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Abstract: This study aimed to enhance the utilization of agricultural waste and identify the most suitable agricultural waste
materials for tomato cultivation. It utilized a locally modified substrate labeled as CK, along with five different groups of
agricultural waste materials, designated as T1 (organic fertilizer: loessial soil: straw in a ratio of 4:5:1), T2 (organic fertilizer:
loessial soil: straw: grains in a ratio of 3:5:1:1), T3 (organic fertilizer: loessial soil: straw: grains in a ratio of 2:5:1:2), T4
(organic fertilizer:loessial soil:straw:grains in a ratio of 1:5:1:3), and T5 ( loessial soil:straw:grains in a ratio of 5:1:4), the
AquaCrop model was employed to validate soil water content and tomato growth and yield under these treatments.
Furthermore, a multi-objective genetic algorithm was employed to determine the optimal agricultural waste materials that
would ensure maximum tomato yield, water use efficiency (WUE), partial factor productivity of fertilizer (PFP) and sugar-acid
ratio. The results indicated that the AquaCrop model reasonably simulated volumetric soil water content, tomato canopy cover,
and biomass, with root mean square error (RMSE) ranges of 20.0-69.4 mm, 15.2%-25.1%, and 1.093-3.469 t/hm’, respectively.
The CK group exhibited an R-squared (R*) value of 0.63 for volumetric soil water contents, while the ratio scenarios showed R*
values exceeding 0.80. The multi-objective genetic optimization algorithm identified TS as the optimal ratio scenario, resulting
in maximum tomato yield, WUE, PFP, and quality. This study offers a theoretical foundation for the efficient utilization of
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agricultural wastes and the production of high-quality fruits and vegetables.
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1 Introduction

With the rapid development of agriculture in China,
agricultural wastes such as straw and vegetable residues account to
over 1x10° t/a"l. Improper disposal and underutilization of
agricultural waste can lead to agricultural ecosystem destruction and
environmental degradation. The application of organic nutrients
has been shown to significantly increase crop yields, which is
crucial for sustainable agricultural production®*. Furthermore,
utilizing agricultural waste can enhance the physicochemical
fertility of the soil, reduce carbon emissions, and create a conducive
growth environment for plants, thereby further increasing its
application value”. Therefore, studying the distribution patterns of
crop yields and soil moisture under different proportions of straw
and organic fertilizer can help determine the optimal application
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ratios of agricultural waste materials, thereby enhancing the overall
efficiency of agricultural waste utilization.

The AquaCrop growth model, developed by the Food and
Agriculture Organization (FAO) of the United Nations, can simulate
aboveground biomass and yield using crop canopy cover, harvest
index, and soil properties™. Several researchers have extensively
utilized the AquaCrop model to simulate yields and biomass across
various irrigation regimes and crops, such as wheat!"”, tomato!'"'?,
maize!>'", cotton">'%, and rice"”. These studies have consistently
shown the AquaCrop model to be accurate in simulating crop
growth. Ran et al.'¥ highlighted the importance of calibration
parameters, like reference harvest index HI, in improving the
simulation of normalized dry matter water productivity (WP*) and
harvest index (HI) under different water stress conditions. Dubey et
al." used the AquaCrop crop model to evaluate the impact of
climate change on aboveground biomass and predict yields for
wheat, barley, and maize over the next 30 years. Song et al.”
optimized irrigation scheduling under different film treatments and
typical years using a multi-objective simulation-optimization model
based on the AquaCrop model and multi-objective genetic
algorithm (NSGA-II). Nyathi et al.®" conducted experiments to
calibrate maximum canopy cover and normalized dry matter water
productivity (WP*) for three-leaf vegetables using the AquaCrop
model, showing good fit under both sufficient and severe water
deficit conditions. Adeboye et al.”” demonstrated the accuracy of
the growth model in simulating the canopy cover, aboveground
biomass, and yield of soybean in different seasons. Takacs et al.>”
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utilized the AquaCrop model to assess the simulation accuracy of
tomato biomass and yield in the continental climate of the
Carpathian Basin, focusing on the relationship between climate
and water.

