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Abstract: In 21st century, the rapid increase in population and industrialization not only limits the per capita arable land for
crop production but also limits the productive potential of soil and agricultural crops due to the negative impacts of
anthropogenic climate change. Besides the abiotic factors of the environment, among biotic factors limiting productivity, weeds
contribute the maximum. Due to various limitations in conventional weed control methods, integrated weed management
(IWM) practices have evolved for effective weed management in agriculture. In this era of information and technological
evolution, artificial intelligence is moving at a faster pace in every sector to address the issues of various dimensions. The use
of deep learning, machine learning, and artificial neural networks in Al-enabled robots and unmanned aerial vehicles, along
with multi- and hyper-spectral image sensors, make the tools capable enough for quick and efficient weed management for
harnessing the ultimate productive potential of different fields crops. No doubt, the IWM practices designed for various crops in
different countries in different ecologies have advantages over the individual and traditional approaches to weed control, but the
use of these Al-enabled software and tools can save time, resources, money, and labor when used along with the best IWM
method. Sensor-based weed identification, mapping, and automation can be done for precise and effective management of weed
flora using these modern approaches, which will be environmentally friendly and have a broader scope for achieving global
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1 Introduction

Weed infestations are a constant threat to agriculture, which is
the backbone of the world’s food production. The existence of
weeds poses a significant threat to agricultural yield because they
compete with crops for resources, including light, space, water, and
nutrients!’. As a result, this interference interferes with the
development and growth of cultivated plants. Additionally, weeds
interfere with crops’ ability to grow uniformly, which can cause
inconsistent crop maturity and complicate harvesting procedures®.
In addition to competing for resources, some weed species are home
to pests and illnesses and act as harbours for agricultural viruses that
have the potential to destroy entire harvests'. The majority of weed
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research focuses on finding solutions that might mitigate the
adverse effects of crop-weed competition. From some of the
research, it has been reported that weed competition reduces yields
in all major crops worldwide, including wheat (23%), cotton (36%),
soybean (37%), maize (40%), rice (37%), and potato (30%). Thus,
the most significant biological barrier preventing increased
agricultural output is weeds™. Furthermore, weeds can reduce the
effectiveness of manual and mechanical agricultural techniques,
requiring more workforce and resources to eradicate them'®. Weeds,
therefore, have a significant negative economic impact, including
decreased crop yields, higher production costs, and the possibility of
lower-quality harvests'™.

Herbicides have traditionally served as the primary tool used in
weed control, which has led to serious concerns about the
environment’s long-term sustainability and the safety of food
production. Herbicide-resistant weed populations could arise from
the careless use of herbicides, requiring the use of more robust and
more hazardous herbicides for the environment®. Herbicide
residues can also linger in water and soil systems, where they may
have an impact on human health, aquatic life, non-target plants, and
raw food items". Given these difficulties, it is becoming increasingly
necessary to adopt more accurate and environmentally friendly
methods of managing weeds. This is precisely the area in which
artificial intelligence (AI) techniques have become functional.

To effectively manage weeds, minimize adverse effects, and
ensure agricultural prosperity, artificial intelligence and cutting-
edge technologies must be used. By increasing efficacy, lowering
chemical usage, and minimizing residues, artificial intelligence (Al)
technology used in weed management seeks to mitigate the
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ecological effects associated with herbicides"”. This strategy
encourages more responsible and sustainable weed control practices
in agriculture. Al techniques cover a wide range of technologies,
including unmanned aerial vehicles, computer vision, machine
learning, deep learning, and remote sensing. Each of these
technologies has a unique capacity to address the intricacies of
weed spread". The field of weed identification is leading the way
in advances in Artificial Neural Networks (ANN)-based Deep
Learning (DL), an aspect of Machine Learning (ML)"?. The use of
Al in weed control has significant economic implications. Al aids in
resource optimization, particularly in herbicide application and,
more specifically, land and labour, by accurately recognizing and
targeting weeds'"”. Moreover, robots have brought in a new era of
mechanized weed control, providing farmers with a substitute for
labour intensive manual labor. With the use of sophisticated sensors
and actuators, robotic weeders can precisely navigate fields,
minimizing crop damage while selectively pulling weeds!". These
self-sufficient solutions lessen the physical strain on farmers while
also lowering the dangers of environmental contamination and
herbicide resistance!”. Also, the Grey Level Co-occurrence Matrix
(GLCM), which provides insights into image texture for better weed
detection and classification, is a potential technique in weed
management!'?. Through the quantification of pixel connections,
GLCM improves the accuracy of weed recognition against
complicated backdrops. This introduction addresses opportunities
and limitations in the implementation of GLCM and examines its
potential to revolutionize weed management tactics'”. As a
byproduct of nanotechnology, nano-herbicides present
revolutionary strategy for controlling weeds with the promise of
increased efficacy and decreased environmental impact'®. These
formulations seek to enhance the distribution of herbicides, target

a

specificity, and overall effectiveness by utilizing the unique
qualities of nanoparticles'**\.

Artificial intelligence (AI) and machine learning (ML), in
addition to automation, have become formidable instruments in the
weed management toolbox*'*’. Innovations in machine learning,
robotic weed eaters, and cutting-edge methods like GLCM and nano-
herbicides are revolutionizing methods for sustainability and

precision, which are essential for realizing the full potential of the
world’s agricultural resources™. Al-powered systems can optimize
weed management tactics with previously unheard-of efficacy by
sifting through enormous datasets and identifying complex patterns
in crop-weed interactions”". These intelligent systems continuously
improve their predictive models to maximize weed suppression
while reducing the unintended consequences of herbicide use. They
do this by adapting to changing environmental circumstances and
developing weed populations using iterative learning algorithms*.
Weed infestations pose a constant threat. Thus, creative and long-
lasting weed management techniques are required®””. While
relying solely on conventional herbicides causes resistance and
environmental issues, combining Al with cutting-edge technology
holds promise™!. Artificial intelligence (Al)-powered weed
management systems optimize agricultural productivity while
protecting the environment by reducing chemical usage, increasing
efficacy, and minimizing environmental residues™".

