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Full-condition monitoring and intelligent yield prediction and decision-

making technology for wheat combine harvesters
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Abstract: Against the backdrop of precision agriculture and the development of intelligent agricultural machinery, current
domestic monitoring systems for wheat combine harvesters are plagued by limited functionality, low intelligence, significant
errors in parameter monitoring, and yield estimation results prone to inaccuracies. Specifically, they lag behind mature
international systems in terms of fault warning accuracy, data transmission efficiency, and yield visualization capabilities. This
study seeks to realize comprehensive and precise monitoring, reliable fault early warning, and intelligent yield prediction for
wheat combine harvesters across all operating conditions. To this end, it innovatively adopts CAN bus integration technology
and impulse-type grain flow sensors to develop a comprehensive system for monitoring the operational status and warning
faults of wheat combine harvesters, which covers the entire operational process. By integrating GPS positioning, multi-sensor
parameter acquisition, and intelligent analysis modules through CAN bus integration, the system enables unified monitoring of
geographic information, operational data, cleaning loss, and fault status. Additionally, it incorporates a yield measurement
module based on an impulse-type grain flow sensor to generate the real-time yield distribution maps. Field experiments
demonstrate that the system achieves an alarm accuracy of 97.3%, controls the fuel consumption measurement error within 5%,
and limits the relative error of yield measurement accuracy to no more than 4%. Notably, the impulse-type grain flow sensor
exhibits stable static detection accuracy and rapid, precise dynamic measurement performance—laying a solid foundation for
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the automation and intelligent advancement of combine harvester technologies.
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1 Introduction

Combine harvesters are a type of agricultural machinery widely
used in modern agricultural production, greatly improving crop
harvesting efficiency while alleviating labor intensity. However, the
operation of combine harvesters involves substantial maintenance
and management tasks, and significant challenges remain in their
remote operation and management!'. An overview of international
research reveals that systems such as John Deere’s Green Star and
CLAAS’s CEMOS have integrated functions including yield
monitoring, satellite navigation, and feed rate control. Nevertheless,
their core technologies are designed for the large-scale operational
scenarios typical of European and American farms, exhibiting
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limited adaptability to China’s complex field conditions—such as
fragmented land parcels and hilly terrain. Domestic research has
advanced in specific technologies such as the piezoelectric grain
flow sensor developed by China Agricultural University and the
threshing drum torque monitoring device designed by Jiangsu
University™). However, most domestic monitoring systems are
limited to monitoring only single parameters, such as engine speed
or grain flow. They lack the capability to realize coordinated
collection of multiple parameters like header height, threshing drum
torque, and feed rate and thus cannot comprehensively reflect the
overall operational status of the harvester.

With the development of agricultural IoT technology and
agricultural informatization*®, mechanized agricultural production
can utilize remote monitoring and data analytics to collect real-time
field information and harvester operational status. Connected
terminals transmit data to platforms for large-scale storage and
processing'”’, where platforms aggregate various types of data to
support tasks such as harvester operation scheduling and yield
forecasting®'’l. This approach establishes a continuous, stable, and
multi-information combine

reliable acquisition method for

harvesters'',  effectively managing operational condition
information and thereby improving the utilization efficiency of
agricultural production resources'”. Furthermore, online monitoring
technology facilitates real-time monitoring of harvester operational
parameters and enables rapid acquisition of operational data in the

event of equipment malfunctions!.
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This paper presents the design of a comprehensive operational
condition monitoring and intelligent yield prediction decision-
making system for wheat combine harvesters, based on Controller
Area Network (CAN) bus technology!*". Its
breakthroughs are reflected in three key aspects: First, we develop a

innovative

collaborative architecture integrating multi-source sensing and the
CAN bus to enable the synchronous collection of geographic data,
operating condition data, and yield data, addressing the limitation of
single-parameter monitoring!*'"”.. Second, we establish a correlation
model between yield and operating conditions, thereby realizing the
bidirectional prognosis of abnormal operating conditions and yield
shadow. Third, we introduce the innovation of a non-disconnecting
torque sensor installation scheme™, while integrating yield
visualization and fault early warning functions®” ). Additionally,
this study employs an impulse-based grain flow detection method
and designs an impulse-type grain flow sensor system characterized
by low measurement errors and high fault alarm accuracy™**".
Through the development and application of this system, this
study aims to overcome the current technical bottlenecks in
combine harvester monitoring systems—namely, fragmented
parameter monitoring®!, disconnected data transmission, and non-
integrated functional modules—thereby enhancing the intelligence
and precision of wheat harvesting processes. This work thus
provides technical support for the independent research and
development of precision agricultural equipment in China.