Previous research on AquaCrop model has primarily
concentrated on simulation of canopy cover, aboveground biomass
and yield of wheat, maize, and cotton!*'>'*'l often utilizing crop,
water, and salt parameters to refine the growth model. Nonetheless,
there is limited knowledge on the impact of organic fertilizer and
straw on the simulation of tomato yield and biomass, as well as
WUE and PFP. This study aimed to: 1) calibrate and validate the
AquaCrop model for tomato yield, canopy cover, soil water
contents, and biomass using various agricultural waste materials;
2) assess tomato quality under different agricultural waste materials;
3) identify suitable agricultural waste materials through the non-
dominated sorting genetic algorithm (NSGA-II) to optimize tomato
yield, biomass, WUE, and PFP. The findings of this study offer a
scientific foundation for enhancing the utilization of agricultural
waste and promoting high-quality tomato production.

2 Materials and methods

2.1 Experimental site and description

The experimental area is situated in Lanzhou New Area,
characterized by a temperate semi-arid continental climate with an
annual average temperature of 6.9°C and annual average
precipitation varying from 300 to 350 mm. The study was
conducted at the modern agricultural demonstration park of
Lanzhou New District (103°42'E, 36°32'N) during the periods of
July to November in both 2020 and 2021. The experiment focused
on tomato cultivation (4i ji 3041) under fertigation conditions
utilizing a drip irrigation system.
2.2 Experimental methods

In this study, organic fertilizer, straw, and distillers grains were
applied to tomato plants using five different ratios of inputs to
loessial soil. These ratios were labeled as T1 (organic fertilizer:
loessial soil:straw in a ratio of 4:5:1), T2 (organic fertilizer:loessial
soil:straw:grains in a ratio of 3:5:1:1), T3 (organic fertilizer:loessial
soil:straw:grains in a ratio of 2:5:1:2), T4 (organic fertilizer:loessial
soil:straw:grains in a ratio of 1:5:1:3), and T5 (loessial
soil:straw:grains in a ratio of 5:1:4). The control group (CK)
consisted of a locally modified substrate. Water and fertilizer
application rates were determined based on the study by Zhao et
al.” Each treatment received 60% ET, for irrigation, with N-P,Os-
K,O fertilizer applied at a rate of 180.0-88.0-121.2 kg/hm’. Tomato
plants were transplanted into the agricultural waste materials using a
double-long grazing film planting method and were randomly
arranged. Each plot contained fifteen plants, spaced 50 cm apart in
rows and 35 cm apart within rows. Water and fertilizer were applied
at specific growth stages of the tomato plants, namely 7, 18, 30, 49,
56, and 70 d after planting. Notably, days 49, 56, and 70
corresponded to the first, middle, and last fruit development stages.
The experimental layout is illustrated in Figure 1.
2.3 Soil properties and determination methods
2.3.1 Soil moisture and salt contents

Soil samples were collected prior to the commencement of the
experiment.

The soil moisture content was initially determined using the
gravimetric method, followed by the calculation of volumetric soil

water content (6):
0=y """ % 100% (1)

my

where, y is the soil bulk density, g/cm’; m, is the weight of the wet
soil, g; m, is the weight of the dry soil, g.
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Figure 1 Experimental layout used in this study

Additionally, the pH and electrical conductivity of the soil were
assessed using a PHSJ-4F pH meter (Century Ark Technology Co.,
Ltd., Chengdu, China) and DDS-307A conductivity meter (Century
Ark Technology Co., Ltd., Chengdu, China), respectively, at both
the start and the end of the experiment.

2.3.2 Determination of the tomato yield

Harvesting commenced at the onset of fruit ripening, occurring
every 3-4 d. Six representative plants were randomly selected from
each plot within the triplicate blocks to determine the tomato yield.
2.3.3 Calculation of water use efficiency and fertilizer partial
productivity

Water use efficiency (WUE) was calculated in this study using
the following formula:

WUE =Y/ET (2)

where, Y is the tomato yield, kg/hm?; ET is the evapotranspiration
amount of tomato at each period, mm.