2 Literature review

Targeting journals that specialize in pertinent topics, a
computerized literature search covering the years 2015 to 2024 was
carried out across credible academic publishers, including Elsevier,
MDPI, Frontiers, Springer Nature, Bio One, Taylor & Francis,
Wiley and ACS. The articles were carefully chosen according to
how well they addressed the topic of advanced weed management
practices in field crops. With the use of multi- and hyper-spectral
image sensors, deep learning, machine learning, and artificial neural
networks in Al-enabled robots and unmanned aerial vehicles, the
tools are capable of swift and effective weed management, allowing
various field crops to reach their maximum productivity potential.
Initially, 4713 items were identified in the Google database, later
refined to 309 articles after removing duplicates. Further scrutiny
led to the identification of 95 pertinent references, supplemented by
208 full-text articles. Sixty full-text articles were excluded based on
specific criteria, resulting in 148 articles forming the study’s
database and serving as references. These comprised 67 papers from
the Scopus database, 61 from the Web of Science database, 56 from
NAAS, and 24 from other sources for the review (Figure 1).

Journals as the source for review:
MDPI, Springer Nature, Elsevier, Taylor & Francis, Wiley,
ACS, Bioone, Frontiers
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Methods for the selection of articles for review
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3 Weed flora under major field crops

Weed infestation and flora are significantly driven by crop
type, cropping system, weed seed bank, and crop management
practices. They are also impacted mainly by crop rotation and the
sequence in which the crops are seeded™. To increase crop yield, a
crop sequence that can control the related weed flora or infestation
is needed. Crop rotation and crop sequence diversification may aid
in weed control and sustain soil fertility®". The physiological,
morphological, and anatomical adaptability of wild species,
including weeds, is a distinguishing characteristic that makes them
more resilient to environmental stresses than agricultural species”?.
Jungle rice (Echinochloa colona), barnyard grass (Echinochloa crus-
galli), purple nutsedge (Cyperus rotundus), rice flat sedge (Cyperus
iria), rice umbrella plant (Cyperus difformis), and goosegrass
(Eleusine indica) are the weed species causing economic concerns
despite the wide variation in rice establishment. Additionally, the
sorghum-wheat farming system benefited the fat hen (Chenopodium
album). In contrast, the rice-wheat cropping system preferred the
common goosefoot (Chenopodium sp. L.), broadleaved dock
(Rumex obtusifolius), and salt marsh (Salicornia spp.). The fallow-
wheat cropping system also favoured salt marsh, broad-leaved dock,
yellow sweet clover (Melilotus officinalis), rabbit foot grass
(Polypogon monspeliensis), perennial sow thistle (Sonchus
arvensis), corn spurry (Spergula arvensis), and bermuda grass
(Cynodon dactylon)®. A rice-wheat cropping system has also
reportedly been shown to encourage grassy weeds while
suppressing broadleaved weeds®". In addition, weeds interact with
the environment’s other biological components, giving pests a place
to hide out that might affect nearby crops, such as insects, fungi,
and bacteria®*. For instance, in crops like wheat (Triticum
aestivum L.), oats, and barley (Hordeum vulgare L.), wild oats
(Avena fatua L.) can harbour the etiological agents of the powdery
mildew, Altamira (Parthenium hysterophorus L.) may serve as a
secondary host of the common hairy caterpillar (Diacrisia obliqua
Walk.)®" and the root-knot Meloidogyne graminicola may live on
Cyperus rotundus, which can facilitate its proliferation in the
field®™. The troublesome weeds found in black gram and green
gram were Cleome viscosa, Celosia argentea, Commelina
benghalensis, Vicia sativa, and Triathema portulacastrum®. The
most prevalent weeds in chickpeas were Anagallis arvensis,
Phalaris
Chenopodium album, and Cyperus rotundus™”. In the winter, both

Cyperus  rotundus, Polygonum  plebejum, minor,
irrigated and rainfed pulses include scarlet pimpernel (4nagallis
arvensis L.), lamb’s quarters (Chenopodium album L.), and

Fumaria parviflora (Lam.)*".

4 Reductions in yield caused by weeds in various
crops

In current input-intensive agricultural systems, maximizing
productivity by minimizing the negative impacts caused by biotic
and abiotic variables is very crucial. Weeds are considered the most
biological impediment to agricultural productivity in both
industrialized and underdeveloped countries. A range of weed
species, some of which may have significantly differing competitive
capacities, nearly always contribute to the yield loss brought on by
weeds”. In general, weeds, along with diseases (bacteria, fungi,
etc.) and pests (rodents, insects, nematodes, birds, mites, etc.),
provide crops with the most significant potential yield loss. More
than 2.1x10° t of grain are produced globally at present. If weed

causes a 10% overall yield loss, then 2x10* t of grain output will be
lost altogether'™. The output of grains would rise by 1x10® t, and
this loss could be cut in half, which might help to end world hunger.
Among the factors that influence the yield losses in crops brought
on by weeds are weed type, weed emergence time, crop type, and
weed density (Table 1). Weeds can cause a 100% yield loss if they
are not managed!’. According to Gharde et al.”, weeds caused yield
losses of 36% in groundnut (Arachis hypogaea L.), 31% in maize
(Zea mays L.), 25% in soybean (Glycine max (L.) Merr.), and 19%
in wheat (Triticum aestivum L.). Herbicides can control weeds up to
a point, but subsequent weed flushes during the growing season due
to the variable dormancy of weed seeds present in different layers of
weed seed banks, which provides additional difficulties for farmers.
Despite its detrimental impacts on the environment, weed control is
incredibly challenging for marginal farmers due to the high cost of
herbicides, their unavailability at the right time, and a lack of
technical knowledge. Therefore, under an integrated weed
management (IWM) strategy or with advanced technologies, it is
necessary to integrate a wide range of approaches, including
cultural, mechanical, and chemical methods”, along with
automation using Al tools and suitable sensors working efficiently
with the inclusion of machine learning (ML) and deep learning
(DL) algorithms.

