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Abstract: Against  the  backdrop  of  precision  agriculture  and  the  development  of  intelligent  agricultural  machinery,  current
domestic monitoring systems for wheat  combine harvesters are plagued by limited functionality,  low intelligence,  significant
errors  in  parameter  monitoring,  and  yield  estimation  results  prone  to  inaccuracies.  Specifically,  they  lag  behind  mature
international systems in terms of fault warning accuracy, data transmission efficiency, and yield visualization capabilities. This
study seeks to realize comprehensive and precise monitoring, reliable fault  early warning, and intelligent yield prediction for
wheat combine harvesters across all operating conditions. To this end, it innovatively adopts CAN bus integration technology
and  impulse-type  grain  flow  sensors  to  develop  a  comprehensive  system  for  monitoring  the  operational  status  and  warning
faults of wheat combine harvesters, which covers the entire operational process. By integrating GPS positioning, multi-sensor
parameter acquisition, and intelligent analysis modules through CAN bus integration, the system enables unified monitoring of
geographic  information,  operational  data,  cleaning  loss,  and  fault  status.  Additionally,  it  incorporates  a  yield  measurement
module  based  on  an  impulse-type  grain  flow  sensor  to  generate  the  real-time  yield  distribution  maps.  Field  experiments
demonstrate that the system achieves an alarm accuracy of 97.3%, controls the fuel consumption measurement error within 5%,
and limits the relative error of yield measurement accuracy to no more than 4%. Notably, the impulse-type grain flow sensor
exhibits stable static detection accuracy and rapid, precise dynamic measurement performance—laying a solid foundation for
the automation and intelligent advancement of combine harvester technologies.
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 1    Introduction
Combine harvesters are a type of agricultural machinery widely

used  in  modern  agricultural  production,  greatly  improving  crop
harvesting efficiency while alleviating labor intensity. However, the
operation  of  combine  harvesters  involves  substantial  maintenance
and  management  tasks,  and  significant  challenges  remain  in  their
remote  operation  and  management[1].  An  overview  of  international
research reveals that  systems such as John Deere’s Green Star  and
CLAAS’s  CEMOS  have  integrated  functions  including  yield
monitoring, satellite navigation, and feed rate control. Nevertheless,
their  core  technologies  are  designed for  the  large-scale  operational
scenarios  typical  of  European  and  American  farms,  exhibiting

limited  adaptability  to  China’s  complex  field  conditions—such  as
fragmented  land  parcels  and  hilly  terrain.  Domestic  research  has
advanced  in  specific  technologies  such  as  the  piezoelectric  grain
flow  sensor  developed  by  China  Agricultural  University  and  the
threshing  drum  torque  monitoring  device  designed  by  Jiangsu
University[2,3].  However,  most  domestic  monitoring  systems  are
limited to monitoring only single parameters, such as engine speed
or  grain  flow.  They  lack  the  capability  to  realize  coordinated
collection of multiple parameters like header height, threshing drum
torque,  and  feed  rate  and  thus  cannot  comprehensively  reflect  the
overall operational status of the harvester.

With  the  development  of  agricultural  IoT  technology  and
agricultural  informatization[4-6],  mechanized  agricultural  production
can utilize remote monitoring and data analytics to collect real-time
field  information  and  harvester  operational  status.  Connected
terminals  transmit  data  to  platforms  for  large-scale  storage  and
processing[7],  where  platforms  aggregate  various  types  of  data  to
support  tasks  such  as  harvester  operation  scheduling  and  yield
forecasting[8-10].  This  approach  establishes  a  continuous,  stable,  and
reliable  multi-information  acquisition  method  for  combine
harvesters[11],  effectively  managing  operational  condition
information  and  thereby  improving  the  utilization  efficiency  of
agricultural production resources[12]. Furthermore, online monitoring
technology facilitates real-time monitoring of harvester  operational
parameters  and enables  rapid acquisition of  operational  data  in  the
event of equipment malfunctions[13].

Received date: 2024-01-06 　 Accepted date: 2025-11-30
Biographies: Weipeng  Zhang,  Engineer,  research  interest:  agricultural
machinery  collaboration,  Email:  zhangwellp@163.com;  Hongze  Guo,  MS
candidate,  research  interest:  automatic  agricultural  machinery,  Email:
johnguohz@163.com;  Liming  Zhou,  Researcher,  research  interest:  intelligent
control of agricultural machinery, Email: haibo1129@163.com; Fengzhu Wang,
Senior  Engineer,  research  interest:  intelligent  measurement  and  control  of
agricultural  machinery,  Email:  wangfengzhu1@126.com;  Dongyang  Wang,
Lecturer,  research  interest:  agricultural  equipment  engineering,  Email:
zpt_wdy@szpu.edu.cn; Yangchun Liu, Researcher, research interest: agricultural
equipment measurement and control, Email: lyc327@163.com.
*Corresponding  author: Bo  Zhao,  Researcher,  research  interest:  agricultural
robot.  Chinese  Academy  of  Agricultural  Mechanization  Sciences  Group  Co.,
Ltd., Beijing 100083, China. Tel:+86-15210666162, Email: zhaoboshi@126.com.

