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Detection of multi-class coconut clusters for robotic picking under
occlusion conditions
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Abstract: With the development of tree-climbing robots and robotic end-effectors, it is possible to develop automated coconut-
picking robots with the help of machine vision technology. Coconuts grow in clusters in the canopy and are easily occluded by
leaves. Therefore, the detection of multi-class coconut clusters according to the occlusion condition is necessary for robots to
develop picking strategies. The coconut detection model, named YOLO-Coco, was developed based on the YOLOv7-tiny
network. It detected coconuts in different conditions such as not-occluded, leaves-occluded, and trunk-occluded fruit. The
developed model used Efficient Channel Attention (ECA) to enhance the feature weights extracted by the backbone network.
Re-parameterization Convolution (RepConv) made the model convolution layers deeper and provided more semantic
information for the detection head. Finally, the Bi-directional Feature Pyramid Network (BiFPN) was used to optimize the head
network structure of YOLO-Coco to achieve the balanced fusion of multi-scale features. The results showed that the mean
average precision (mAP) of YOLO-Coco for detecting multi-class coconut clusters was 93.6%, and the average precision (AP)
of not-occluded, leaves-occluded, and trunk-occluded fruit were 90.5%, 93.8%, and 96.4%, respectively. The detection
accuracy of YOLO-Coco for yellow coconuts was 5.1% higher than that for green coconuts. Compared with seven mainstream
deep learning networks, YOLO-Coco achieved the highest detection accuracy in detecting multi-class coconut clusters, while
maintaining advantages in detection speed and model size. The developed model can accurately detect coconuts in complex

canopy environments, providing technical support for the visual system of coconut-picking robots.
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1 Introduction

Cocos nucifera, commonly known as coconut, is a very
important tree in the tropics. It provides food, employment, and
business opportunities to millions of people, making significant
contributions to economic and livelihood development in tropical
regions of the world". Hainan Province is the largest tropical
province in China, with coconut cultivation and production
accounting for over 90% of China’s total, making it the main
producer of coconuts in China®. As reported by the Hainan
Provincial Bureau of Statistics, in 2022, the coconut cultivation area
in Hainan was about 37 900 hm? and the annual production
exceeded 220 million®. Coconut is rich in nutrients, and products
produced from coconut as raw material involve multiple fields, such
as food, chemicals, medicine, navigation, etc., which have become
an indispensable part of daily life and many industries”. Despite
the strong demand for coconut, because of its tall trunk and
complex canopy structure, people engaged in coconut picking are
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required to have a rich tree-climbing experience and abundant
physical strength. This increases the risk of manual harvesting of
coconuts, and managers often face high costs.

With the rapid development of artificial intelligence and
robotics, vision-based autonomous harvesting robots have become
the preferred method for the selective picking of various fruits®.
The picking robot uses a visual system to detect and locate fruits,
and then an end-effector is used to separate fruits”. Over the past
decade, coconut-picking robots have been developed with an end-
effector of a circular, sharp blade that rotates at high speed for
cutting the coconut stalk™). However, the coconut canopy is a
complex environment where coconuts are easily occluded by
petioles. If the robot attempts to pick occluded coconut clusters, the
high-speed rotating end-effector may cause damage to the canopy
and coconuts. The effectiveness of the end-effector operation
largely depends on the performance of the fruit detection algorithm.
Parvathi and Selvil” attempted to separate coconuts from the
canopy using color-based segmentation, edge detection, and circular
Hough transform, respectively. However, the similarity in color
between coconuts and surrounding leaves and the overlap of
coconuts with each other resulted in poor segmentation results.
Traditional object detection algorithms cannot effectively detect all
coconuts. Deep learning-based target recognition technology has the
advantages of self-learning of target features, robustness to target
occlusion and light changes, etc., and has been widely researched in
agricultural fields such as fruit detection""”, fruit maturity
grading!”!, precision agriculture!", leaf pests
detection''®, and animal behavior detection!'”.