5 Existing weed management practices

There are currently two different methods for controlling weeds
in agricultural systems: one involves the widespread use of
synthetic herbicides, and the other relies extensively on mechanical,
physical, and ecological techniques”. However, this strategy has
had a significant detrimental impact on the health of the
environment, people, and animals. According to Lamichhane et
al.”, improper herbicide uses in agroecosystems result in the
evolution of herbicide-resistant weeds, particularly those with
multiple resistances, impacts on non-target species, the
establishment of a replacement weed flora, as well as shifts in a
weed population, all of which make herbicide-dependent cropping
systems more vulnerable. The current goal of agriculture is to
produce crops that are programmed, planned for quantity, and of
high quality while protecting the environment. IWM will be used to
manage weeds while reducing the use of herbicides and promoting
sustainable and environmentally friendly agronomic practices!.
Therefore, a good understanding of crop-weed competition
dynamics, one of the most active areas in weed science research, is
essential for an efficient IWM (Figure 2).

As the number of hazards from herbicides at higher doses
increases and the availability of labor becomes a limiting factor in
weed management, this tactic is gaining in popularity. Taking
economics, labor availability, the environment, and other factors
into account, an integrated strategy with advanced weed
management will outperform the IWM technique!”'’.

6 Advanced weed management practices

Eliminating weeds is an essential aspect of raising the
production of agriculture. The most popular weed management
technique at the moment is large-scale herbicide spraying, although
this affects the environment negatively™. It is, therefore, vital to
establish a weeding strategy that uses fewer herbicides. To
maximize crop output and minimize the environmental effects,
precision agriculture uses technologies that integrate sensors,
information systems, and management”™ may be employed.
Currently, precision agriculture is used for a variety of agricultural
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Table1 Predominant weed flora in major field crops and reported yield loss
Name of the Predominant weed flora Yield
o Reference
crop Grass Broad-leaved weed Sedge loss/%
Poa annua. Dicitaria Ludwigia parviflora, Melochia corchorifolia, Alternanthera
. A » g philoxeroides, Alternanthera sessilis, Amaranthus viridis, ..
Direct seeded sanguinalis, Echinochloa colona, T . ’ . Cyperus iria, Cyperus o o
. L . Borreria hispida, Cassia sp., Euphorbia geniculata, Ipomoea . X 50%-91%  [42-44]
rice Eleusine indica, Dactyloctenium s . Difformis
aegyptium, and Panicum repens alba, Mollugo disticha, Ageratum conyzoides, Portulaca
? oleracea, and Phyllanthus niruri
. . L Ludwigia parviflora, Marselia quadrifolia, Alternanthera
Kharif EChmOChl?a c'olona, Digitaria sessilis, Eclipta alba, Trianthema portulacastrum Cyperus iria and Fimbristylis o o
Transplanted sanguinalis, Paspalum . ; o oo g 30%-45%  [45-48]
Rice distichium, Leptochloa chinensis Commelina nudiflora, Hydrolea zeylanica, Monochorina miliacea
’ vaginalis
Summer Echinochloa crus-galli, Marsilea minuta, Jussiaea repens, Alternanthera sessilis, A.  Cyperus difformis and Cyperus
transplanted Echinochloa glabrescens, ’ S pens, . Sessiis, 4. Lyperus ayjormi: IPETUS  20%-40% [49]
Rice Panicum sp. philoxeroides, and Commelina sp. iria
Wheat Phalaris szor, Cyanodon Trifolium fragiferum, Chenopodlum album, Vicia sativa, Cyperus rotundus 25%-40%  [50-52]
actylon Solanum nigrum, Rumex dentatus
Eleusine indica, Dactyloctenium Cyperus
Maize aegyptium, Digitaria sanguinalis, — Trianthema portulacastrum, Commelina benghalensis Jper 27%-60%  [53-55]
Setaria glauca, Eragrostis major compressus, Cyperus rotundus
Ludwigia parviflora, Croton bonplandianum Parthenium
Black gram Digitaria sanguinalis hysterophorus, Trianthema monogyna, Phyllanthus niruri, Cyperus iria 27%-64%  [56,57]
Desmodium triflorum
Poa annua and Digitaria Melochia corchorifolia, Aeschynomene afraspera, Cleome
Green gram sanouina lisg viscosa, Portulaca oleracea, Cassia tora, Grangea 46%-85%  [58,59]
g maderaspatana
Digitaria s inalis. Cynod Oldenlandia corymbose, Trianthema portulacastrum,
Mustard graria W;iu"llgf’ yrodon Phyllanthus fraternus, Chenopodium album, Amaranthus Cyperus rotundus 28%-50%  [60,61]
v viridis, Anagallis arvensis, Cleome viscosa
Trianthema portulacastrum, Eclipta alba, Solanum nigrum,
Echinochloa colona, Achyranthes aspera, Abutilon indicum, Acalypha indica,
Echinochloa crus-galli, Cynodon Ageratum conyzoides, Commelina benghalensis, Cyanotis o o
Sesame dactylon, sps, Parthenium hysterophorus, Phyllanthus Cyperus rotundus 30%-75% [60,62,63]
Agropyron repens maderaspatensis, Portulaca oleracea, Tribulus terrestris,
and Xanthium strumarium
Digitaria sanuinalis. Cynodon Croton bonplandianum, Gnaphalium indicum, Medicago
Lentil wgtara ;fcm lanl » &V denticulata, Anagallis arvensis, Spergula arvensis, Rumex 30%-65%  [64,65]
oy dentatus
. Abutilon indicum, Amaranthus viridis, Argemone mexicana,
;ﬁlo;;ibgiigl;a%}zobizz Boerhaavia diffusa, Corchorus trilocularis, Celosia
ty ’ , 7 argentea, Datura metal, Digera arvensis, Euphorbia hirta, o o
Cotton Eleusine aegyptiaca, Panicum . P . ) Cyperus rotundus 50%-85%  [66,67]
repens, Pennisetum Gynandropis pentaphylla, Parthenium hysterophorus,
cer;chroi des Phyllanthus niruri, Portulaca oleracea, Trianthema
portulacastrum, and Tridax procumbens
Digitaria sanguinalis, Cynodon Cyperus rotundus, Cyperus
Soyabean dactylon, Sorghum halepense,  Eclipta alba, Phyllanthus niruri, Physalis minima, Leucas diformis, and Fimbristylis 84% [68]