　202 　 December, 2025 Int J Agric & Biol Eng　　　Open Access at https://www.ijabe.org Vol. 18 No. 6　

https://doi.org/10.25165/j.ijabe.20251806.8780
mailto:zhangwellp@163.com
mailto:johnguohz@163.com
mailto:haibo1129@163.com
mailto:wangfengzhu1@126.com
mailto:zpt_wdy@szpu.edu.cn
mailto:lyc327@163.com
mailto:zhaoboshi@126.com
https://www.ijabe.org


This paper presents the design of a comprehensive operational
condition  monitoring  and  intelligent  yield  prediction  decision-
making  system for  wheat  combine  harvesters,  based  on  Controller
Area  Network  (CAN)  bus  technology[14,15].  Its  innovative
breakthroughs are reflected in three key aspects: First, we develop a
collaborative  architecture  integrating  multi-source  sensing  and  the
CAN bus to enable the synchronous collection of  geographic data,
operating condition data, and yield data, addressing the limitation of
single-parameter monitoring[16-19]. Second, we establish a correlation
model between yield and operating conditions, thereby realizing the
bidirectional  prognosis  of  abnormal  operating conditions  and yield
shadow. Third, we introduce the innovation of a non-disconnecting
torque  sensor  installation  scheme[20],  while  integrating  yield
visualization  and  fault  early  warning  functions[21-25].  Additionally,
this  study  employs  an  impulse-based  grain  flow  detection  method
and designs an impulse-type grain flow sensor system characterized
by low measurement errors and high fault alarm accuracy[26,27].

Through  the  development  and  application  of  this  system,  this
study  aims  to  overcome  the  current  technical  bottlenecks  in
combine  harvester  monitoring  systems—namely,  fragmented
parameter  monitoring[28],  disconnected  data  transmission,  and  non-
integrated  functional  modules—thereby  enhancing  the  intelligence
and  precision  of  wheat  harvesting  processes.  This  work  thus
provides  technical  support  for  the  independent  research  and
development of precision agricultural equipment in China.

 2    Overall  design  of  intelligent  yield  measurement
system
 2.1    System integration design

The  core  logic  encompasses  three  sequential  steps:  first,
collecting  data  via  multi-source  data  acquisition;  second,
transmitting the collected data through a bus; and third, outputting it
in  a  visualized  manner  following  intelligent  processing.  As

illustrated  in  Figure  1,  the  GPS  receiver  obtains  geographic
coordinates (latitude and longitude), while the vehicle speed sensor
is  used  to  measure  the  travel  speed  of  the  harvester.  Using  the
cutting  width  as  input,  the  system  calculates  the  cumulative
harvested  area.  Communication  with  the  personal  computer  is
realized  through  a  serial  port,  which  supports  the  storage  of  raw
data  and  retrieval  of  the  harvester’s  operational  parameters.  The
developed  impulse-type  grain  flow  sensor  continuously  monitors
and  processes  yield-related  signals.  The  speed  sensors  included  in
the  system  are  the  elevator  speed  sensor,  unloading  chute  speed
sensor, and feed roller speed sensor; all these sensors communicate
via  the  RS-485  bus  without  the  need  for  protocol  conversion.  The
photoelectric switch, which is used to detect the lifting status of the
harvester’s  header,  outputs  a  digital  signal.  Thus,  a  4-channel  RS-
485 relay module is required to convert this digital signal into RS-
485-compatible  communication.  Ultimately,  all  sensors  are
connected  to  the  RS-485  Bus.  The  data  collected  through  the  RS-
485 Bus is transmitted to a serial server, which then communicates
with  the  monitoring  system  of  the  host  computer’s  configuration
software detection system, which in turn generates yield curves and
distribution  maps,  thereby  completing  the  data  acquisition  process
and information visualization for all connected sensors.
 2.2    Hardware structure design of the system

As illustrated in Figure 2, the core hardware components of the
grain  measurement  module  in  the  intelligent  yield  monitoring
system  comprise  a  sensor  unit,  data  acquisition  units,  an  RS485
Bus, and a grain yield display terminal. This hardware configuration
constitutes  an  enhancement  and  refinement  of  the  hardware  setup
employed  in  the  first-generation  yield  monitoring  system.
Specifically, the elevator speed sensor, unloading speed sensor, and
grain  bin  level  sensor  are  respectively  mounted  on  the  combine
harvester’s  elevator,  unloading chute,  and grain bin.  These sensors
directly  capture  physical  state  signals,  such  as  the  auger  speed  (of
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the elevator), unloading chute speed, and grain bin level height. The
GPS  receiver  is  directly  connected  to  the  data  acquisition  unit,
providing  positioning  data  including  latitude/longitude  coordinates
and harvester travel speed—this data is utilized for geotagging yield
measurement results and calculating the harvested area.

Signals from the sensor units are first subjected to filtering and
voltage stabilization processes, followed by transmission to the data
acquisition  unit  via  the  RS-485  bus.  Real-time  yield  data  is
displayed  on  the  terminal  installed  in  the  operator  cab  of  the
harvester.  When  faults  occur,  such  as  when  the  threshing  cylinder

speed drops below a preset threshold, an audible and visual alarm is
activated. The GPRS module interacts with the data acquisition unit
to  receive  processed  operational  data  and  yield-related  data.
Concurrently,  it  establishes  a  connection  to  a  remote  server-based
monitoring platform through mobile communication networks. This
platform  receives  all  data  uploaded  by  the  GPRS  module  and
supports  multiple  key  functions:  archiving  historical  operational
records  and  fault  logs;  conducting  yield  comparison  analyses
between different fields; and adjusting operating routes according to
spatial yield distribution patterns.
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Figure 2    Composition diagram of system hardware
 

The  core  reasons  for  selecting  the  CAN  bus  are  as  follows:
First,  agricultural  machinery  operates  in  environments  with  strong
electromagnetic interference, such as that generated by engines and
motors.  The  CAN  bus  employs  differential  signal  transmission,
thereby  providing  superior  anti-interference  capability.  Second,  it
supports multi-node access, enabling the simultaneous transmission
of diverse sensor data to meet the requirements of “comprehensive
monitoring”. Third, its high transmission rate (1 Mbps) ensures that
fault  information  is  transmitted  to  the  display  and control  terminal
within 100 ms.