2 Overall design of intelligent yield measurement
system

2.1 System integration design

The core logic encompasses three sequential steps: first,
collecting data via multi-source data acquisition; second,
transmitting the collected data through a bus; and third, outputting it
in a visualized manner following intelligent processing. As

illustrated in Figure 1, the GPS receiver obtains geographic
coordinates (latitude and longitude), while the vehicle speed sensor
is used to measure the travel speed of the harvester. Using the
cutting width as input, the system calculates the cumulative
harvested area. Communication with the personal computer is
realized through a serial port, which supports the storage of raw
data and retrieval of the harvester’s operational parameters. The
developed impulse-type grain flow sensor continuously monitors
and processes yield-related signals. The speed sensors included in
the system are the elevator speed sensor, unloading chute speed
sensor, and feed roller speed sensor; all these sensors communicate
via the RS-485 bus without the need for protocol conversion. The
photoelectric switch, which is used to detect the lifting status of the
harvester’s header, outputs a digital signal. Thus, a 4-channel RS-
485 relay module is required to convert this digital signal into RS-
485-compatible communication. Ultimately, all sensors are
connected to the RS-485 Bus. The data collected through the RS-
485 Bus is transmitted to a serial server, which then communicates
with the monitoring system of the host computer’s configuration
software detection system, which in turn generates yield curves and
distribution maps, thereby completing the data acquisition process
and information visualization for all connected sensors.
2.2 Hardware structure design of the system

As illustrated in Figure 2, the core hardware components of the
grain measurement module in the intelligent yield monitoring
system comprise a sensor unit, data acquisition units, an RS485
Bus, and a grain yield display terminal. This hardware configuration
constitutes an enhancement and refinement of the hardware setup
employed in the first-generation yield monitoring system.
Specifically, the elevator speed sensor, unloading speed sensor, and
grain bin level sensor are respectively mounted on the combine
harvester’s elevator, unloading chute, and grain bin. These sensors
directly capture physical state signals, such as the auger speed (of
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the elevator), unloading chute speed, and grain bin level height. The
GPS receiver is directly connected to the data acquisition unit,
providing positioning data including latitude/longitude coordinates
and harvester travel speed—this data is utilized for geotagging yield
measurement results and calculating the harvested area.

Signals from the sensor units are first subjected to filtering and
voltage stabilization processes, followed by transmission to the data
acquisition unit via the RS-485 bus. Real-time yield data is
displayed on the terminal installed in the operator cab of the
harvester. When faults occur, such as when the threshing cylinder

speed drops below a preset threshold, an audible and visual alarm is
activated. The GPRS module interacts with the data acquisition unit
to receive processed operational data and yield-related data.
Concurrently, it establishes a connection to a remote server-based
monitoring platform through mobile communication networks. This
platform receives all data uploaded by the GPRS module and
supports multiple key functions: archiving historical operational
records and fault logs; conducting yield comparison analyses
between different fields; and adjusting operating routes according to
spatial yield distribution patterns.
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Figure 2 Composition diagram of system hardware

The core reasons for selecting the CAN bus are as follows:
First, agricultural machinery operates in environments with strong
electromagnetic interference, such as that generated by engines and
motors. The CAN bus employs differential signal transmission,
thereby providing superior anti-interference capability. Second, it
supports multi-node access, enabling the simultaneous transmission
of diverse sensor data to meet the requirements of “comprehensive
monitoring”. Third, its high transmission rate (1 Mbps) ensures that
fault information is transmitted to the display and control terminal
within 100 ms.

The CAN module’s hardware configuration primarily consists
which incorporates STM32F103
microcontroller, which is installed in the electrical control box of
the cab and integrates two CAN interfaces: CANI for sensor data
acquisition and CAN2 for communication with the display/control

of a master node an

terminal. Slave nodes are integrated into individual sensors and
perform signal conditioning tasks, such as the amplification and
filtering of torque signals. The communication protocol defines 32
types of data frames. Among them, the fault warning frame has the
highest priority, with a transmission cycle of 100 ms, while general
parameter frames like fuel consumption and rotational speed
operate with a 500 ms transmission cycle.
2.3 System software design and
integration

The software-based data processing module utilizes algorithms
to mitigate interference and errors inherent in raw data transmitted

hardware-software

by hardware: Wavelet filtering mitigates the adverse effects of
machine vibration on grain flow signals; moisture compensation
models calibrate yield values based on moisture content data
collected by hardware; spatiotemporal matching algorithms
correlate GPS coordinates with yield data, generating location-yield
association data that provides precise support for subsequent
decision-making processes.