Dicanthium annualatum, and
Eleusine indica

aspera, Digera arvensis, and Croton sparsiflorus

milliaceae

processes, such as pest management, fertilization, irrigation,
sowing™, and harvesting"™. Because of technological advancements
in the last ten years in the fields of robots, sensors, computer
hardware, nanotechnology, systems,
precision agriculture has advanced quickly". These advancements
may enable the precise identification of the weeds in the field.

and unmanned vehicle

7 Artificial Intelligence (AI)

Artificial intelligence (Al)-enhanced technology is currently
being used in agriculture, with significant enhancements in crop
productivity and weed identification. Traditional approaches of
weed control are not sustainable in long run due to involvement of
higher input cost and lowered effectiveness of the process.
Agricultural organizations, farmers, and research institutions are
now implementing measures to ensure precision and improve
accuracy in weed detection, and many technical tools and gadgets
are used in conjunction with artificial intelligence concepts. The
best method for preventing seed spread is early weed control™!. In
places with dense vegetation, Al-based approaches, as opposed to
shape-based machine vision, may successfully identify weeds at this
stage and tell them apart from agricultural crops””. The adoption of
Al-based weed control, intelligent systems, and robots are now

restricted to early adopters because the range of plants that can be
recognized based on spectral features is limited or because the
precision based on species or geocoordinates is insufficient to
safeguard the crop plant®". Al is employed in a robotic system for
weed control in a variety of ways, including operation control,
trajectory planning, data management, weed dispersion prediction
model, data sharing, and more™. Al is also used in differentiating
processes (image processing) It
significantly reduces the usage of herbicides, paving the way for

in the system (Figure 3).

sustainable agriculture, environmental protection, consumer health
improvement, and lowing production costs. It also has a significant
impact on how successfully herbicide resistance is managed and
controlled®. However, it has the benefit of being able to respond
quickly; it enables real-time robotic weed control devices to operate
Eli-Chukwu, making it a solution to the problems facing
agriculture in the future (Figure 4).

8 Robotics

Agriculture is entering a new era of sustainability, efficiency,
and accuracy with the use of robotics in weed control. Robotics is
very necessary to build a weeding strategy that uses fewer
pesticides. Since early weed identification and management are
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crucial, current weed robot designs are based on real-time image
detection using multi- and hyper- spectral sensors. Traditional weed
management techniques are being revolutionized by robotic
technology, which ranges from self-driving cars to robotic arms

with sophisticated sensors. Robotic weed control application has
provided satisfactory outcomes, lowering the usage of herbicides to
as little as 5%-10% in compared with blanket spraying™. Robotics
has a wide range of implications for managing weeds in many areas
of agricultural operations. The advent of fleets of autonomous
robots capable of carrying out a variety of agricultural tasks has
prompted years of research on the whole robotization of the
agricultural ecosystem™™”,

Groups of small, inexpensive robots can be utilized more
efficiently and affordably in organic farming and row crops with
high value and low controlling weeds thresholds. For accurate spot
spraying in specific crops, a number of spraying robot prototypes
have been built and studied®. A visual system that can identify and
locate the crop’s location is necessary for the development of an
autonomous weeding machine. Such a vision system needs to be
able to identify the precise location of the plant stem and protect it
while controlling weeds. Induction of visual system in robots can
efficiently remove the broad-leaved weeds in cereal field by taking
and analyzing near-ground images to identify the weeds!***..

They obtained up to 96% eliminating weeds and more than
80% accurate picture classification with only crop loss of 10%.
These consist of weed-specific spraying systems and imaging
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Figure 4 Benefits and constraints of using AI/ML in weed management

technologies that can discriminate between crops and weeds.
Several robots have been designed for physical weed management
employing hoeing blades, laser, high voltage, and flame in addition
to these spraying robots. They distinguish in the intra-row area
between the crop and the weeds and target specific weeds*". Using
the texture properties of weed species, weed species may be
distinguished with 93% and 85% classification accuracy for grass
and broadleaf, respectively. Grasses and broadleaved weeds were
identified using textural image analysis®. The effectiveness of
robotic cultivators in reducing the need for manual weeding may be
demonstrated by a comparison of robotic weed control and manual
weeding™! (Figure 5). As these robots become more affordable and
technologically advanced, their ability to remove weeds will
also increase.

Weed density (Number of weeds/m?)
= Hand weeding

Post = Robovator
Pre —
0 100 200 300 400 500 600

Figure 5 Pre-and post- weeding comparison between robovator
and hand weeding™”

9 Remote sensing

Mapping crops or weeds is one of the most effective ways to
manage crops and weeds in agroecosystems to maximize
productivity. Because weed populations vary geographically across
crop types, mapping weed infestations in annual crops has
consequences for managing weeds differently at each site, using
herbicides specifically where needed, and studying weed ecology in
general. In order to assess the biomass, chlorophyll, and nitrogen
(N) contents at a discrete moment, remote sensing techniques like
thermal infrared (IR) sensors and light detection and ranging
(LiDAR) technology have shown astounding results in monitoring
vegetation canopy temperatures and heights®™!. In the agricultural
sector, remote sensing has also been widely used to map and
identify weeds™™”. A variety of disciplines, including spectroscopy,
optics, computers, photography, satellite launch, electronics, and

communication, are combined in the multidisciplinary science of
remote sensing systems (Figure 6). In remote sensing photography,
the digital reflectance value at each pixel results from the
integration of spectral contributions from each scene of the element;
for example, the scene component of soil, shadow, and crop species
are used for weed mapping!**.