The  CAN module’s  hardware  configuration  primarily  consists
of  a  master  node  which  incorporates  an  STM32F103
microcontroller,  which  is  installed  in  the  electrical  control  box  of
the  cab  and  integrates  two  CAN interfaces:  CAN1 for  sensor  data
acquisition  and  CAN2 for  communication  with  the  display/control
terminal.  Slave  nodes  are  integrated  into  individual  sensors  and
perform  signal  conditioning  tasks,  such  as  the  amplification  and
filtering of  torque signals.  The communication protocol  defines  32
types of data frames. Among them, the fault warning frame has the
highest priority, with a transmission cycle of 100 ms, while general
parameter  frames  like  fuel  consumption  and  rotational  speed
operate with a 500 ms transmission cycle.
 2.3    System  software  design  and  hardware-software
integration

The software-based data processing module utilizes algorithms
to mitigate interference and errors  inherent  in raw data transmitted
by  hardware:  Wavelet  filtering  mitigates  the  adverse  effects  of
machine  vibration  on  grain  flow  signals;  moisture  compensation
models  calibrate  yield  values  based  on  moisture  content  data
collected  by  hardware;  spatiotemporal  matching  algorithms
correlate GPS coordinates with yield data, generating location-yield
association  data  that  provides  precise  support  for  subsequent
decision-making processes.

The  software  accommodates  different  hardware  models  via
parameter configuration. When replacing a speed sensor model, the

software can adjust the conversion coefficient between pulse signals
and  rotational  speed  through  the  human-machine  interface,
eliminating the need for hardware replacement. Hardware facilitates
the expansion of software functions via standardized interfaces: the
integration  of  new  sensors  merely  requires  their  connection  to  the
RS-485  bus,  while  the  software  only  needs  the  addition  of
corresponding  parsing  modules—this  ensures  compatibility  and
flexibility during functional upgrades.

Specifically,  the  hardware  serves  as  the  raw data  input  source
for  the  software.  The  software  then  processes  the  raw  data  via
algorithmic  computations  to  generate  decision-making  commands.
Subsequently,  these  commands  actuate  the  hardware  to  perform
execution  actions  or  parameter  adjustments,  thereby  forming  a
comprehensive  closed-loop  chain  spanning  from  monitoring
through decision-making to control. Such a closed-loop architecture
ensures  the  stable  and  reliable  operation  of  the  system  under
practical operating conditions.

The unique contributions of this research in hardware-software
co-design  are  as  follows:  First,  it  achieves  compatibility  and
integration  across  multiple  sensor  types,  with  a  data  acquisition
coverage  rate  of  95%.  Second,  it  proposes  a  multi-parameter
threshold  fusion  algorithm,  which  reduces  the  fault  identification
time  to  0.8  s.  Third,  it  enables  the  cloud  platform to  support  real-
time  terabyte-scale  data  storage  and  offline  analysis,  with  a
processing latency of ≤1 s.
 2.4    Generation of yield distribution map

In order to achieve the objective of enhancing grain yield, it is
essential  to  conduct  in-depth  analysis  of  spatial  and  temporal
variations  in  farmland  yield,  identify  key  factors  contributing  to
yield  fluctuations,  and  implement  site-specific  zoned  management
of  farmland  and  achieve  the  goal  of  increasing  grain  production.
Notably,  measurement  inaccuracies  during  data  acquisition
compromise  the  accuracy  of  yield  maps;  therefore,  the  raw  data
employed  for  yield  map  generation  necessitates  preprocessing,  as
illustrated  in  Figure  3.  This  preprocessing  encompasses  four  core
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steps:  optimization  of  wavelet  filtering  algorithms,  mitigation  of
machine-induced  vibration  interference,  development  of  moisture
compensation models, and improvement of measurement accuracy.
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Figure 3    Signal processing flow
 

As  shown  in  Figure  4,  when  the  working  condition  operation
monitoring  and  yield  measurement  module  is  working,  the  yield
map  can  be  generated  according  to  the  real-time  yield  and  the
corresponding  GPS  coordinates.  The  GPS  positioning  records  all
the trajectory points passed by the harvester when harvesting wheat
during the operation, which can be roughly divided into three plots,
in basically the north-south direction.
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Figure 4    Visual operation diagram of yield measurement
 

Upon acquisition of analog sensor signals,  digital  filtering and
linear  interpolation  are  initially  applied  to  eliminate  outliers  from
the  flow  signal.  Subsequently,  real-time  GPS  data  is  parsed  to
extract  key fields—including “longitude”, “latitude”,  and “time”—
from  its  data  structure,  which  are  then  converted  into  actual
coordinate  values.  Finally,  according  to  the  preset  time  interval,
field yield data is periodically transmitted to the remote server, with

the format of GPRS transmission frames defined accordingly.