and diseases

In recent years, the application of deep learning in agriculture
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has grown significantly, showing great potential in the field of fruit
detection such as apples, citrus, kiwifruit, grape, and dragon fruit!"**".
Zhang et al.” used VGG19 to improve Faster R-CNN, which
effectively improves the accuracy of apple detection. In order to
avoid robots forcibly picking apples occluded by branches or wires,
Gao et al.”” proposed a Faster R-CNN-based method for detecting
multi-class apples in dense-leafed fruit trees. The study had a mAP
of 87.9% and processed each image with a resolution of 1920x1080
at an average speed of 241 ms. Two-stage object detection separates
target localization and target classification, that is, first generating
candidate regions, and then classifying them. Although it has high
detection accuracy, the number of parameters and calculation
amount are large, and the detection speed is slow. The choice of
target detection model needs to take into account both accuracy and
speed. One-stage object detection directly generates the class
probability and position coordinates of the target, which achieves
fast detection with high accuracy™!. Thus, it is widely used in fruit
detection tasks. In order to detect four kinds of fruits, including
apple and lychee, Peng et al.* replaced the original backbone
network of SSD with ResNet-101, and optimized the model with a
transfer learning method and stochastic gradient descent algorithm.
You Only Look Once (YOLO) is an object detection algorithm
proposed by Redmon™®.. YOLO has fast detection speed with high
accuracy and excellent generalization performance. Li et al.’
proposed a tomato detection and localization algorithm based on
improved YOLOVSs to meet the requirements of an intelligent
tomato-picking process. The mAP of the algorithm was up to
99.77%, and the average detection speed per image was 9 ms. Xu et
al.” adopted lightweight feature network GhostNet as the backbone
network of YOLOv4 to enhance the feature extraction of citrus,
improving the detection speed of citrus in complex scenes while
ensuring detection accuracy. The model size was also reduced for
easy deployment to embedded devices. The above studies classified
fruits in different occlusion conditions into one class and did not
fully consider the fruit detection needs in the robot-picking scene.
However, Suo et al.® and Zhang et al.”™, respectively, proposed
detection methods for multi-class kiwifruits and cherry tomatoes
based on YOLOv4. The fruits were detected and labeled into four

classes: fruit not occluded, fruit occluded by leaves, fruit occluded
by other fruits, and fruit occluded by branches. The method avoided
fruits that were occluded by branches or other fruits as picking
targets. From the perspective of robot picking, their study avoids
potential damage to robots and fruit trees and has important
practical significance for guiding robot picking.

Accurate detection of coconut clusters based on their occlusion
conditions is necessary for planning the motion of the robotic end-
effector. There have been no previous reports on using YOLO as
the main method for coconut detection. Therefore, this study used
the advanced YOLOv7-tiny lightweight network to develop the
detection model of multi-class coconut clusters. To further improve
detection performance, this study conducted the following: 1) The
ultra-light attention module Efficient Channel Attention (ECA) was
introduced to enhance the feature weight of the backbone network
input to the head network and weaken the background information;
2) RepConv was introduced to provide rich feature information for
the detection head; and 3) BiFPN was used to improve the head
network to achieve a weighted bidirectional fusion of features at
different scales. The detection model developed in this study will
provide technical support for object perception for coconut-picking
robots.

2 Materials and methods

2.1 Image acquisition

Coconut images were obtained from a commercial coconut
orchard in Dongjiao Town, Wenchang City, Hainan Province,
China, as shown in Figure 1. Green and yellow coconuts were
planted in the orchard. At that time, coconuts were grown for 6-7
months and were mainly used as fruit drinks. The Nikon D90
camera was used for image acquisition, and the image resolution
was 4288%2848. In this study, the robot’s perspective was simulated
to obtain images, due to the camera of the coconut-picking robot’s
visual system facing upwards towards the canopy. Users stood at
multiple locations around the trunk to obtain coconut images so that
different parts of the canopy were covered. Images were obtained at
different times of the day, and 1344 images with clear object
contours and textures were selected as the dataset.

a. Coconut orchard scene

Figure 1

2.2 Coconut cluster dataset
2.2.1 Classification criteria
Coconut leaves include petiole, rachis, and leaflets, as shown in
Figure 2. The petiole plays an important role in supporting the weight
of coconut clusters and preventing them from falling to the ground.
However, this causes coconut clusters to be occluded, which is not
conducive to robot picking. Thus, according to the occlusion condi-
tions in the canopy, coconut clusters are divided into three classes.
The first class indicates that the coconut cluster is not occluded
(referred to as NO in this study), as shown in Figure 3a. The second

b. Yellow coconuts

c. Green coconuts

Coconut cluster images from a commercial orchard

class indicates that the coconut cluster is occluded by leaves
(referred to as OL), and the coconut cluster is mainly occluded by
the petiole, as shown in Figure 3b. NO and OL represent coconut
clusters located in the picking area. The third class indicates that the
coconut cluster is occluded by the trunk (referred to as OT), as
shown in Figure 3c. OT is the coconut cluster located at the back of
the picking area. In addition, if the coconut cluster is occluded by

both leaves and trunk, it is classified as OT.
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Figure 2 Occluded coconuts and structure of coconut leaf

2.2.2 Dataset labeling and partitioning

Before training, Labellmg was used to manually label the
coconut cluster in the image, in which fruit not occluded was
labeled as NO, fruit occluded by leaves was labeled as OL, and fruit
occluded by trunk was labeled as OT. During labeling, the
rectangular box should fit the outline of coconut clusters as much as

e

N

a. Not occluded (NO)

possible. If the object is occluded by leaves or trunk, the user draws
the minimum bounding rectangle of the occluded coconut cluster
based on personal experience to depict the actual size of the object.
Due to the fact that coconuts can bloom and fruit throughout the
year, a few young fruits are present in the image. To avoid the
interference of small object fruits, they are left as part of the
background and are not labeled. Once the labeling is complete, a
text file containing object class and coordinate information is
generated.