Mechani-
cal

weeding

robots

‘Autonomous
weed
detection

Selective
herbicide
application

Sensing
technology

Uses of
robots

Drones
for aerial
surveillance

Robort-weed
interactions

Real-time
data
analysis

Figure 6 Applications of robotics in advanced weed management

10 Agricultural use of multispectral and
hyperspectral remote sensing imagery

Precision agricultural farming technology advances, including
variable rate equipment, GPS, and GIS, provide the means to use
data from multi-spectral images to manage issues™™”. Multi-spectral
images are produced by sensors that detect reflected energy within
bands of the
Multispectral cameras and superior imaging capabilities are crucial
in transforming weed control techniques. These cameras, which use
a variety of electromagnetic spectrums or wavelengths to record

many distinct electromagnetic ~ spectrum™.

information beyond human sight, enable detailed examination of
vegetation. Multispectral cameras are very good at identifying
differences in the reflectance and absorption of light by various
plants, which is helpful in managing weeds. Multispectral cameras
allow for the construction of precise maps of vegetation by
gathering data in certain bands, such as red, green, blue, and near-
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infrared. These maps make it easier to precisely identify and map
weed infestations since they are frequently complemented with
indexes such as the Normalized Difference Vegetation Index
(NDVI). Different plants have different spectral signatures that help
differentiate undesired weeds from crops™.

Multispectral imaging is used for more than just identification;
it also informs focused intervention tactics. The development of
multi-sensor information fusion in agriculture must align with the
needs of modern agricultural machinery as it is an advanced,
multidisciplinary technology”. Using this technique, farmers may
produce prescription maps for targeted herbicide application,
maximizing resource efficiency and reducing the environmental
effects. Furthermore, multispectral cameras aid in the monitoring of
crops’ general health by enabling the early identification of stress or
disease. Multispectral cameras provide farmers with relevant
information when combined with precision agriculture technology
like GPS and GIS, encouraging a more effective and sustainable
approach to weed control in agriculture®. Many low-cost, high-
performance innovative sensors are now being developed, examples
include the StereoLabs ZED stereo camera and the Intel D435
stereo camera. These cameras made up of two camera modules,
imitate human stereo vision, open the way to the potential of target
recognition for agricultural machines based on depth and stereo
vision™®*'l. Multi-sensor information fusion has become essential for
intelligent robots in artificial intelligence due to developments in
computer technology, sensor functionality, and information fusion
technology.

This method maximizes the performance of agricultural
machinery environmental perception systems and improves the
accuracy of environmental perception. As a result, it effectively
promotes the growth of intelligence and informatization within the
agricultural machinery sector by guaranteeing the stability and
safety of unmanned agricultural machinery during operation®'.

Target detection and classification are the main tasks of
hyperspectral remote sensing imagery, which differs from
multispectral photography due to its high-resolution and high-
interest targets®. Moreover, hyperspectral data aids in
understanding the physiological status of vegetation, providing
insights into plant stress, nutrient deficiencies, and overall health.
Early detection of such indicators allows for proactive weed
management strategies, minimizing the impact of invasive species
on crop yields. In order to detect weeds using hyperspectral remote
sensing, Yang et al.” studied image segmentation between crop and
weed in a soybean field. They found that this method could
discriminate between soil and plant with a high degree of accuracy
(99.9%).

Satellites or unmanned aircraft are used in remote sensing to
collect data. Large-scale crop yield monitoring and area surveying
are both ideal applications for satellite-based remote sensing*.
Small-area assessments using satellite images are imprecise,
particularly when it comes to spatial distribution, weed detection,
and pesticide harm assessments (Table 2). High-resolution imaging
is required for these operations, which is often acquired by closer
inspections using human or unmanned aircraft or ground vehicles®.

11 Unmanned aerial vehicle systems

The usage of unmanned aerial vehicles (UAVs) is presently one
of the most successful precision agricultural technologies!*!.
Unmanned Vehicle Systems are movable aerial (UAVs) or
terrestrial (UTV) platforms that offer a variety of benefits for
carrying out and overseeing agricultural tasks!"”. Drone technology

Table 2 Weed patches to be identified using various
kinds of cameras

Type of camera Crop Weed Result References
Triticum spp.  Cirsium arvense L [96]
RGB camera Hord Discriminate
oraeum Cirsium arvense ~ CTOp vs weeds  [97,98]
vulgare
Amaranthus spp.,
Zea mavs Sorghum halepense, [99,100]
o4 Chenopodium ’
Multispectral album Discriminate
camera Phalaris crop vs weeds
Triticum durum canariensis, Avena [101]
sterilis
Beta vulgaris  Cirsium arvense [102]
T}géfzuy:,nas}; P Conyza canadensis, Discriminate
VS, Chenopodium herbicide- [103,104]
Hordeum :
album resistant weeds
vulgare
Hyperspectral
Amaranthus
camera .
macrocapus,Echino . . .
Discriminate
Sorghum sp. chloa colona, [105]
crop vs weeds
Cyperus rotundus,
Malva sp.
Avena fatua, Discriminate
Hyperspectral Triticum durum Phal‘arzs' crop vs weeds [106]
camera+Multisp canariensis
iral L
ectral camera Cicer arietinum  Cirsium arvense Discriminate [101]
crop vs weeds
Amaranthus
palmeri, Assesment of
Glycine max Echinochloa crop injury [107]

crusgalli, Digitaria from dicamba

RGB sanguinalis

camera+Multisp

ectral camera 'An'zarant%lus )
. blitoides, Sinapis L
Helianthus . Discriminate
arvensis, [106]
annus ; crop vs weeds
Chenopodium
album

has improved at a faster pace recently. Drone application research is
frequently carried out in agriculture for a variety of objectives due
to the improved flying efficiency of lower-priced consumer
drones™. According to Hassanein and EI-Sheimy!"”, the key
benefits of UAVs over UTVs are their quicker monitoring/
surveying times and ability to navigate well around obstacles, which
is essential while operating between crop rows. UAVs may fly over
a large area of land in a short period, collecting the photographic
data needed to identify weed areas”. The primary technologies
used for weed patch detection are Red-Green-Blue (RGB),
Multispectral, and Hyperspectral cameras, according to a thorough
examination of the literature on weed identification by UAVs.