 3    Key parameter monitoring
 3.1    Monitoring device for engine output power

The  output  power  of  the  combine  harvester  engine  can  be
calculated by monitoring the torque and speed of the engine output
shaft.  Two  sets  of  couplings  are  used  in  the  torque  detection,  as
shown  in  Figure  5.  The  sensor  with  a  torque  signal  coupler  is
mounted  between  the  power  source  and  the  load.  In  terms  of
installation concentricity, the specification shall be ≤ 0.1 mm.
 
 

Figure 5    Installation diagram of torque sensor
 

If the harvester fails, it is mainly caused by the excessive load
in  the  threshing  cylinder  and  the  auger.  When  the  power  of  the
diesel engine is strong and the load in the drum or auger is not very
large,  the  speed  of  the  diesel  engine  decreases  slowly.  When  the
load  exceeds  the  critical  value,  the  degree  of  decline  gradually
becomes faster, and the drum will be blocked due to excessive load.
According  to  this  principle,  the  rotational  speed  data  of  the  drum
auger  of  the  harvester  is  monitored,  and the  monitoring results  are
shown in Figure 6.
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Figure 6    Real-time monitoring curve of engine output shaft
 

 3.2    Torque monitoring device
In  order  to  accurately  obtain  the  working  condition  and

workload  of  the  harvester  and  give  early  warning  of  abnormal
situations, it is necessary to use the torque sensor to obtain the real-
time  torque  information  of  each  rotating  shaft.  The  threshing
working  parts  of  combine  harvester  are  mainly  the  double
longitudinal  axial  flow  threshing  drum.  In  order  to  monitor  the
threshing  power  of  the  combine  harvester,  a  torque  monitoring
device  for  the  power  drive  shaft  of  the  longitudinal  axial  flow
threshing  drum  was  designed.  In  the  traditional  torque  sensor,  the
sensor  needs  to  be  connected  in  series  between  the  power  source
and  the  load  in  the  form  of  broken  shaft,  which  will  bring  great
inconvenience  to  the  installation  of  the  sensor.  The  torque  sensing
detection device in this study can be directly installed on the outside
of  the  transmission  wheel  without  disconnecting  the  transmission
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shaft.  The  principle  is  shown  in  Figure  7.  The  core  mechanism
relies  on  the  combination  of  non-contact  signal  acquisition  and

strain sensing-frequency conversion, enabling precise monitoring of
torque data.
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Figure 7    Principle of torque sensor
 

On the elastic  shaft  segment  of  the rotor  assembly,  four  strain
gauges  are  symmetrically  bonded—two  at  45°  and  two  at  135°
relative to the axial and circumferential directions—thereby forming
a full-bridge measurement circuit. When the drive shaft is subjected
to  torque,  the  elastic  shaft  undergoes  corresponding  torsional
deformation:  the  strain  gauges  oriented  at  45°  are  subjected  to
tensile stress with an increase in resistance, while those oriented at
135°  experience  compressive  stress  with  a  decrease  in  resistance.
The  full-bridge  circuit  outputs  a  differential  voltage  signal  that  is
proportional to the applied torque. This signal is first amplified via
an  amplifier,  then  converted  into  a  voltage-to-frequency  (V-F)
output by a signal converter, and finally received and demodulated
by a wireless receiver to acquire real-time torque signals.

The installation diagram of the transmission shaft of the header
is  shown  in  Figure  8.  The  disc  torque  sensor  is  installed  at  the
header shaft by breaking the shaft, and the two ends of the rotor are
connected  with  the  left  and  right  half  shafts  through  the  flange
coupling  respectively.  Figure  9  is  the  installation  diagram  of  the
torque sensor at the threshing drum shaft. The threshing drum shaft
of the harvester is a complete pipe shaft welding part, which is not
suitable  for  the  broken  shaft  installation  method.  The  short  shafts
are lengthened to realize the power output. This component is fixed
to  the  sensor  rotor  through  a  keyed  connection,  ensuring
synchronous rotation of the rotor with the drive shaft and preventing
potential torque transmission errors resulting from relative slippage.
The drum output  power  and torque  real-time monitoring  curve  are
shown in Figure 10.

  

Figure 8    Torque monitoring of header barrel

 
 

Figure 9    Threshing drum on-line monitoring device
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 3.3    Height of header
The  stubble  height  refers  to  the  height  from  the  top  of  the

stubble left in the plot to the ground after wheat harvest. The header
height  sensor  is  a  displacement  sensor  of  type  KTM75,  linear
accuracy: 0.05%, repetitive linear accuracy: 0.01 mm, measurement
length:  0-75  mm,  output  type:  0-given  input  working  voltage,
working  temperature:  −30°C  to  125°C.  In  this  paper,  the  cable
displacement  sensor  was  used  to  measure  the  elongation  of  the
hydraulic  cylinder  of  the  header,  and  the  linear  relationship  model
was established between the stubble height and the elongation of the
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hydraulic  cylinder  of  the  header  based  on  the  least  square  fitting
algorithm.

h = a1 +a2r (1)

where,  h  is  cut  stubble  height,  mm;  r  is  cutter  hydraulic  cylinder
elongation, mm; a1, a2 are constants determined by calibration test.

The position sensor of the cutting table also uses the proximity
switch to judge the lifting state of the cutting table. When the header
is lifted, the yield data acquisition is stopped to avoid the abnormal
working  state  of  the  harvester  during  the  turning  process  in  the
ground and affect the measurement accuracy.
 3.4    Positioning device

The main function of the positioning receiver is to position the
harvester  in  real  time  and  record  the  geographical  coordinates
corresponding  to  the  current  yield  value  according  to  the  data
acquisition frequency of the yield measurement system, which is the
positioning information in the yield data.