Partial factor productivity of fertilizer (PFP) was calculated
using the following formula:

PFP = Y/F 3)

where, F is the amount of fertilizer applied, kg/hm’.
2.3.4 Crop canopy cover

Furthermore, 10 tomato plants were randomly selected at each
growth stage to assess crop canopy cover. The length (B) and width
(L) of the largest leaf were first measured, followed by the
calculation of leaf area index (LAI) to determine canopy cover (CC)
based on the provided formula:

CC = 1.005[1 - exp(-0.6 X LAD] 4)
D) T
LAI=0750— " 5)
m

where, p is the planting density, plant/hm? m is the number of
measured plants; # is the total number of leaves of tomato plant ;.
2.3.5 Quality determination

During the maturity stage of tomato fruit, the first and third
spike fruits were harvested for quality assessment. Three replicates
were chosen in each test area, with five representative tomato fruits
of uniform maturity selected in each replicate. The average quality
of the first and third spike fruits was considered as the overall
quality of the conservation brick tomato. Hardness was assessed
using a hardness meter (TOP Cloud-agri Technology Co., Ltd,
Hangzhou, China); soluble solids were determined with a WAY-2S
Abbe refractometer (ATAGO Co., LTD, Tokyo, Japan); total
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soluble sugar content was measured through anthrone colorimetry;
and organic acid content was determined via acid-base titration.
2.4 Description of the AquaCrop model
2.4.1 AquaCrop model

This study utilized the AquaCrop crop growth model to
simulate crop development in response to environmental conditions,
soil conditions, and management practices. With its minimal input
parameter requirements and ability to predict crop yields under
various scenarios, the model effectively distinguishes between soil
evaporation and crop transpiration using canopy cover, calculates
aboveground biomass using transpiration and normalized dry matter
water productivity, and controls final yield through harvest index.
The core equations of the model are represented in Equations (6)
and (7):

B=WP'-> T (6)

Y =HIxB @)

where, B is the aboveground biomass, t/hm* WP is the normalized
dry matter water productivity, derived from normalizing carbon
dioxide concentration based on different water productivity
efficiencies; T is the daily transpiration, mm; Y is the yield, t/hm?
HI is the harvest index.

The input module of this model mainly includes six aspects:
meteorological data, crop, soil, groundwater, field management, and
initial conditions. Crop Module: This module requires information
on crop variety, growing season, planting density, and phenological
stages. Meteorological Module: This module needs data on rainfall,
maximum and minimum temperatures, relative humidity, sunshine
Additionally,
evapotranspiration and carbon dioxide concentration can be added

hours, and wind speed. reference  crop
as inputs. Soil Module: This module needs parameters like soil
moisture content, field capacity, wilting coefficient, saturated
hydraulic conductivity, and other soil properties. Groundwater
Module: This module requires data on changes in groundwater
depth. Field Management Module: This module needs information
on mulching type, fertilizer application rates, irrigation amounts,
and other management practices. Initial Conditions: This includes
initial soil moisture content, canopy cover, aboveground biomass,
and other relevant parameters.
2.4.2 Meteorological data

The meteorological data utilized in the AquaCrop model
includes daily temperature and reference crop evapotranspiration
ET,. ET, was calculated using the Penman equation, considering
maximum and minimum temperature values, sunshine hours,
relative humidity, and wind speed. Meteorological parameters were
sourced from the ‘tavgl 2d Ind Nx’ dataset obtained from the
second Modern-Era retrospective analysis for Research and
Applications version 2.
2.4.3 Crop data

The input variables related to crop data included the planting
pattern, planting density, canopy cover, growth and development
stages, and various indicators observed throughout the experiment.
Additionally, the water stress parameters, normalized water
productivity, and reference harvest index were calibrated and
adjusted based on the range values specified in the AquaCrop model
manual. The model parameters were calibrated using the
experimental observation data from 2020 and validated using the
experimental measurement data from 2021. The calibration results
are detailed in Table 1.