Using an automated object-based image analysis (OBIA)
framework, the quadcopter UAV model md4-1000, fitted with an
RGB or multispectral camera and a global positioning system
(GPS), is used to map and identify weeds, crop rows, and bare
soil", Before agricultural harvest, RGB cameras can identify green
weeds such as Cirsium arvense in cereals. When C. arvense was
prevalent, it accurately detected the categorization of 17%-92% of
patches under different environmental conditions®. Adjusting
dosages to the measured level of weed infestation promotes the
decrease of herbicide treatments through automatically operating
weed mapping rules. Drone-based spraying has a significant
influence on weed control; it suppresses 98% of bedstraw (Galium
aparine) and Japanese foxtail plants in wheat crops. When using pre-
emergence (PE) spraying, areas with higher soil moisture content
and lower straw content may observe a 98%-100% weed control
effectiveness from the drone. The application of 70% metribuzin at
a rate of 0.175 kg a.i./hm’ in wheat fields using a drone (PoE) and
knapsack sprayer (PE) produces the lowest dry weight of monocot
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and dicot weeds among the various treatments!''". This integrated
strategy is effective in managing weeds after a weed-free treatment,
as evidenced by its maximum weed control effectiveness of 74.82%
and minimum weed index of 2.78%""".

UAV testing has less volume and more acuteness than
traditional land procedures, it may spray spot or band spray and
produce a more continuous vertical droplet coverage, which is
advantageous for drift control and reduction'". More flexibility and
systematization are features of UAV spraying, which boasts a 60-
fold efficiency gain over knapsack and boom sprayer
approaches!"'*'". The effectiveness of weed control in soybean
crops, such as a comparison of boom, drone, and backpack sprayer
techniques, now shows the various sprayers’ relative operational
efficiency, measured as the ratio of the sprayed area to the spraying
time (Figure 7). It also offers information on the typical amount of
time needed to finish spraying one hectare of agricultural land"'".
Drone technology has revolutionized advanced agriculture with its
application to weed detection and pesticide spraying in
contemporary fields. By using camera-equipped drones, weed
identification efficiency is increased while also allowing for a more
systematic and adaptable approach. This results in an astounding 60-
fold gain in total operating efficiency when compared to previous
approaches. The effectiveness of this airborne spraying method is
highlighted by the novel “downwash” effect produced by drone
rotors, which further increases the accuracy of herbicide deposition
in specified regions!''*.

o1 Work
8 r .
71 efficiency
6l Time/h
5 L
4 L
3 L
2 L
1 L
0
Drone Boom Knapsack

Figure 7 Comparative illustration of the work efficiency and
Time/h for the weed management of soybeans using a knapsack,
boom, and drone sprayer!'"*!

12 Neural networks

Artificial neural networks (ANNs) are becoming more potent
instruments in the field of advanced weed management, providing
creative answers to the problems related to weed control in
agriculture. Inspired by the architecture and operation of the human
brain, ANNs are computational models that can recognize intricate
patterns and forecast outcomes based on input data. ANNs are used
in agriculture, especially for enhanced weed management, to
improve decision-making, optimize weed control tactics, and
support productive and sustainable agricultural practices!'”. Weed
species identification is a significant use of ANNs in proactive weed
control. ANNs may be taught to identify and categorize various
weed species reliably by utilizing image or sensor data in
collaboration with the machine learning (ML) and deep learning
(DL) concepts'"™®. This feature helps farmers to use focused and
targeted weed management strategies, maximizing resource
utilization and reducing damage to non-target plants. ANNs
enhance their accuracy in weed species identification through
ongoing learning and adaptation, which helps to create accurate and
successful management plans.

A common deep learning model (DL) used for image

identification, video analysis, and natural language processing is the
convolutional neural network (CNN)!'°. According to various
research, deep convolutional neural networks (CNNs) are effective
ways to address the shortcomings of manually generated
characteristics when it comes to seed, crop, and weed
classification"”. DL has made significant strides in the past few
years in the classification and segmentation of remote sensing data
for various applications!*". When it comes to weed recognition and
detection, DL is excellent. When compared to conventional image
processing techniques, DL reduces recognition time and ensures
accuracy by doing away with the requirement for laborious and
ineffective manual feature extraction and just needs the input
picture to be cropped to an appropriate size for target detection*”.
Because CNNs can extract and learn feature representation directly
from large datasets, they are becoming a more and more preferred
technique for remote sensing problems in contrast to traditional
machine learning (ML) methods!"*. Large learning capacities are
made possible by this, leading to improved accuracy and
performance'*!. According to Dyrmann et al.'®!, convolutional
CNN was used to categorize a group of 22 weed species. A
classification accuracy of 82.4% to 88.2% was attained in this
investigation. In a similar study, 17 different weed species were
identified and categorized in a maize field by Dyrmann et al.'*.
With a total accuracy of 87%, a CNN was utilized to categorize the
weed species once they were discovered. Sharpe et al.'*” spray on
goosegrass (Eleusine indica L.) in greenhouses at the 5-leaf stage
using CNN in situ conditions for weed identification. With a mean
Average Precision (mAP of 0.9533 for monocotyledonous weeds
(Solanum nigrum L. and Portulaca oleracea L.) and a mAP of
0.9492 for dicotyledonous weeds (Cyperus rotundus L.,
Echinochloa crus-galli L., and Setaria verticillata L.), RetinaNet
has shown remarkable performance in classifying two significant
weed groups. The outcomes of discrimination against species that
belong to the same family have much promise for the identification
of herbicide-resistant species!'®. This object recognition neural
network-based approach to weed species detection shows promise
for both selective control by distinct weed species and selective
control of weeds relative to crops. According to Hu et al.'” the
Mask R-CNN network may be used for a variety of agricultural
applications, including as weed identification in oilseed and maize
rape fields, as well as crop and weed recognition and weed
localization in motorised weeding robots. To accomplish accurate
crop and weed segmentation, they have employed ResNet-50,
ResNet-101, VGG16, and SegNet as feature extraction networks.
SVM is one of the machine learning classifiers that oil seed rape
fields utilise to increase the accuracy of picture segmentation. Using
SegNet, which is based on ResNet-50, helps speed up the pixel
labelling procedure. Robots that gather information from farms have
employed the enhanced Res-UNet model for high-precision picture
segmentation of weed and sugar beetroot data.