The software accommodates different hardware models via
parameter configuration. When replacing a speed sensor model, the

software can adjust the conversion coefficient between pulse signals
and rotational speed through the human-machine interface,
eliminating the need for hardware replacement. Hardware facilitates
the expansion of software functions via standardized interfaces: the
integration of new sensors merely requires their connection to the
RS-485 bus, while the software only needs the addition of
corresponding parsing modules—this ensures compatibility and
flexibility during functional upgrades.

Specifically, the hardware serves as the raw data input source
for the software. The software then processes the raw data via
algorithmic computations to generate decision-making commands.
Subsequently, these commands actuate the hardware to perform
execution actions or parameter adjustments, thereby forming a
comprehensive closed-loop chain spanning from monitoring
through decision-making to control. Such a closed-loop architecture
ensures the stable and reliable operation of the system under
practical operating conditions.

The unique contributions of this research in hardware-software
co-design are as follows: First, it achieves compatibility and
integration across multiple sensor types, with a data acquisition
coverage rate of 95%. Second, it proposes a multi-parameter
threshold fusion algorithm, which reduces the fault identification
time to 0.8 s. Third, it enables the cloud platform to support real-
time terabyte-scale data storage and offline analysis, with a
processing latency of <1 s.

2.4 Generation of yield distribution map

In order to achieve the objective of enhancing grain yield, it is
essential to conduct in-depth analysis of spatial and temporal
variations in farmland yield, identify key factors contributing to
yield fluctuations, and implement site-specific zoned management
of farmland and achieve the goal of increasing grain production.
Notably,
compromise the accuracy of yield maps; therefore, the raw data
employed for yield map generation necessitates preprocessing, as

measurement inaccuracies during data acquisition

illustrated in Figure 3. This preprocessing encompasses four core
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steps: optimization of wavelet filtering algorithms, mitigation of
machine-induced vibration interference, development of moisture
compensation models, and improvement of measurement accuracy.
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As shown in Figure 4, when the working condition operation
monitoring and yield measurement module is working, the yield
map can be generated according to the real-time yield and the
corresponding GPS coordinates. The GPS positioning records all
the trajectory points passed by the harvester when harvesting wheat
during the operation, which can be roughly divided into three plots,
in basically the north-south direction.
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Figure 4 Visual operation diagram of yield measurement

Upon acquisition of analog sensor signals, digital filtering and
linear interpolation are initially applied to eliminate outliers from
the flow signal. Subsequently, real-time GPS data is parsed to
extract key fields—including “longitude”, “latitude”, and “time”—
from its data structure, which are then converted into actual
coordinate values. Finally, according to the preset time interval,
field yield data is periodically transmitted to the remote server, with

the format of GPRS transmission frames defined accordingly.

3 Key parameter monitoring

3.1 Monitoring device for engine output power

The output power of the combine harvester engine can be
calculated by monitoring the torque and speed of the engine output
shaft. Two sets of couplings are used in the torque detection, as
shown in Figure 5. The sensor with a torque signal coupler is
mounted between the power source and the load. In terms of
installation concentricity, the specification shall be < 0.1 mm.

Figure 5 Installation diagram of torque sensor

If the harvester fails, it is mainly caused by the excessive load
in the threshing cylinder and the auger. When the power of the
diesel engine is strong and the load in the drum or auger is not very
large, the speed of the diesel engine decreases slowly. When the
load exceeds the critical value, the degree of decline gradually
becomes faster, and the drum will be blocked due to excessive load.
According to this principle, the rotational speed data of the drum
auger of the harvester is monitored, and the monitoring results are
shown in Figure 6.
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Figure 6 Real-time monitoring curve of engine output shaft