Beijing  Unicore  UM220-Ⅲ dual -system  navigation/timing
module was selected in the module, mainly for locating the vehicle
position  of  combine  harvester  and  calculating  the  vehicle  speed.
Dual-system, multi-frequency, and high-performance SOC chip was
adopted  in  UM220-Ⅲ,  which  supports  BD2B1  and  GPS  L12
frequency points at the same time, and provides two UART output
interfaces,  with  a  positioning  accuracy  of  25mCEP,  high
integration, and low power consumption, which is very suitable for
occasions  with  high  positioning  performance,  product  reliability,
and quality requirements. The multi-objective decision-making and
control logic of the system is illustrated in Figure 11.
 3.5    Principles for sensor system selection and installation

The  output  types  of  each  sensor  in  the  system mainly  include

12 V torque frequency signal, 12 V speed pulse signal, NPN voltage
output pulse signal, and 4-20 mA current signal, as listed in Table 1.
Based  on  PIC26K80  controller,  7-channel  frequency  acquisition
module  and  8-channel  analog  acquisition  module  were  designed
based  on  CAN  bus  output  in  this  paper,  and  a  vehicle-mounted
CAN  channel  network  was  constructed  for  hardware  signal
acquisition  of  various  sensors,  which  meets  the  overall  data
acquisition  needs  of  the  system.  The  overall  installation  layout  of
the harvester’s internal sensor system is presented in Figure 12. For
installation specifics: the Hall-effect speed sensor must be fastened
with  an  L-shaped  bracket  to  avoid  collisions  caused  by  excessive
proximity  or  signal  loss  due  to  excessive  distance.  The  fuel
consumption  sensor  is  installed  with  a  rubber  shock-absorbing
bracket  to  mitigate  the  interference  of  engine  vibrations  on
measurement accuracy.
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Table 1    Core sensor selection and installation
Sensor Model Core parameters Detection range Installation location

Height of cutting stubble KTC400 guyed displacement sensor Linearity≤0.2%; Lifespan≥
500 000 cycles 0-1500 mm Lifting support

Working shaft speed Hall speed sensor Response frequency: 0-10 kHz;
Triggering magnetic field≥20 mT 0-3000 r/min Roller end cap

Engine fuel consumption LWGY-15 Turbine Flowmeter Output signal: Pulse (0.1-5 kHz);
Material: 304 Stainless Steel 0-50 L/h Fuel inlet pipe

Positioning and forward speed UM220-III Dual-System GPS Receiving frequency: GPS L1/CNS B1;
Refresh rate: 1 Hz

Positioning accuracy: 1 m;
Speed accuracy: 0.1 m/s Roof of the cab

Grain flow YL-100 Impulse Sensor Output signal: 4-20 mA current;
Protection rating: IP67 0-10 kg/s Elevator outlet

Working shaft torque HX -900 Rotary torque sensor Output signal: 0-5V voltage; Operating
temperature: −40°C to 85°C 0-1500 N·m Extended short shaft
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Figure 12    Internal layout diagram of the sensing system

 4    Intelligent decision technology
 4.1    Establishment  of  grain  trajectory  model  after  being
thrown off the scraper

Through the analysis of the movement process of the grain flow
in the whole elevator conveying system, the trajectory of the grain
after being thrown off the scraper is parabolic. Because the terminal
velocity  and  angle  are  different  when  it  is  thrown  off  the  scraper
and  the  initial  speed  of  the  final  grain  when  it  is  thrown  off  the
scraper  is  determined  by  the  linear  speed  of  the  elevator  and  the
speed when the grain slides to the end of the scraper, it is necessary
to  analyze  the  speed  when  the  grain  is  thrown  off  the  scraper.
Assuming  that  the  throwing  points  of  the  grains  thrown  off  the
scraper at different positions are their respective coordinate dots, the
formula for calculating the initial speed of the grains thrown off is:

vH =
√

v2
Q + v2

0 (2)
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where,  VH  in  the  hypothetical  formula  is  the  actual  speed  of  the
grain when it  is  thrown off the scraper; VQ  is  linear velocity at  the
end of scraper, m/s; V0 is the speed when the grain slides to the end
of the scraper, m/s.

Assuming that the grain is only influenced by gravity, ignoring
factors  such  as  air  resistance  and  collision  between  grains,  the
motion equation of the grain is:

x = vHcosβ · t (3)

y = vHsinβ · t− 1
2

gt2 (4)

where,  y  is  the  vertical  distance  of  parabolic  motion,  m;  x  is
horizontal  distance  of  parabolic  motion,  m;  β  is  included  angle
between  actual  grain  speed  and  horizontal  direction,  the  unit  is
degrees;  t  is  time  for  the  grain  to  make  parabolic  motion,  m; g  is
acceleration  of  gravity,  m/s2; Va  is  initial  speed  when  the  grain  is
thrown off the scraper, m/s.