13  Grey level Co-occurrence matrix (GLCM)

One texture analysis technique that is often used in computer
vision and image processing is the Grey Level Co-occurrence
Matrix (GLCM). Even though it might not be directly related to
weed control, it might be used in this sector for things like
classifying and detecting weeds. GLCM may be applied to image
analysis methods for weed management to extract texture
information from images taken in agricultural fields. Then, various
plant kinds, including weeds, may be recognized and categorized
using these textural properties. Through the examination of the
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spatial correlations between pixel intensity values in a picture,
GLCM may detect minute alterations in texture that could
potentially signify the existence of weeds or more vegetation"‘.

Since the texture of veins in leaves and leaf surface roughness
varies, texture features (representing the spatial distribution of
pixels) have recently been demonstrated to be effective in
differentiating crops from weeds!"®. GLCM texture operators are the
most often reported texture operators for plant discrimination. An
improved GLCM was employed by Tang et al.'”? Chowdhury et
al."™ combined texture information with colour to extract feature
data to identify roadside weeds. This resulted in good identification
and classification results. The correlation of grey values between
pixels at a given image space position was represented by the local
information of the picture, which was employed by GLCM.
Nevertheless, it is unable to utilize the image’s
information™".

global

The method for managing and identifying weeds using GLCM
is shown in this flowchart. Agricultural field photos are first
acquired, and then preprocessing operations like contrast
enhancement and noise reduction are performed. The preprocessed
photos are then used to compute the GLCM and extract texture
characteristics. Weed identification and categorization are based on
these textural properties. Mapping and distribution studies are
carried out based on the discovered weed areas (Figure 8).

14 Nano-herbicides

Utilizing nanotechnology to maximize herbicide delivery,
effectiveness, and environmental impact, nano-formulation is a
cutting-edge method in advanced weed control. With its creative
answers to problems related to the administration of traditional
herbicides, this new sector has the potential to transform weed
management in agriculture completely. The nano-herbicides are
different based on their formulation and mechanism of action
(Figure 9). Herbicides with nano-formulations have better solubility
and bioavailability, which is a significant benefit. The limited

Image Preprocessing
acquisition of image
GLCM
calculation

l

Texture feature

a?‘d classification extraction from GLCM
using texture feature

l

Weed mapping and
distribution analysis
based on identify regions

Weed identification

Figure 8 Flow chart for Grey-Level Co-occurrence Matrix
(GLCM) for weed identification

solubility of several herbicides in water presents difficulties that
restrict their efficacy. These herbicides can be transported by
nanoparticles, which will increase their solubility and improve their
dispersion over weed surfaces. Because of the improved
effectiveness resulting from this enhanced bioavailability, weed
control is possible even at lower doses of active substances. Some
examples of nano-enabled herbicides for weed control can be listed
in Table 3.

Typically, herbicides are applied via foliar spray, which does
not completely eradicate them, particularly for perennial weeds such
as Solanum elaeagnifolium, Cynodan dactylon, and Cyperus sp.
However, these nano herbicides eliminate the function and structure
of the plant-specific chloroplast, prevent lipid biosynthesis, obstruct
cell division by obstructing the mitotic cycle, or inhibit the growth
of the plants'*). The nanoherbicides have more adhesive capacity,

Nano-sized oil
droplets containing
herbicidal activity
dispersed in water.

LI

Emulsion

Solid nano-sized
particles suspended

in a liquid.

Suspension

/

Silica based
nanoparticles may be
used as herbicide
carrier.
Inorganic
(silica)

Nano-formulation

Gel
Hydrogel B
nanoparticle formed
by cross linking of Biosensor
polymeric particles.

¥

Nano-biosensor

based detection

ensures precise
herbicide.

Encapsula-
tion
Herbicide is encased
in nano-capsule. a.i. is
. either hydrophobic or
el e hydrophilic in nature.

¥

Polymer based nano-
carrier having
herbicidal activity.