The original test set consists of A+B, with a total of 244
images. Test set A is a yellow coconut image, and test set B is a
green coconut image. Then, 978 images were randomly selected
from the remaining original images as the training set and 122 as
the validation set. In order to improve the generalization ability of
the model, image rotation, brightness adjustment, and mirroring
(Figure 4) were used to expand the original training set, verification
set, and test set to 3912, 488, and 976 images, respectively. After
data augmentation, dataset distribution is shown in Figure 5.

¢. Occluded by trunk (OT)

Figure 3 Schematic diagram of three classes of coconut clusters and their labeling

a. Original image b. Rotated image

d. Mirrored image

c. Brightness-adjusted image

Figure 4 Image data after data enhancement
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- Test set B

\\

472

3912

y

Figure 5 Quantity distribution of datasets

2.3 Model building

YOLOvV7-tiny is a lightweight model of the YOLOV7 series for
edge computing devices, which achieves high accuracy and speed
on the publicly available Microsoft COCO Dataset"™”. The complete
network structure of YOLOv7-tiny can be divided into three parts:
Input, Backbone, and Head"".

Input mainly preprocesses the input data and uses a dynamic
label allocation strategy to determine the positive and negative
samples. Input mainly preprocesses the training samples and utilizes
Mosaic for online data augmentation. The backbone consists of a
convolutional module, Efficient Layer Aggregation Network
(ELAN), and Max Pooling (MP). The convolutional module
consists of a convolutional layer, a Batch Normalization (BN) layer,
and an activation function. ELAN controls the shortest and longest
gradient paths and continuously enhances the feature learning
ability of the model through a deeper network. MP achieves the
final down-sampling operation by fusing two down-sampling
branches. SPPCSP consists of Spatial Pyramid Pooling (SPP) and
Cross-Stage Partial (CSP) in the head network. CSP divides the
features into two parts. One part obtains four different scale
receptive fields through the Max Pooling operation in SPP, and the
other part performs the convolution operation. The results of the
two parts are finally fused to enrich the feature information. Detect
head outputs the coordinates, confidence, and class information of
the object bounding box.
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2.3.1 Efficient channel attention mechanism

ECANet proposed a local cross-channel exchange strategy
without dimensionality reduction based on the SE module®. The
strategy allows a direct link between channels and weights.
Appropriate cross-channel interactions both maintain performance
and significantly reduce model complexity. The module can achieve
a significant performance improvement with only a few additional
parameters. As can be seen from Figure 6, ECA first compresses the
feature map by inputting the height of the feature map (H) x the
width of the feature map (W) x the number of channels (C), i.e.,
transforms it into a feature map of size 1x1xC by global average
pooling (GAP). Then, ECA performs one-dimensional convolution
on the 1x1xC feature map through a one-dimensional convolution
kernel of size k to extract the relationship between k£ channels and
complete the cross-channel information exchange. The parameter £,
which is proportional to the number of channels and can adapt to
the channel dimension of the input, is defined as follows:

log,C+1

: ()

k=Xl pga =

odd

where, |x|,4; represents the odd number closest to x, and C is the
total number of channels. ECA generates a weight ratio for each
feature channel using an activation function. Subsequently, ECA
combines the original HxWxC input features with the channel
weights. Thus, the important features in the feature map are given
large weights, and the useless features are given small weights, to
improve the ability of feature representation.

1

IxI1xC

J: Sigmoid activation function & : Element-wise product

Notes: H, W, and C represent the height, width, and number of channels of the
feature map, respectively. y and ¥ are input and output, respectively. GAP and &
are global average pooling and the number of convolution kernels, respectively.

Figure 6 Schematic diagram of the ECA mechanism

2.3.2 Re-parameterization convolution block

Coconut clusters grow in complex environments and are
heavily occluded by leaves. YOLOV7-tiny has fewer convolutional
layers than other models in the v7 series. Deeper convolutional

a. RepConv training

b. A conv layer converted by BN and

layers help to learn object features™. In order to improve the
learning ability of coconut cluster features, RepConv is introduced
near the detection head. RepConv can construct a multi-branch
topology in the training phase to extract more effective semantic
features. Then, the re-parameterization technique can transform the
multi-branch structure into a single-branch structure for inference,
simplifying the model and speeding up the inference™.