3.2 Torque monitoring device

In order to accurately obtain the working condition and
workload of the harvester and give early warning of abnormal
situations, it is necessary to use the torque sensor to obtain the real-
time torque information of each rotating shaft. The threshing
working parts of combine harvester are mainly the double
longitudinal axial flow threshing drum. In order to monitor the
threshing power of the combine harvester, a torque monitoring
device for the power drive shaft of the longitudinal axial flow
threshing drum was designed. In the traditional torque sensor, the
sensor needs to be connected in series between the power source
and the load in the form of broken shaft, which will bring great
inconvenience to the installation of the sensor. The torque sensing
detection device in this study can be directly installed on the outside
of the transmission wheel without disconnecting the transmission
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shaft. The principle is shown in Figure 7. The core mechanism
relies on the combination of non-contact signal acquisition and
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torque data.
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Figure 7 Principle of torque sensor

On the elastic shaft segment of the rotor assembly, four strain
gauges are symmetrically bonded—two at 45° and two at 135°
relative to the axial and circumferential directions—thereby forming
a full-bridge measurement circuit. When the drive shaft is subjected
to torque, the elastic shaft undergoes corresponding torsional
deformation: the strain gauges oriented at 45° are subjected to
tensile stress with an increase in resistance, while those oriented at
135° experience compressive stress with a decrease in resistance.
The full-bridge circuit outputs a differential voltage signal that is
proportional to the applied torque. This signal is first amplified via
an amplifier, then converted into a voltage-to-frequency (V-F)
output by a signal converter, and finally received and demodulated
by a wireless receiver to acquire real-time torque signals.

The installation diagram of the transmission shaft of the header
is shown in Figure 8. The disc torque sensor is installed at the
header shaft by breaking the shaft, and the two ends of the rotor are
connected with the left and right half shafts through the flange
coupling respectively. Figure 9 is the installation diagram of the
torque sensor at the threshing drum shaft. The threshing drum shaft
of the harvester is a complete pipe shaft welding part, which is not
suitable for the broken shaft installation method. The short shafts
are lengthened to realize the power output. This component is fixed
to the sensor rotor through a keyed connection, ensuring
synchronous rotation of the rotor with the drive shaft and preventing
potential torque transmission errors resulting from relative slippage.
The drum output power and torque real-time monitoring curve are
shown in Figure 10.

Figure 8 Torque monitoring of header barrel

Figure 9 Threshing drum on-line monitoring device
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Figure 10 Real-time monitoring curve of longitudinal
axial flow drum

3.3 Height of header

The stubble height refers to the height from the top of the
stubble left in the plot to the ground after wheat harvest. The header
height sensor is a displacement sensor of type KTM75, linear
accuracy: 0.05%, repetitive linear accuracy: 0.01 mm, measurement
length: 0-75 mm, output type: O-given input working voltage,
working temperature: —30°C to 125°C. In this paper, the cable
displacement sensor was used to measure the elongation of the
hydraulic cylinder of the header, and the linear relationship model
was established between the stubble height and the elongation of the
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hydraulic cylinder of the header based on the least square fitting
algorithm.

h=a,+ayr (1)

where, % is cut stubble height, mm; r is cutter hydraulic cylinder
elongation, mm; a,, a, are constants determined by calibration test.

The position sensor of the cutting table also uses the proximity
switch to judge the lifting state of the cutting table. When the header
is lifted, the yield data acquisition is stopped to avoid the abnormal
working state of the harvester during the turning process in the
ground and affect the measurement accuracy.

3.4 Positioning device

The main function of the positioning receiver is to position the
harvester in real time and record the geographical coordinates
corresponding to the current yield value according to the data
acquisition frequency of the yield measurement system, which is the
positioning information in the yield data.

Beijing Unicore UM220-III dual -system navigation/timing
module was selected in the module, mainly for locating the vehicle
position of combine harvester and calculating the vehicle speed.
Dual-system, multi-frequency, and high-performance SOC chip was
adopted in UM220-III, which supports BD2B1 and GPS LI12
frequency points at the same time, and provides two UART output
interfaces, with a positioning accuracy of 25mCEP, high
integration, and low power consumption, which is very suitable for
occasions with high positioning performance, product reliability,
and quality requirements. The multi-objective decision-making and
control logic of the system is illustrated in Figure 11.

