detection
and grading of root-knot nematode disease can not only help plant
pathologists achieve efficient control but also provide theoretical
guidance for the cultivation of plant varieties with disease resistance.

4 Discussion

4.1 Impact of WloU loss function on performance

This paper employs the WIoU v2 loss function. Within the
WIoU series, different loss functions exert a distinct influence on
the performance of the model. The impact of different WIoU loss
functions on model performance in this research is illustrated in
Figure 12.
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Figure 12  Effects of different WIoU loss functions on model performance

From Figure 12, it is evident that the R value and the AP@0.5
value of WIoU v2 are significantly higher than those for WloU vl
and WIoU v3. Furthermore, the scatter points associated with the
WIoU v2 loss function exhibit less fluctuation compared to the
other two versions, suggesting that WIoU v2 contributes to greater
stability in the model. In conclusion, among the series of WloU loss
functions examined, WIoU v2 demonstrates a more favorable
impact on all aspects of the dataset in this paper. Consequently,

this paper designates WIoU v2 as the selected loss function for
the model.
4.2 Result analysis of the ablation experiment

In the ablation experiment, the AP value of Root-YOLOV7 is
maximized when the IoU threshold is established at 0.5. This
outcome can be attributed to the enhanced synergistic effects of the
Swin Transformer, WIoU v2, and Triplet Attention modules
integrated within Root-YOLOv7. Conversely, when the IoU
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threshold is adjusted to the range of 0.5:0.95, the AP of Root-
YOLOvV7 is observed to be 0.81% lower than that of YOLOV7
combined with the Swin Transformer. This discrepancy may be
indicative of certain inhibitory interactions among the multiple
embedded modules (Swin Transformer + WIoU v2 + Triplet
Attention).

Furthermore, the P of YOLOv7 combined with the Swin
Transformer and WIoU v2 is 0.43% higher than that of YOLOv7
with WIoU v2. However, the AP is lower than that of YOLOvV7
with WIoU v2. This discrepancy may be attributed to the fact that
Swin Transformer enhances the capability to capture object feature
information across various scales when it is embedded in the
backbone network, thus improving the prediction accuracy of the
model. Nevertheless, the 4P does not exhibit significant change,
which may be due to the influence of recall.

4.3 Influence factors of model performance

The P and AP@0.5 values of Root-YOLOvV7 are 7.84% and
5.83% higher than those of YOLOV7, respectively. Despite the
significant enhancement in detection performance, a small portion
of root knots remain undetected. This limitation may be attributed to
several factors: (1) Cucumber roots exhibit numerous fibrous roots,
dense root knots, and root knot objects that are relatively small,
which may impair the convolutional neural network semantic
extraction ability and comprehensive feature extraction ability of
YOLOV7 during detection. (2) The dataset lacks sufficient richness.
A diverse dataset includes samples from various regions, varieties,
or backgrounds®!. A well-diversified dataset can provide more
comprehensive information, thereby enabling the model to better
capture the object features and enhance its generalization
capabilities. (3) During the dataset acquisition process, it is difficult
to fix the distance and angle between the camera and the roots, and
the location of the root knots is also inconsistent. Such variations in
shooting distance and angle may influence detection performance to
some extent!™.

4.4 Limitations and future outlook

This research takes 519 original root-knot nematode disease
samples for cucumbers. In fact, root-knot nematode disease is a
kind of disease that is prone to occur in the growth of various crops.
Therefore, it can be considered to expand the research to other crops
to increase the generalization ability of the model in the future. In
addition, our research focuses on detection accuracy and does not
consider the issue of a lightweight model. In practical applications,
it is sometimes necessary to consider a lightweight model to deploy
it on mobile devices such as embedded systems. Therefore,
subsequent research may focus on improving the generalization
ability and lightweight level of the model in order to further
enhance its universality and real-time performance.

5 Conclusions

The detection of root-knot nematode disease presents
significant challenges due to the extensive presence of fibrous roots,
dense root knots, and the occurrence of diminutive root knots within
the roots of diseased plants. To address these challenges, this paper
proposes a multi-scale adaptive object detection and grading model
Root-YOLOV7 for the identification of root-knot nematode disease
using cucumber plants as the research object. The P of Root-
YOLOvV7 is 7.84% higher than the original YOLOv7, which
indicates the effectiveness of the improved approach in this
research. This model facilitates the detection and quantification of
root knots within the root systems of plants, thereby providing
insights into the extent of damage caused by root-knot nematode

disease. The findings of this paper hold both theoretical and
practical significance for the advancement of grading devices for
root-knot nematode disease and the cultivation of varieties with
stress resistance.
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