It can be seen that the RepConv block training model is
composed of three branches in Figure 7a. The first layer is a 3x3
convolution for feature extraction. The second layer is a 1x1
convolution for smoothing features. The third layer is the identity
branch, which only performs BN operations on the input features.
Finally, three branches are added, and the final result is output by
the activation function, thus enhancing the model expression ability.
In the re-parameterization phase, the BN layer and its preceding
convolutional layer in each branch were converted into a
convolutional layer with bias. Let {W!, b/} be the i-branch
converted convolution kernel and bias, which can be obtained as

follows:
Conv (W) = M W? )
0) 0 Conv (W(“) —HY (i)
BN (Conv (W®)) =y =0 +p 3)
y(i) o
W= (4)
NG}
b=p - 5)

where, M is the input; W is the i-branch convolution kernel; and
1 o, 99 and B are the accumulated mean, standard deviation,
learned scaling factor, and bias of the i-branch BN layer following
3x3 convolutional layers, respectively. This transformation method
is also applicable to the identity branch since it can be considered as
a Ix1 convolution with the unit matrix as kernel. After such
transformations, a 3x3 convolution kernel, two 1x1 convolution
kernels, and three biases were obtained, and the two 1x1 kernels
will be padded by zeros to 3x3, as shown in Figure 7b. According
to the linear property of convolution, the final single 3x3
convolution kernel and bias are obtained by adding three kernels
and three biases, respectively, as shown in Figure 7c. The re-
parameterization technique involves three main transformations,
i.e., fusion of the BN layer and its preceding convolutional layer,
BN layer transformation of the identity branch, and addition of three
branches. The re-parameterized inference model output is the same
as the multi-branch output.

» @5

c. RepConv inference

its preceding conv layer

Note: BN: Batch Normalization. Same below.

Figure 7 Re-parameterization process

2.3.3 Bi-directional feature pyramid network

Path Aggregation Network (PANet) fuses different input
features using two paths, bottom-up and top-down, to enhance the
representational capability of the backbone network and achieve

high-level feature fusion. These input features have different
resolutions, and their contributions to the fused output features are
not equal, which can result in a few features being ignored.
Therefore, BiFPN is used to improve PANet®. BiFPN learns the
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importance of different input features by introducing learnable
weights and bidirectional connections to achieve cross-level fusion
of multi-scale features with weights. In addition, BiFPN fuses the
original features extracted from the backbone network with high-
level semantic features by adding a path between the original input
node and the output node at the same layer. This solves the problem
of missing a few features and is conducive to extracting richer

P5—— SPPCSP —— Concat

P5 >

@
®

P5_out

P4 out

P3_out

a. BiFPN with 3-layer structure

features. The BiFPN structure of the 3-layer structure is shown in
Figure 8a. Feature PS5 is not output directly, but aggregates features
P3 and P4 from top to bottom through up-sampling (Up), and then
P3_out is obtained. Feature P4 aggregates up-sampled P5 and scale-
compressed P3 out to obtain P4 out. PS5 out is obtained by the
aggregation of feature P5 and scale-compressed P4 out. BiFPN’s
improved head network is shown in Figure 8b.

—»  ELAN — P5 out

I i

CBL CBL
lUp \
P4—>
C°I°at Coneat | "ELAN"— P4 out
ELAN _/ C;L
CBL _Q‘ \
P3 » Concat —> ELAN — P3 out

b. Improved head network with BiFPN

Notes: SPPCSP: Consists of Spatial Pyramid Pooling (SPP) and Cross-Stage Partial (CSP); Concat: Concatenate; ELAN: Efficient Layer Aggregation Network; CBL:

Convolution+tBN+LeakyReLU; Up: upsampling. Same below.

Figure 8 Network structure diagram of BiFPN and improved head network with BiFPN

2.3.4 Construction of YOLO-Coco

Figure 9 shows the structure of YOLO-Coco improved using
ECA, RepConv, and BiFPN. ECA is added at three positions where
the backbone features enter the head network®", because ECA can
enhance coconut cluster features entering the head network and
suppress background expression through cross-channel information
exchange. To enhance the semantic richness detected by the
detection head, RepConv is added in front of the CBL layer close to
the detection head. Finally, BiFPN is introduced in the head

CBL
| up
Concat
ELAN
CBL UP
_____________________ EIEENE@‘L__________
CBL = Conv BN LeakyReLU
UP = Resize (nearest) SPPCSP
l
ELAN = CBL L CBL L CBL — Concat - CBL
| Bl

Concat —> ELAN — RepConv — CBL

network to achieve a differentiated fusion of features at different
layers by learning the importance of different input features, which
further improves the model detection accuracy. YOLO-Coco has a
multi-scale and multi-branch structure similar to the Inception
module during training, which will greatly improve the learning
ability of the network. When inference is performed, the model
converts from a multi-branch structure to a single-branch structure,
which reduces the computation and memory consumption and
achieves the improvement of inference speed.

t

CBL v\

CBL

MaxPool
MaxPool Concat - CBL — Concat = CBL
MaxPool
—— MaxPool — CBL — 1
MP =A Concat —»

CBL — CBL ¢

Notes: MP: Max Pooling neuron; ECA: Efficient Channel Attention; Conv: Convolution.