3.5 Principles for sensor system selection and installation
The output types of each sensor in the system mainly include

12 V torque frequency signal, 12 V speed pulse signal, NPN voltage
output pulse signal, and 4-20 mA current signal, as listed in Table 1.
Based on PIC26K80 controller, 7-channel frequency acquisition
module and 8-channel analog acquisition module were designed
based on CAN bus output in this paper, and a vehicle-mounted
CAN channel network was constructed for hardware signal
acquisition of various sensors, which meets the overall data
acquisition needs of the system. The overall installation layout of
the harvester’s internal sensor system is presented in Figure 12. For
installation specifics: the Hall-effect speed sensor must be fastened
with an L-shaped bracket to avoid collisions caused by excessive
proximity or signal loss due to excessive distance. The fuel
consumption sensor is installed with a rubber shock-absorbing
bracket to mitigate the interference of engine vibrations on
measurement accuracy.
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Figure 11 Multi-objective decision-making and control

logic diagram

Table 1 Core sensor selection and installation

Sensor Model Core parameters Detection range Installation location
. . . Linearity<0.2%; Lifespan> o
Height of cutting stubble KTC400 guyed displacement sensor 500 000 cycles 0-1500 mm Lifting support
Working shaft speed Hall speed sensor Response frequency: 0-10 kHz; 0-3000 r/min Roller end cap

Engine fuel consumption LWGY-15 Turbine Flowmeter

Positioning and forward speed UM220-I1I Dual-System GPS
Grain flow YL-100 Impulse Sensor

Working shaft torque HX -900 Rotary torque sensor

Triggering magnetic field>20 mT

Output signal: Pulse (0.1-5 kHz);
Material: 304 Stainless Steel

Receiving frequency: GPS L1/CNS B1;
Refresh rate: 1 Hz

Output signal: 4-20 mA current;
Protection rating: IP67
Output signal: 0-5V voltage; Operating
temperature: —40°C to 85°C

0-50 L/h Fuel inlet pipe
Positioning accuracy: 1 m; Roof of the cab
Speed accuracy: 0.1 m/s

0-10 kg/s Elevator outlet

0-1500 N'm Extended short shaft

1. Grain flow sensor 2. CAN Bus 3. Threshing drum sensor 4. Elevator auger
speed sensor 5. Cutter height sensor 6. Cutting drum speed sensor 7. Grain
discharge auger sensor 8. Engine fuel consumption sensor

Figure 12 Internal layout diagram of the sensing system

4 Intelligent decision technology

4.1 Establishment of grain trajectory model after being
thrown off the scraper

Through the analysis of the movement process of the grain flow
in the whole elevator conveying system, the trajectory of the grain
after being thrown off the scraper is parabolic. Because the terminal
velocity and angle are different when it is thrown off the scraper
and the initial speed of the final grain when it is thrown off the
scraper is determined by the linear speed of the elevator and the
speed when the grain slides to the end of the scraper, it is necessary
to analyze the speed when the grain is thrown off the scraper.
Assuming that the throwing points of the grains thrown off the
scraper at different positions are their respective coordinate dots, the
formula for calculating the initial speed of the grains thrown off is:

Ve = /e + V5 2)
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where, Vy in the hypothetical formula is the actual speed of the
grain when it is thrown off the scraper; ¥, is linear velocity at the
end of scraper, m/s; V is the speed when the grain slides to the end
of the scraper, m/s.

Assuming that the grain is only influenced by gravity, ignoring
factors such as air resistance and collision between grains, the
motion equation of the grain is:

X = vycosB-t 3)

y=v1.,sin/3~t—%gt2 4

where, y is the vertical distance of parabolic motion, m; x is
horizontal distance of parabolic motion, m; £ is included angle
between actual grain speed and horizontal direction, the unit is
degrees; ¢ is time for the grain to make parabolic motion, m; g is
acceleration of gravity, m/s*; V, is initial speed when the grain is
thrown off the scraper, m/s.

Then the trajectory equation of the grain after being thrown off

the scraper is:
2

y=tang-x— 5. —= (5)

2 vicos*B

Synthesizing the above types, the trajectory of grains at
different positions after being thrown off the scraper can be
calculated, which can provide theoretical basis for the design of
structural parameters of impact plate of impulse grain yield sensor.
4.2 Dynamic measurement of output

Real-time monitoring of grain loss during the field operations
of combine harvesters is critical for improving harvesting efficiency
and quality. The grain sensing system acts as the core component
for yield monitoring and operational condition identification, which
primarily consists of a PVDF array-based sensor, signal conditioning
modules, communication interfaces, and display devices.