Figure 9 Types of nano-formulation for weed control
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Table 3 Some examples of nano-enabled herbicides for weed control

Nanoherbicides Plant Findings References
Size<200 nm; Good biological effectiveness.
Eleusine indica (L.) It is made up of tiny glyphosate droplets that are disseminated in water with the help of [132]
Nanoemulsion containing stabilisers and surfactants, improving weed target absorption, penetration, and coverage.
glyphosate Asystasia gangetica (L.),
Diodia ocymifolia, and ~ Decreased dose and enhanced plant absorption of herbicides. [133]
Paspalum conjugatum
The non-target plant was not toxically affected by the nanoformulation. On the other hand,
. . Brassica sp. was eradicated by it, and its herbicidal activity increased.
Biochar-2,4-D Zeamays L., Brassica sp. The method demonstrated strong herbicidal effectiveness and a continuous release for around [134,135]
26 d.
Microemulsion of pretilachor  Echinochloa crus-calli The nanoherbicide enhanced the herbicidal action. It utilises a stable microemulsion system to 55]
P g enhance the delivery and penetration of pretilachor herbicide.
Nano-hydrogel _glyphosate Oryza sativa L.; Weeds The herbu':u'ial activity was enhanced, and the effect on non-target species was decreased using [136]
nano herbicides.
Microemulsion TM Convolvulus arvensis L. At low levels of a.i., the nanoformulation shows herbicidal action. [137]
Nanoemulsion_palm oil and
Parthenium hysterophorus L. Diodia ocymifolia Reduction in seed germination as a result of small particles. [138]
crude extract
Deliver it to target sites for weed management. When compared to conventional formulations,
PCL_Metribuzin NPs Ipomoea grandifolia controlled release, higher solubility, increased stability, and less environmental effect are [139]
all present.
quu_a t dlbromlde@mesop OTOUS  Datura stramonium L. Improved stability, controlled release, and potentially enhanced herbicidal activity. [140]
silica nanoparticles-SO3
Clay-maroquin Brassica oleracea var. Tt increases the efficiency and durability of herbicides used to reduce weeds by using clay as a [141]
Y q botrytis L. carrier to boost herbicide adherence to plant surfaces and soil particles.
pH-responsively controlled-
release nanopesticide@ Fe304  Cynodon dactylon L. It is a novel formulation designed for targeted pesticide delivery. [142]

NPs_CS

longer contact time, and better spread on the leaves, and they are
able to control the release of ions or biomolecules!*'*. The
inclusion of nanomaterials in herbicide formulations will increase
the herbicide’s absorption and distribution by plants, increase the
herbicide’s adsorption on clay particles to prevent runoff and
possible groundwater pollution or shield the herbicide from
environmental hazards, increase the residual activity due to UV or
microbial destruction®™. Micro-emulsions (ME) are nano-
formulations that have proven commercially successful so far. One
sort of nanotechnology used in pesticide formulation may be seen in
these particles, which are generally 10 to 50 nm in size!*.
According to Bhaskar et al.'*, Dhanpal et al."*, a target-specific
herbicide molecule enclosed in a nanoparticle aims for a particular
receptor in the target weeds’ roots. When the herbicide molecule
enters the system, it moves to regions that prevent the breakdown of
food conserves in the root system, starving the specific weed plant
to death. Nano-encapsulated herbicides in rainfed agriculture will
spread after they have received enough moisture so that the
instantaneous release of new herbicide molecules would destroy the

1 The use of nano-formulations in

weed seeds upon receipt of rain'
agriculture is a novel way to improve weed control. These
long-standing concerns with herbicide
application by wusing nanotechnology, providing improved

effectiveness, tailored delivery, less environmental impact, and

formulations  solve

potential fixes for resistance problems. Nano-formulations have the
potential to change the weed control game as research advances by
giving farmers efficient, sustainable methods to maximize crop
output while reducing environmental damage.

15 Future scope

Weeds, being the most vulnerable pest in agricultural
ecosystem, also regarded as “silent killer”, its management is an
imperative and most daunting task for farmers. The scientific
community has done many advances in weed management research
i.e.,, crop specific IWM, herbicide tolerant crops, UAV based
application, etc. These technological advances even though have

increased the potential of weed control in field, still the adaptation
is limited to large and progressive farmers. Inclusion of advanced
tools i.e., ML, Al, remote sensing, artificial neural network-based
solutions not only help the existing technology perform more
precisely but also reduce the input use and improve the produce and
quality of crops. Climate change has tremendous negative impacts
on agriculture and weed management and leads to development
herbicide resistant biotypes and weed flora shift. The use of
advanced Al and ML programming will help us to understand the
complex system of crop-weed dynamics in better way under various
soil and climatic condition in different crop management systems.
This will create a sustainable, ecological and economic aspect of
weed management in the long run. The feasibility and practical
utility of these advanced tools and techniques is yet to be explored.
Though several researches are being conducted worldwide based on
these advanced tools and programming, their viability in the farmer’
s field needs to be assessed in terms of handling and economic
consideration, as most of the farmers have poor economic
backgrounds and low technological soundness.

16 Conclusions

The future of weed control and management in agriculture
looks increasingly technological and sustainable. Emerging tools
like robots, drones, sensors, Al, and advanced chemistry promise
ever-improving  efficiency, precision, and
stewardship. As sensor and imaging technologies continue to
advance, they will provide unprecedented views of crop and weed
distributions, even revealing indicators of plant health and stress at

environmental

the individual level. Paired with geospatial data and machine
learning, this will allow prescription maps and tailored management
plans tuned to localised conditions across fields and regions. The
falling costs and advancing capabilities of robotic weeders will
drive rapid adoption as these autonomous machines alleviate the
need for manual labour and chemical interventions. Computer
vision and Al will enable robotic platforms to differentiate crops
from weeds with increasing accuracy, facilitating -efficient
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mechanical removal without herbicides. Chemical options will also
continue improving in precision and environmental profile through
innovations like nano-herbicides. More targeted formulations and
delivery methods will enhance efficacy while reducing dosage rates
and off-target movement. Importantly, these tools show the most
promise when integrated into intelligent systems, not when used in
cutting-edge
intervention, and Al-enabled decision support systems will push

isolation.  Combining chemistry, mechanical

agriculture toward sustainability. The outlook is bright for both
technological innovation and environmental stewardship in weed
control. Farmers now have an expanding toolkit to create tailored,
precise, efficient and sustainable crop management plans. The
fusion of advances in sensing, data science and mechanical
solutions will shape the future of agriculture.
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