Figure 9 ' YOLO-Coco network structure diagram

2.4 Model training and performance evaluation
The parameters of the experimental platform are listed in

Table 1. The input image size received by YOLO-Coco is 640x640

and a stochastic gradient descent optimizer was used. The network
training hyperparameters are listed in Table 2.

After model training, the AP, mAP, Fl-score, and frames per
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second (FPS) were used to evaluate model performance. The AP; is
calculated by Precision (P;) and Recall (R;), and P; and R; are
defined as follows:

TP,
R=o—re (6)
TP, +FN,
TP,
e (7
TP, +FP,

where, i represents the ith class: NO (i = 1), OL (i = 2), OT (i = 3).
TP; is the number of correctly detected coconut clusters, FP; is the
number of falsely detected coconut clusters, and FN; is the number
of non-detected coconut clusters. Fl-score is defined as the
harmonic average of P and R, as shown in Equation (8). AP; is
defined in Equation (9) as the area under P-R; curves, which is an
important indicator for measuring the performance of the object
detection model. mAP, which is the average AP of the three classes,
is shown in Equation (10).

P-R
F1-Score =2- —— ()
P+R
‘ 9
AP,= [ P/(R)dR, ©)
1 k
mAP = zZAP,. (10)
i=1
Table 1 Experimental platform setup
Items Parameters
CPU Intel(R) Core(TM) i7-12900 K
GPU NVIDIA GEFORCE RTX 3060

Windows 10
CUDALI1.6, CUDNN8.3.2
Python3.10, Pytorch 1.13.1

Operating system
Acceleration environment

Development platform

Table 2 Hyperparameters in the training process

Hyperparameter Value
Epoch 300
Batch size 16
Momentum 0.937
Initial learning rate 0.001
Weight decay 0.0005

3 Results and analysis

3.1 Experiments on the changes in the detection model

To verify the effectiveness of different improvements in the
proposed model, a performance comparison was conducted on
different improved structures using a complete test set, and the
results are shown in Table 3. It can be seen that ECA uses channel
weights
enhancement and natural background suppression, and the mAP of

to calibrate features to achieve coconut feature
the model increases by 1.2%. But the p-value slightly decreased.
Then, RepConv is added before the last convolutional layer of each
of the three detection branches. RepConv improves the learning
ability of the network through the multi-branch structure, increasing
the mAP to 92.7%. RepConv uses re-parameterization to improve
the inference speed, but the model has deeper layers than the
original model, and the number of parameters and floating point
operations (FLOPs) are increased by 035 M and 0.7 G,
respectively. RepConv is the main reason for the increase in the
number of parameters and FLOPs of the model. BiFPN can

effectively improve the problem of missing a few important features

in PANet by learning the importance of input features with different
resolutions. Compared with the original model, although the
parameters of YOLO-Coco are increased by 0.36 M, P, R, and mAP
are increased by 1.5%, 5.8%, and 3.0%, respectively. This means
that YOLO-Coco has higher accuracy in predicting coconut
clusters. However, the synergy of ECA, RepConv, and BiFPN
effectively improved the detection performance of the model,
increasing the mAP of the model from 90.6% to 93.6%.

Table 3 Experimental results of the detection model changes

Model o @ ® P/ R/ mAP/ Fl- P rers FLOPS/
ode ECA RepConv BiFPN % % % score arameters G
YOLOvV7-tiny 88.182.5 90.6 0.852 6013008 13.0
YQLOV7_ v 86.1 854 91.8 0.857 6013011 13.0
tiny+@
YOLOV7-
tinyHD+@) v v 87.487.7 92.7 0.876 6357971 13.7
YOLOv7-

ting+O+@+® v v 89.688.3 93.6 0.889 6374364 13.7
(YOLO-Coco)

Notes: P: Precision; R: Recall; mAP: Mean Average Precision.

3.2 Comparison of different attention mechanisms

To assess the performance of ECA attention mechanisms,
Squeeze-and-Excitation (SE), Convolutional Block Attention
Module (CBAM), Coordinate Attention (CA), and Simple Attention
Module (SimAM) were used to compare the detection performance.
These modules are highly valued in agriculture. In the context of
this study, the same number of attention modules were added at the
same locations of the model. Among the five types of attention
modules, ECA has the most significant improvement in the
detection performance of the model, with mAP reaching 93.6%, as
listed in Table 4. The mAP of the ECA model exceeded the SE
module by 1.8%, the CBAM module by 1.4%, the CA module by
1.7%, and the SimAM module by 0.8%. Meanwhile, the model
using ECA has the highest p-value. This ensures that the model can
more accurately predict objects in complex agricultural
environments. In addition, ECA, SE, CA, and SimAM are nearly
identical in terms of the number of parameters, FLOPs, and size.
Although CBAM has a mAP of 92.2%, it has higher parameters,
FLOPs, and size. Overall, compared to the other four attention
modules, the model improved using ECA and has higher accuracy
while maintaining lower FLOPs and size.