Then the trajectory equation of the grain after being thrown off
the scraper is:

y = tanβ · x− g
2
· x2

v2
acos2β

(5)

Synthesizing  the  above  types,  the  trajectory  of  grains  at
different  positions  after  being  thrown  off  the  scraper  can  be
calculated,  which  can  provide  theoretical  basis  for  the  design  of
structural parameters of impact plate of impulse grain yield sensor.
 4.2    Dynamic measurement of output

Real-time  monitoring  of  grain  loss  during  the  field  operations
of combine harvesters is critical for improving harvesting efficiency
and  quality.  The  grain  sensing  system  acts  as  the  core  component
for yield monitoring and operational condition identification, which
primarily consists of a PVDF array-based sensor, signal conditioning
modules, communication interfaces, and display devices.

The  PVDF  piezoelectric  film  sensors  utilized  in  this  system
exhibit  a  five-layer  structure:  two  protective  PET  layers  that
sandwich  a  central  PVDF  pressure  film  layer,  with  a  rubber  layer
and an aluminum alloy substrate layer underneath, which collectively
provide  vibration  damping  and  structural  support  as  shown  in
Figure 13. When the grain flow impinges on the sensor surface, the
generated  impulse  is  transduced  into  an  electrical  signal.  The
momentum principle underpinning this process can be expressed as:
The  impulse  acting  on  the  sensor  equals  the  product  of  the  grain
mass and the impact velocity of the grain stream.

The mechanical principle of the dual-plate differential impulse

grain flow sensor is as follows: The grain is conveyed to the top of
the silo via a grain elevator. Grain traveling at a specific velocity is
projected  onto  the  impact  plate  of  the  flow  sensor.  As  grains
periodically  strike  the  impact  plate,  the  resistance  of  strain  gauges
affixed to  its  rear  surface  varies  with  the  deformation of  the  plate.
An amplifier transmits this force signal to an A/D converter, which
converts it into digital data stored in the computer memory as shown
in  Figure  14.  Experimental  tests  demonstrate  the  sensor’s  high
measurement  accuracy  and  response  speed,  while  simultaneously
capturing the spatial distribution information of the grain.
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Figure 13    PVDF sensor unit structural diagram
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Figure 14    Schematic diagram of monitoring process of impulse
yield measurement module

 

 4.3    Decision model of feeding amount measurement
The feeding amount is the mass of materials fed into harvesting

machinery  in  unit  time,  and  its  acquisition  will  be  affected  by  the
physical  characteristics  of  materials  such  as  material  humidity  and
grain-grass  ratio.  As  shown  in  Figure  15,  the  rotational  speed  or
torque  of  the  threshing  drum  is  used  to  represent  the  feeding
amount.  When  the  model  of  the  combine  harvester  is  determined
and the physical characteristics of the material are constant, there is
a  one-to-one  correspondence  between  the  oil  pressure  and  the
feeding  amount,  and  the  theoretical  equation  can  well  reflect  the
feeding amount. If the physical characteristics of materials change,
even if the feed rate remains unchanged, the changes in the friction
coefficient,  compression  coefficient,  grain-grass  ratio,  and  natural
laying  density  of  non-grain  materials  will  affect  the  oil  pressure,
thus affecting the judgment of feeding amount.
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 5    Analysis of field trial results
In  August  2022,  a  two-day  wheat  harvesting  field  trial  was

conducted at the experimental site of Shengli Farmers’ Cooperative
in  Dezhou,  Shandong  Province.  During  the  trials,  under  clear  and
rain-free weather conditions, the comprehensive performance of the
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online  monitoring  and  automatic  fault  warning  system  for  wheat
harvesters was tested.

The  experimental  equipment  was  a  Lovol  Gushen  self-
propelled  wheat  combine  harvester  equipped  with  this  monitoring
system,  featuring  an  engine  power  of  160  kW,  a  rated  speed  of
2200  r/min,  and  a  header  width  of  4.5  m.  Field  levelness  was

measured using a laser level, with a tolerance of ±5 cm. Prior to the
experiment,  uniform  baseline  parameters  were  established  as
reference  standards  for  evaluating  the  monitoring  system’s
performance,  in  accordance  with  GB/T 21961-2020 (Test  Methods
for  Combine  Harvesters).  The  specific  experimental  plan  and
assessment criteria are listed in Table 2.

 
 

Table 2    Experimental schedule
Experimental

phase Interim objectives Content Methods Performance indicators

Preliminary
experimental

System debugging
to eliminate
hardware faults

CAN bus data transmission
testing; pre-operation of filtering
and compensation algorithms

Transmit test data packets to measure packet loss rate; import
simulated data to validate algorithm output accuracy.

CAN bus packet loss rate ≤ 0.1%;
algorithm simulation output
error ≤ 1%.

Performance
testing

Testing the core
performance of the
monitoring system

Monitoring accuracy testing and
continuous operational stability
testing

Simultaneously collect sensor data and weighing instrument
data to calculate relative error; continuously run to
statistically determine the number of data anomalies.

Monitoring error ≤3.5%, torque
accuracy ≤0.8%; number of
anomalies within 8 h ≤2

Field
validation

Verify the
effectiveness in
actual operations

Simulated fault warning
response; production chart
generation and accuracy
verification

Manually adjust parameters and record alert conditions;
generate yield maps by statistically analyzing zone-specific
net yield loss rates and loss rates, and compare these with
field-sampled yields.

Fault warning accuracy ≥95%,
response time ≤200 milliseconds;
production chart error ≤4%.

Data
processing

Data collation and
analysis

Experimental data screening to
eliminate outliers; identification
of error sources and assessment
of compensation effectiveness

Apply the 3σ rule to exclude outliers; compare the change in
error before and after compensation.