The PVDF piezoelectric film sensors utilized in this system
exhibit a five-layer structure: two protective PET layers that
sandwich a central PVDF pressure film layer, with a rubber layer
and an aluminum alloy substrate layer underneath, which collectively
provide vibration damping and structural support as shown in
Figure 13. When the grain flow impinges on the sensor surface, the
generated impulse is transduced into an electrical signal. The
momentum principle underpinning this process can be expressed as:
The impulse acting on the sensor equals the product of the grain
mass and the impact velocity of the grain stream.

The mechanical principle of the dual-plate differential impulse
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grain flow sensor is as follows: The grain is conveyed to the top of
the silo via a grain elevator. Grain traveling at a specific velocity is
projected onto the impact plate of the flow sensor. As grains
periodically strike the impact plate, the resistance of strain gauges
affixed to its rear surface varies with the deformation of the plate.
An amplifier transmits this force signal to an A/D converter, which
converts it into digital data stored in the computer memory as shown
in Figure 14. Experimental tests demonstrate the sensor’s high
measurement accuracy and response speed, while simultaneously
capturing the spatial distribution information of the grain.
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Figure 13 PVDF sensor unit structural diagram
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Figure 14 Schematic diagram of monitoring process of impulse
yield measurement module

4.3 Decision model of feeding amount measurement

The feeding amount is the mass of materials fed into harvesting
machinery in unit time, and its acquisition will be affected by the
physical characteristics of materials such as material humidity and
grain-grass ratio. As shown in Figure 15, the rotational speed or
torque of the threshing drum is used to represent the feeding
amount. When the model of the combine harvester is determined
and the physical characteristics of the material are constant, there is
a one-to-one correspondence between the oil pressure and the
feeding amount, and the theoretical equation can well reflect the
feeding amount. If the physical characteristics of materials change,
even if the feed rate remains unchanged, the changes in the friction
coefficient, compression coefficient, grain-grass ratio, and natural
laying density of non-grain materials will affect the oil pressure,
thus affecting the judgment of feeding amount.

Ratio of grain
to straw

A feed quantity detection
model based on multiple
source information

Ie Grain flow
oncave gap il

Crop moisture
content

|

Power
consumption |
model

Figure 15 Feeding amount detection model based on multi-source information fusion

5 Analysis of field trial results

In August 2022, a two-day wheat harvesting field trial was

conducted at the experimental site of Shengli Farmers’ Cooperative
in Dezhou, Shandong Province. During the trials, under clear and
rain-free weather conditions, the comprehensive performance of the
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online monitoring and automatic fault warning system for wheat
harvesters was tested.

The experimental equipment was a Lovol Gushen self-
propelled wheat combine harvester equipped with this monitoring
system, featuring an engine power of 160 kW, a rated speed of
2200 r/min, and a header width of 4.5 m. Field levelness was

measured using a laser level, with a tolerance of =5 cm. Prior to the
experiment, uniform baseline parameters were established as
reference standards for evaluating the monitoring system’s
performance, in accordance with GB/T 21961-2020 (Test Methods
for Combine Harvesters). The specific experimental plan and
assessment criteria are listed in Table 2.

Table 2 Experimental schedule

Experimental

Content
phase

Interim objectives

Methods Performance indicators

. System debugging CAN bus data transmission
Preliminary S . . .
. to eliminate testing; pre-operation of filtering
experimental . .
hardware faults and compensation algorithms
Testing the core
Performance . . >
{esting performance of the continuous operational stability
monitoring system  testing
) Verify the Simulated fault wgming
Field . . response; production chart
S effectiveness in .
validation . generation and accuracy
actual operations . .
verification
Experimental data screening to
Data Data collation and  eliminate outliers; identification
processing  analysis of error sources and assessment

of compensation effectiveness

Transmit test data packets to measure packet loss rate; import
simulated data to validate algorithm output accuracy.

Manually adjust parameters and record alert conditions;
generate yield maps by statistically analyzing zone-specific
net yield loss rates and loss rates, and compare these with
field-sampled yields.

CAN bus packet loss rate < 0.1%;
algorithm simulation output
error < 1%.

Monitoring accuracy testing and ~ Simultaneously collect sensor data and weighing instrument Monitoring error <3.5%, torque
data to calculate relative error; continuously run to
statistically determine the number of data anomalies.

accuracy <0.8%; number of
anomalies within 8 h <2

Fault warning accuracy >95%,
response time <200 milliseconds;
production chart error <4%.

Apply the 3o rule to exclude outliers; compare the change in Data validity rate > 95%;
error before and after compensation.

compensated error reduction > 40%.