Table 4 Detection results under different attention mechanisms

Model Number P/% R/% mAP/% Parameters FIOPs/G Size/MB
X+ECA 3 89.6 883 93.6 6374364 13.7 12.7
X+SE 3 88.0 834 91.8 6418321 13.8 12.8
X+CBAM 3 872 831 922 6763519 14.4 13.5
X+CA 3 86.7 86.0 919 6410041 13.8 12.8
X+SimAM 3 884 88.0 92.8 6374361 13.7 12.7

Note: X is the part of the improved model after removing the attention module.

3.3 Visual analysis of the detection of different classes of
coconut clusters

Figure 10 shows the P-R curves of YOLO-Coco and its original
model for detecting each class. The APs of NO, OL, and OT in
YOLO-Coco increased by 1.7%, 1.1%, and 6.0%, respectively. To
explore the regions of interest that class features focus on, the
detection results of the model are visualized using heatmaps. The
region brightness is used to indicate its share in the prediction
output process, with brighter colors indicating more attention.
Figure 11 visually shows the difference in the focus on class
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features of coconut clusters between YOLO-Coco and the original
model. NO focuses on the central position of coconut clusters and
radiates the boundaries of coconut clusters. OL takes both coconut
clusters and leaves as the judgment criteria, which also causes the
model to pay some attention to the area with only leaves. The region
of interest of OT spreads from the center of the coconut clusters to

1.0 “ﬁﬂm_\ﬁ
0.8 1
= 06
.2
&
04 r
— NO AP=88.8%
0.2+ — OL AP=92.7%
— OT AP=90.4%
— mAP=90.6%
0 . . . . )
0 0.2 0.4 0.6 0.8 1.0
Recall

a. YOLOV7-tiny

the trunk. Compared with the OL class, OT has simpler regions of
interest, and it is easier for the target to obtain higher confidence
results. Compared with the visualization results of different models,
it is found that YOLO-Coco focuses on more precise class feature
regions, has stronger anti-interference ability, and has a lower
probability of false positives.
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Figure 10  P-R curves of each object detected by YOLOv7-tiny and YOLO-Coco

a. YOLOvV7-tiny

b. YOLO-Coco

Note: NO, OL, and OT respectively refer to the class features explored in images.

Figure 11

3.4 Detection performance on different varieties of coconuts
To evaluate the performance of YOLO-Coco on yellow
coconuts and green coconuts, test A and test B were used to test the
model performance respectively, and the results are shown in
Figure 12. The mAP of yellow coconuts was 96.2%, and the mAP
of green coconuts was 91.1%. The model has shown good results in
the detection of both varieties of coconuts. The color difference
between yellow coconuts and the coconut canopy is significant, so
these coconuts are easier to detect. The surface color of the green
coconuts tends to be consistent with that of the leaves. Therefore,

Visualization of regions of interest for each class feature detected

the detection accuracy of the three classes of yellow coconuts is
higher than that of green coconuts. Since the fruit is not occluded,
NO can present complete coconut cluster characteristics, and there
is little difference in AP between the two varieties of coconuts. OL
green coconuts are similar in color to the leaves and showed poor
AP, but AP of OL yellow coconuts is as high as 97.9%, which is
8.6% higher than that of OL green coconuts. This indicates that in
the OL class, YOLO-Coco not only focuses on the shape and
texture of the coconut but also pays more attention to the color
characteristics of the coconut. Even when coconut clusters are
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occluded by the trunk, there is a significant difference in color
between the trunk and the two varieties of coconuts, and the class
characteristic is relatively simple. Compared to the other two
classes, OT has simpler class features, so its AP is the highest

mAP=96.2%

Class

NO - 91 .30 ’

0.80 0.85 0.90 0.95 1.00
AP
a. Yellow coconut clusters

among each coconut variety. The detection results of the two
varieties of coconuts show that the detection performance of YOLO-

Coco in yellow coconuts is better than that in green coconuts.