Data validity rate ≥ 95%;
compensated error reduction ≥ 40%.

 

As  shown  in  Figure  16,  the  grain  conveying  system  of  the
wheat  combine  harvester  equipped  with  this  precision  harvesting
system  operates  smoothly  without  any  blockages.  The  test  results
show that the on-line monitoring system of the working condition of
the  wheat  combine  harvester  runs  normally,  and  the  working
performance  of  the  detection  devices  such  as  the  speed  sensor,
power detection sensor, and torque sensor is good, which meets the
functional  requirements  and  accuracy  requirements  of  the  field
operation condition monitoring.
  

Figure 16    Harvesting test site
 

However,  when  the  measurement  system  traverses  areas  with
undulating  slopes,  yield  measurement  results  exhibit  slight
discrepancies.  Subsequent  analysis  indicates  that  this  discrepancy
may originate from grain segregation within the elevator,  which in
turn  causes  increased  load  on  one  side  of  the  flow  sensor.  It  is
therefore  recommended that  slope sensors  be  installed during field
operations  in  hilly  regions,  where  tilt  compensation  can  be
employed to enhance the accuracy of yield detection.
 5.1    Operation fault monitoring

When  the  fault  occurs,  the  speed  mutation  trend  of  the  drum
and  the  auger  of  the  harvester  is  the  same.  According  to  the
blockage situation on site, it is found that the drum is full of crops,
while  the  crop  volume  in  the  auger  is  normal  and  there  is  still  a
large space.  It  can be determined that  the drum blocking is  caused
by the large load of  the drum, and the drum and the auger share a
driving  shaft,  so  the  drum blocking  will  react  to  the  driving  shaft,
and  then  the  speed  of  the  auger  will  also  decrease.  Therefore,  the
monitored  curve  is  consistent  with  the  actual  situation,  which
verifies the feasibility of monitoring the harvester by the system.

As shown in Table  3,  the  field  test  shows that  the  system can
perform  sound  and  light  alarm  prompts  under  fault  conditions.
Through  the  vehicle  display  terminal,  the  operator  can  grasp  the
working  conditions  of  the  whole  machine,  as  well  as  the  working
load and fault state of each key mechanism in real time, and make
timely  adjustment  and  treatment,  which  reduces  the  incidence  of
field harvest faults and improves the operation efficiency.
  

Table 3    Agricultural machinery fault alarm test
Rated speed of threshing

cylinder r·min–1
Actual speed of threshing

cylinder r·min–1
Voice prompt
information

600 597 none
600 501 none
600 540 none
600 378 alarm
600 330 alarm

 

 5.2    Visual display of yield measurement
After harvesting a field, in order to clearly and intuitively show

the  real-time  yield  distribution  of  the  field,  the  real-time  yield
distribution  map  is  drawn  when  the  harvesting  machine  performs
the harvesting task, so that the yield between the various parts of the
field  can  be  intuitively  and  strikingly  understood.  As  shown  in
Figure  17,  in  order  to  obtain  multiple  sets  of  field  test  data  under
different operating parameters, the plot is divided into multiple test
groups according to the length of 35 m and the width of 4.5 m. Each
test  group  was  set  as  a  pre-acceleration  zone  (20  m),  a  harvest
determination  zone  (10  m),  and  a  stop  operation  zone  (5  m)
according to the direction of  the wheat  combine harvester.  Among
them, the wheat operations in the pre-acceleration area and the stop
operation area have been pre-harvested.

The  accuracy  of  preliminary  yield  maps  is  a  fundamental
prerequisite  to  ensure stable  harvesting quality  across  entire  fields.
Subsequently,  the  experimental  fields  will  be  divided  into  distinct
grid  units  based  on  yield  variations,  precisely  delineating  yield
gradient  zones.  Each  unit  will  be  assigned  specific  harvesting
parameters  according  to  the  preliminary  yield  data.  High-yield
gradient  units  will  employ  low-speed,  high-rotation  harvesting
modes  to  effectively  reduce  grain  loss  rates,  while  low-yield
gradient  units  will  adopt  high-speed,  low-rotation  modes  to  ensure
uniform harvesting quality.
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Figure 17    Visual operation diagram of field yield measurement
 

In  the  visual  operational  map,  plot  yields  correlate  with  soil
organic matter content. Weed coverage during harvesting may block

GPS  signals,  causing  coordinate  deviations.  The  adjacent  point
interpolation  method  is  used  to  correct  such  deviations,  limiting
data errors to within 2%.
 5.3    Validation test of grain yield measurement performance

In  accordance  with  the  general  specifications  of  GB/T  5262-
2008  (Test  Conditions  and  Methods  for  Agricultural  Machinery),
the  five-point  sampling  method  shall  be  adopted,  where  each
sampling point covers an area of 1 m2. The field harvest yield test of
the  system  was  carried  out  five  times,  with  each  harvest  mass
between  500-1500  kg.  The  yield  monitoring  value  was  recorded
after  each  harvest,  and  the  grain  was  unloaded  to  the  grain
collection  box  when  the  grain  was  returned  to  the  field  to  be
weighed to obtain the actual harvest value. During the experiment,
the yield of wheat field was selected for harvesting and the quality
was  weighed.  The  experimental  data  of  the  combine  harvester  in
each  paddy  field  were  marked  and  distinguished  for  data  analysis.
Table 4 is the data of system field yield test.