As shown in Figure 16, the grain conveying system of the
wheat combine harvester equipped with this precision harvesting
system operates smoothly without any blockages. The test results
show that the on-line monitoring system of the working condition of
the wheat combine harvester runs normally, and the working
performance of the detection devices such as the speed sensor,
power detection sensor, and torque sensor is good, which meets the
functional requirements and accuracy requirements of the field
operation condition monitoring.

EFay AN v

Figure 16 Harvesting test site

However, when the measurement system traverses areas with
slopes,
discrepancies. Subsequent analysis indicates that this discrepancy

undulating yield measurement results exhibit slight
may originate from grain segregation within the elevator, which in
turn causes increased load on one side of the flow sensor. It is
therefore recommended that slope sensors be installed during field
operations in hilly regions, where tilt compensation can be
employed to enhance the accuracy of yield detection.
5.1 Operation fault monitoring

When the fault occurs, the speed mutation trend of the drum
and the auger of the harvester is the same. According to the
blockage situation on site, it is found that the drum is full of crops,
while the crop volume in the auger is normal and there is still a
large space. It can be determined that the drum blocking is caused
by the large load of the drum, and the drum and the auger share a
driving shaft, so the drum blocking will react to the driving shaft,
and then the speed of the auger will also decrease. Therefore, the
monitored curve is consistent with the actual situation, which
verifies the feasibility of monitoring the harvester by the system.

As shown in Table 3, the field test shows that the system can
perform sound and light alarm prompts under fault conditions.
Through the vehicle display terminal, the operator can grasp the
working conditions of the whole machine, as well as the working
load and fault state of each key mechanism in real time, and make
timely adjustment and treatment, which reduces the incidence of
field harvest faults and improves the operation efficiency.

Table 3 Agricultural machinery fault alarm test

Rated speed of threshing Actual speed of threshing Voice prompt

cylinder r-min' cylinder r-min' information
600 597 none
600 501 none
600 540 none
600 378 alarm
600 330 alarm

5.2 Visual display of yield measurement

After harvesting a field, in order to clearly and intuitively show
the real-time yield distribution of the field, the real-time yield
distribution map is drawn when the harvesting machine performs
the harvesting task, so that the yield between the various parts of the
field can be intuitively and strikingly understood. As shown in
Figure 17, in order to obtain multiple sets of field test data under
different operating parameters, the plot is divided into multiple test
groups according to the length of 35 m and the width of 4.5 m. Each
test group was set as a pre-acceleration zone (20 m), a harvest
determination zone (10 m), and a stop operation zone (5 m)
according to the direction of the wheat combine harvester. Among
them, the wheat operations in the pre-acceleration area and the stop
operation area have been pre-harvested.

The accuracy of preliminary yield maps is a fundamental
prerequisite to ensure stable harvesting quality across entire fields.
Subsequently, the experimental fields will be divided into distinct
grid units based on yield variations, precisely delineating yield
gradient zones. Each unit will be assigned specific harvesting
parameters according to the preliminary yield data. High-yield
gradient units will employ low-speed, high-rotation harvesting
modes to effectively reduce grain loss rates, while low-yield
gradient units will adopt high-speed, low-rotation modes to ensure
uniform harvesting quality.
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Figure 17 Visual operation diagram of field yield measurement

In the visual operational map, plot yields correlate with soil
organic matter content. Weed coverage during harvesting may block

GPS signals, causing coordinate deviations. The adjacent point
interpolation method is used to correct such deviations, limiting
data errors to within 2%.
5.3 Validation test of grain yield measurement performance

In accordance with the general specifications of GB/T 5262-
2008 (Test Conditions and Methods for Agricultural Machinery),
the five-point sampling method shall be adopted, where each
sampling point covers an area of 1 m* The field harvest yield test of
the system was carried out five times, with each harvest mass
between 500-1500 kg. The yield monitoring value was recorded
after each harvest, and the grain was unloaded to the grain
collection box when the grain was returned to the field to be
weighed to obtain the actual harvest value. During the experiment,
the yield of wheat field was selected for harvesting and the quality
was weighed. The experimental data of the combine harvester in
each paddy field were marked and distinguished for data analysis.
Table 4 is the data of system field yield test.