mAP=91.1%
oT 93.4%
2 oL
Q
NO 90.6%
0.80 0.85 0.90 0.95 1.00
AP

b. Green coconut clusters

Figure 12 Detection results of YOLO-Coco on different varieties of coconuts

3.5 Comparison with other deep learning detection models
The purpose of developing YOLO-Coco is to improve
detection accuracy with a high detection speed. At present, deep
learning algorithms have been widely applied in the field of fruit
object detection. To further evaluate the performance advantages of
YOLO-Coco, seven mainstream deep learning models were selected
under the same training platform configuration and dataset for the
detection of multi-class coconut clusters.
3.5.1 Performance comparison of mainstream detection networks
The detection results of multi-class coconut clusters using
different mainstream deep learning networks are listed in Table 5.
Compared with Faster R-CNN, YOLOv3, YOLOv4, and YOLOv7,
YOLO-Coco has faster detection speed and smaller model size and
has significant advantages in deploying edge computing devices.
YOLOvV3-tiny, YOLOvS5s, and YOLOv8n are all lightweight
network models. Compared with YOLOvV3-tiny, the mAP of YOLO-
Coco has increased by 4.9%, and the AP of NO, OL, and OT
coconut clusters have all increased by more than 3%. YOLO-Coco
has better attention to NO and OT coconut clusters. YOLOVSs has a
higher detection speed, but its mAP and P are lower than YOLO-
Coco. AP of NO and OL detected by YOLOvVSs were closer to
YOLO-Coco, but AP of OT was much lower than that of YOLO-
Coco. YOLOv8n is the latest YOLO deep learning model with the
fastest detection speed. Its model size is about 50% smaller than
YOLO-Coco, and its detection speed is 217.4 FPS. The detection
accuracy of NO detected by YOLOVS8n is 1.1% higher, but in terms
of OL and OT, the detection accuracy of YOLO-Coco is 3.9% and
6.8% higher, respectively. In addition, in coconut detection, the FPS
of Faster R-CNN is only 4.8, which is significantly lower than that

Table 5 Results of different deep learning models for detecting
multi-class coconut clusters

Class AP/% X X
Model P/% R/% mAP/%——————— Detection speed/fps Size/MB
NO OL OT
Faster R-CNN 77.8 79.1 80.5 84.5 88.4 68.6 4.8 115.3
YOLOv3-tiny 75.9 87.6 88.7 84.3 90.2 91.6 149.3 16.6
YOLOv3 86.6 82.1 883 88.2 86.8 90.0 333 117.8
YOLOv4 79.2 81.7 859 84.592.0 81.3 59.5 100.6
YOLOv5s 854 88.2 90.5 87.192.6 91.9 166.7 13.9
YOLOv7 86.2 83.5 91.0 88.7 93.8 90.6 65.4 71.3
YOLOv8n 819 87.1 90.4 91.6 89.9 89.6 217.4 6.0
YOLO-Coco 89.6 88.3 93.6 90.5 93.8 96.4 163.9 12.7

Note: The best results are highlighted in bold.

of the one-stage YOLO object detection model, indicating the
limitations of the two-stage detection model in real-time detection.
As can be seen from Figure 13, the AP of each class detected
by YOLO-Coco ranks first in OT, ranks first with YOLOv7 in OL,
and ranks second in NO, only behind the latest YOLOv8n. YOLO-
Coco has demonstrated high accuracy with a high speed in the
detection of multi-class coconut clusters. Furthermore, its
lightweight model size makes it easier to meet platform portability

and deployment requirements.
== Faster R-CNN ## YOLOv4 == YOLOv8n

== YOLOV3 YOLOvSs == ERB-YOLO
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Figure 13 AP results for different classes of coconut clusters
detected by different networks

3.5.2 Multi-class
networks

detection effect of mainstream detection

To more intuitively compare the detection performance of
YOLO-Coco and seven mainstream deep learning models, four
cases were selected from yellow coconuts and green coconuts,
respectively. The detection results of multi-class coconut clusters
with different models are shown in Figures 14 and 15. Faster R-
CNN shows severe bounding box offset, resulting in incorrect
localization of coconut clusters. In addition, there are multiple
overlapping bounding boxes in the detection of green coconuts.
YOLOv3 and YOLOvV3-tiny are able to detect and classify most
coconut clusters correctly but pay weak attention to the young
coconuts, and there is a leakage of the young fruits. In addition,
YOLOV3-tiny had a false detection, detecting the background as a
coconut. Due to the similarity in color between green coconuts and
leaves, YOLOv4 fails to distinguish the occlusion relationship
between leaves and coconuts well in green coconut detection,
resulting in overlapping bounding boxes and a cluster of coconuts
having two class labels. YOLOvSs produces similar detection
results as YOLO-Coco in the image, but the object confidence
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Faster R- ~
CNN

YOLOv3-
tiny

YOLOV3

YOLOv4

YOLOvS5s

YOLOV7

YOLO-
Coco

Notes: The first and second columns are local canopy scenes. The third and fourth columns are wide-field scenes.

Figure 14 Detection effect of various mainstream detection networks on yellow coconuts
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Faster R-CNN

YOLOv3-tiny

YOLOv3

YOLOvVS5s

YOLOvV7

YOLO-Coco

Notes: The first column is the local canopy scene. The other columns are wide-field scenes.