 
 

Table 4    Field yield measurement results of the system
Serial
number Longitude/(°) Latitude/(°) Increase the speed

of the auger/r∙min–1
Grain flow of monitoring

cereals/kg∙s–1
Average grain

flow
Total mass of monitoring

grain/kg
Actual total mass of
weighing grain/kg

Relative
error/%

1 116.725 244 37.439 754 530 0.502 58

0.502 912 411.52 424.64 3.089
2 116.729 107 37.431 794 540 0.542 24
3 116.728 545 37.435 788 530 0.501 85
4 116.722 148 37.436 847 530 0.475 21
5 116.725 89 37.433 156 540 0.492 68

 

An  analysis  of  grain  flow  monitoring  errors  revealed  that  the
measurement accuracy is influenced by variations in wheat moisture
content  during  the  testing  process.  When  the  moisture  content  is
high,  the  grain  density  increases,  which  in  turn  amplifies  the
detection  signal  output  by  the  impulse-type  sensor.  This
phenomenon leads to elevated grain flow readings and a subsequent
increase  in  measurement  errors.  To  mitigate  this  issue,  a  moisture
compensation  algorithm  was  then  integrated  into  the  monitoring
system.  This  algorithm  utilizes  real-time  data  from  the  moisture
content  sensor  to  correct  grain  flow  measurements,  thereby
effectively  reducing  interference  from  moisture-related
environmental factors.

The  rotational  speed  of  the  lifting  auger  of  the  combine
harvester is basically maintained at 530 r/min, and the operation is
stable.  The  wheat  flow  values  under  different  positioning
coordinates  are  different,  which  well  reflects  the  differences  in
wheat yield in different regions of the paddy field. The experimental
results  show  that  the  designed  grain  yield  monitoring  system  has
good overall performance, strong field adaptability, and the relative
error  of  online  yield  measurement  is  3.089%.  The  grain  flow
positioning  is  real-time  and  accurate,  and  the  grain  yield
prescription  map  drawn  by  this  method  has  certain  credibility  and
practicability.

 6    Conclusions and future work
This  study  addresses  key  challenges  in  wheat  combine

harvesters,  including  inadequate  monitoring  accuracy  across  full
operating conditions, high false alarm and missed detection rates in
fault  early warning,  and a disconnect between yield prediction and
operational  decision-making.  Through  the  rational  optimization  of
hardware  integration,  innovation  in  algorithms,  and  effective
collaboration  with  cloud  platforms,  we  have  developed  an
integrated system encompassing data perception, data transmission,
data post-processing, and ultimate decision-making.

Compared with existing technologies,  this innovation achieves
breakthroughs  in  non-disconnect  shaft-based  multi-source  sensor
integration.  By  welding  extended  short  shafts  to  accommodate
rotary  torque  sensors,  non-disconnect  shaft  installation  is  realized
without damaging the original shaft system. Integrated impulse-type
flow  sensors  are  uniformly  connected  via  CAN/RS-485  buses,
yielding  installation  compatibility  with  over  90%  of  domestic
combine  harvester  models.  By  overcoming  the  challenges  of  false
alarms  and  false  negatives  inherent  in  traditional  fixed-threshold
methods, we have developed a multi-parameter synergistic dynamic
early  warning  algorithm,  which  consists  of  three  core  modules:
multi-dimensional  feature  extraction,  adaptive  dynamic
thresholding,  and  multi-trend  prediction.  Additionally,  this
innovation  incorporates  IoT  cloud-based  decision-making,  linking
operational status, grain yield, and geographic location via detailed
yield  distribution  maps.  This  provides  data  support  for  future
precision  fertilization,  harvesting  path  planning,  and  field  zoning
management.

Future  research  may  extend  this  system  to  harvesting  diverse
crops  such  as  coarse-stemmed  corn  and  rice  under  humid
conditions,  achieved  by  adopting  shock-resistant  corn  kernel  flow
sensors,  waterproof  rice  header  height  sensors,  and  calibrating
algorithmic  thresholds.  Concurrently,  developing  modular  kits  to
accommodate  hardware  differences  between  small  self-propelled
harvesters  and  large  combines  will  reduce  deployment  costs.  With
the  advancement  of  IoT  and  big  data  technologies,  remote
interconnection  between  multiple  harvesters  will  be  feasible  in  the
foreseeable  future.  Based  on  real-time  field  yield  data,  harvesters
can be dynamically allocated to specific operational zones for fleet-
level  scheduling.  Leveraging  long-term  accumulated  fault  data
samples,  deep  learning  models  can  be  trained  for  automated  fault
classification,  evolving  from  fault  early  warning  to  predictive
maintenance. This will enable full-cycle management covering pre-
harvest prediction, in-harvest monitoring, and post-harvest analysis.
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This research integrates CAN bus technology and multi-sensor
fusion to  enable  comprehensive operational  monitoring,  fault  early
warning, and yield analysis for wheat combine harvesters. Field trial
results  indicate  that  this  system  significantly  improves  operational
efficiency  and  quality,  substantially  reducing  the  probability  of
work  interruptions  and  harvesting  losses  due  to  fault-induced
downtime.  While  directly  increasing  economic  value  per  mu  for
farmers,  the  system  also  outputs  data  including  “field  yield
distribution maps” and “operational parameter logs”. These data can
be integrated into regional agricultural big data platforms to support
macro-level  decision-making  regarding  water,  fertilizer,  and
pesticide  application,  aligning  with  the  development  direction  of
green agriculture.
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