Table 4 Field yield measurement results of the system

Serial Longitude/(°)  Latitude/(°) Increase the spe'e(ii1 Grain flow of mor}litoring Average grain  Total mass gf monitoring Actgal Fotal mass of Relative
number of the auger/rmin cereals/kg's flow grain/kg weighing grain/’kg  error/%
1 116.725244  37.439 754 530 0.502 58
2 116.729 107  37.431 794 540 0.542 24
3 116.728 545  37.435 788 530 0.501 85 0.502 912 411.52 424.64 3.089
4 116.722 148 37.436 847 530 0.475 21
5 116.72589  37.433 156 540 0.492 68

An analysis of grain flow monitoring errors revealed that the
measurement accuracy is influenced by variations in wheat moisture
content during the testing process. When the moisture content is
high, the grain density increases, which in turn amplifies the
signal output by the impulse-type sensor. This
phenomenon leads to elevated grain flow readings and a subsequent

detection

increase in measurement errors. To mitigate this issue, a moisture
compensation algorithm was then integrated into the monitoring
system. This algorithm utilizes real-time data from the moisture
content sensor to correct grain flow measurements, thereby
effectively  reducing  interference  from  moisture-related
environmental factors.

The rotational speed of the lifting auger of the combine
harvester is basically maintained at 530 r/min, and the operation is
stable. The wheat flow values under different positioning
coordinates are different, which well reflects the differences in
wheat yield in different regions of the paddy field. The experimental
results show that the designed grain yield monitoring system has
good overall performance, strong field adaptability, and the relative
error of online yield measurement is 3.089%. The grain flow
positioning is real-time and accurate, and the grain yield
prescription map drawn by this method has certain credibility and

practicability.
6 Conclusions and future work

This study addresses key challenges in wheat combine
harvesters, including inadequate monitoring accuracy across full
operating conditions, high false alarm and missed detection rates in
fault early warning, and a disconnect between yield prediction and
operational decision-making. Through the rational optimization of
hardware integration, innovation in algorithms, and effective
collaboration with cloud platforms, we have developed an
integrated system encompassing data perception, data transmission,
data post-processing, and ultimate decision-making.

Compared with existing technologies, this innovation achieves
breakthroughs in non-disconnect shaft-based multi-source sensor
integration. By welding extended short shafts to accommodate
rotary torque sensors, non-disconnect shaft installation is realized
without damaging the original shaft system. Integrated impulse-type
flow sensors are uniformly connected via CAN/RS-485 buses,
yielding installation compatibility with over 90% of domestic
combine harvester models. By overcoming the challenges of false
alarms and false negatives inherent in traditional fixed-threshold
methods, we have developed a multi-parameter synergistic dynamic
early warning algorithm, which consists of three core modules:
feature  extraction, adaptive  dynamic
and multi-trend prediction. Additionally, this
innovation incorporates IoT cloud-based decision-making, linking

multi-dimensional
thresholding,

operational status, grain yield, and geographic location via detailed
yield distribution maps. This provides data support for future
precision fertilization, harvesting path planning, and field zoning
management.

Future research may extend this system to harvesting diverse
crops such as coarse-stemmed corn and rice under humid
conditions, achieved by adopting shock-resistant corn kernel flow
sensors, waterproof rice header height sensors, and calibrating
algorithmic thresholds. Concurrently, developing modular kits to
accommodate hardware differences between small self-propelled
harvesters and large combines will reduce deployment costs. With
the advancement of IoT and big data technologies, remote
interconnection between multiple harvesters will be feasible in the
foreseeable future. Based on real-time field yield data, harvesters
can be dynamically allocated to specific operational zones for fleet-
level scheduling. Leveraging long-term accumulated fault data
samples, deep learning models can be trained for automated fault
classification, evolving from fault early warning to predictive
maintenance. This will enable full-cycle management covering pre-
harvest prediction, in-harvest monitoring, and post-harvest analysis.
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This research integrates CAN bus technology and multi-sensor
fusion to enable comprehensive operational monitoring, fault early
warning, and yield analysis for wheat combine harvesters. Field trial
results indicate that this system significantly improves operational
efficiency and quality, substantially reducing the probability of
work interruptions and harvesting losses due to fault-induced
downtime. While directly increasing economic value per mu for
farmers, the system also outputs data including “field yield
distribution maps” and “operational parameter logs”. These data can
be integrated into regional agricultural big data platforms to support

macro-level decision-making regarding water, fertilizer, and

pesticide application, aligning with the development direction of
green agriculture.
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