Figure 15 Detection effect of various mainstream detection networks on green coconuts
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detected by YOLO-Coco on the same coconut cluster is generally
higher than that detected by YOLOvSs. Compared to the state-of-
the-art YOLOv7 and YOLOv8n, YOLO-Coco not only detects and
correctly classifies all coconut clusters in yellow and green
coconuts, but also pays more attention to the features of OL coconut
clusters and their young fruits. This is crucial for detecting coconuts
in real coconut orchards, as there are more occluded coconuts than
conclusion, performance
comparisons indicate that YOLO-Coco has high detection accuracy
while maintaining high speed, and is the best detection model for

non-occluded ones. In various

multi-class coconut clusters.

4 Discussion

As known, Parvathi used Faster R-CNN to develop a detection
system for the coconut maturity stage. The system detects tender
coconuts suitable for drinking and mature coconuts for commercial
use. This has inspired us to combine maturity and occlusion
conditions to distinguish between tender coconuts suitable for

i el B

b. Different growth periods
in green coconuts

a. Different growth periods
in yellow coconuts

c. Overlapping bounding
boxes in yellow coconuts

drinking and young fruits in Figures 16a and 16b, thereby providing
a better perception of the visual system. However, this may double
the number of classes and require more images to train the network
model. Divyanth et al.b” used Faster R-CNN, which added an
attention mechanism, to divide coconut clusters into the non-
occluded and leaf-occluded coconut targets, with AP being 91.2%
and 88.3%, respectively. It takes 0.77s to detect a 512x512 pixel
image. AP of the model this study developed was 93.8% on the OL
coconut cluster, which is more advantageous for detecting occluded
coconuts. It also fits the research purpose because there are more
occluded coconuts than non-occluded ones. More importantly, this
study defined NO and OL coconut clusters as coconuts in the
picking area and OT coconut clusters as coconuts in the waiting
picking area. The classification criteria should be more in line with
the way the robot works. In addition, both studies used Faster R-
CNN, which is slower when detecting coconuts. Fortunately, the
model this study developed has faster detection speed and more real-
time performance.

o

e. A severely occluded
coconut cluster

d. Overlapping bounding
boxes in green coconuts

Notes: Yellow diamond indicates a young coconut cluster; circle indicates an error in coconut detection; yellow triangle indicates a severely occluded coconut cluster.

Figure 16 Examples that need attention in coconut cluster detection

There are a few single coconuts in the dataset, and learning too
many single coconut features will cause sparse coconut clusters to
be incorrectly detected as multiple labels, as shown in Figures 16¢
and 16d. A large number of sparse coconut cluster sample features
will be provided for model learning so that sparse coconut clusters
can be detected more easily. This will further improve the mAP of
YOLO-Coco. In conclusion, this study develops a highly accurate
multi-class coconut cluster detection model that can help robots to
better formulate picking strategies in the canopy. More importantly,
the picking location is not easily exposed when the coconut cluster
is occluded by multiple leaves, as shown in Figure 16e. Either a
special path is adapted so that the end-effector reaches the coconut
cluster, or the leaves must be pruned before harvesting to expose its
picking point. Therefore, in response to the case where the coconut
cluster is occluded by multiple leaves, further studies should also
consider using robots to remove the leaves that occlude coconuts,
thus simplifying the picking environment.

5 Conclusions

In this study, the fruit detection needs in the robot picking
scene were fully considered. Coconuts were divided into three
classes, which facilitated the selection strategy that fruit-picking
robots may implement. Therefore, this study proposed the YOLO-
Coco model for the detection of multi-class coconut clusters. The
developed network model used ECA to strengthen the feature
weights extracted from the backbone network, and RepConv
provided more semantic information for the detection head. Finally,
the BiFPN head network carried out the weighted bidirectional
fusion of features with different resolutions, which further improved
the detection accuracy. In addition, RepConv converted a three-

branch structure to a single branch to speed up the inference.

Under the complex canopy environment, the mAP of YOLO-
Coco for detection of multi-class coconut clusters was 93.6%, and
the AP of not occluded (NO), occluded by leaves (OL), and
occluded by trunk (OT) were 90.5%, 93.8%, and 96.4%,
respectively. In addition, the detection accuracy of YOLO-Coco in
yellow coconuts was 5.1% higher than that in green coconuts.
Compared with seven mainstream deep learning networks such as
YOLOV8n, the proposed YOLO-Coco achieved the highest mAP
value and precision rate with a high detection speed. In addition,
YOLO-Coco weight size also showed better advantages, suitable for
deployment in embedded devices and mobile terminals.

The high-accuracy detection model of multi-class fruits helps
reduce the possibility of end-effector or robot damage. Multi-class
detection results can be further used to develop the fruit picking
order and path, such as the preference for picking NO over OL in
the picking area. In the future, the depth information will be
combined to propose a picking strategy suitable for coconut
harvesting and provide the robot with a full-view picking path of the
canopy. This will enable the picking robot to achieve fast and
accurate picking operations, providing strong support for automated
coconut picking.
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