Table 1 Calibration results of tomato crop parameters
considered in the experiment

Parameter Value
Initial canopy cover (CC,)/% 0.40
Maximum canopy cover (CC,)/% 85.00
Canopy growth coefficient (CGC)/%-d" 12.90
Crown degradation coefficient (CDC)/%-d"! 0.25
Reference harvest index (HI)/% 65.00
Normalized dry matter water productivity (WP")/g-m™> 18.00
Crop coefficient (K.1,) 1.05
Maximum effective root depth (Z,,,,)/m 0.70

244 Soil data

The hydraulic parameters required for the AquaCrop model
include soil layer number, soil depth, saturated soil water content,
soil field capacity, soil wilting coefficient, and saturated soil
hydraulic conductivity. These parameter values can be found in
Table 2.

Table 2 Hydraulic parameter values of experiment soil field

Treatment  Soil water content/%  Field capacity/%  Wilting coefficient/%
CK 46.0 31.0 11.5
Tl 57.7 46.2 16.3
T2 50.1 41.2 14.1
T3 52.6 43.1 18.4
T4 56.4 41.2 16.3
T5 57.9 43.7 17.6

2.5 NSGA-II algorithm

This study employs the NSGA-II algorithm to find the Pareto
solution of a multi-objective function in order to identify the most
suitable agricultural waste materials for enhancing tomato growth.
The NSGA-II algorithm is a rapid non-dominated multi-objective
optimization technique that focuses on identifying Pareto optimal
solutions and incorporates an elite reservation strategy. The degree
of crowding is utilized to assess the distribution of system elements,
prioritizing genes with uniform distribution and maximum
information. The algorithm follows a sequence of six steps:
population non-dominated sorting, calculation,
selection, crossover and mutation, and recombination and selection
based on crowding distance.
2.6 Model evaluation metrics

initialization,

This study utilized various metrics such as root mean square
error (RMSE), coefficient of determination (R?), coefficient of
consistency (d), Nash efficiency factor (EF), coefficient of variation
(CV), and relative error (Pe) to assess the accuracy of model
calibration and validation. A smaller RMSE and Pe indicate that R
d, and EF values are closer to 1, suggesting that the simulated
values align closely with the measured results and the simulation
outcomes are accurate.

3 Results

3.1 Calibration and validation of the AquaCrop model
3.1.1 Canopy cover

The AquaCrop model parameters were calibrated using tomato
test data from 2020 (Table 1) and validated with data from 2021
(Table 2). As demonstrated in Figure 2, six groups of different
agricultural waste materials were tested. The RMSE, R’, d, EF, and
CV range values calculated from the measured and simulated
canopy cover under different ratios were 15.2%-25.1%, 0.81-0.88,
0.91-0.94, 0.54-0.72, and 25.6%-50.8%, respectively. The use of
agricultural waste materials can enhance tomato growth by
accelerating the growth process and increasing canopy cover. The
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simulation accuracy at the late growth stage was significantly higher
than at the middle growth stage. The results indicate that the

AquaCrop model may overestimate canopy cover during the middle
and late stages of tomato growth.
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Note: RMSE represents root mean square error; R* is the coefficient of determination; d is the coefficient of consistency; EF represents the Nash efficiency factor; CV is

the coefficient of variation. Same below.

Figure 2 Validation results of tomato canopy cover in 2021

3.1.2 Biomass

The simulation results of tomato biomass accumulation under
different ratios are illustrated in Figure 3, demonstrating an increase
in biomass of post-transplanting. The results indicated a slight
alignment between the simulated and measured values of tomato
biomass. The RMSE for tomato bioaccumulation under various
ratios ranged from 1.093 to 3.469 t/hm’. The values of d, EF, and
CV varied across different ratio scenarios, ranging from 0.81 to
0.99, 0.43 to 0.94, and 12.5% to 48.8%, respectively. Moreover,
under equivalent irrigation rates, tomato canopy cover values in
different ratio scenarios followed the sequence of T5>T2>
T4>T3>T1>CK, highlighting the significant impact of agricultural
waste materials on enhancing crop growth and development.

3.1.3  Soil water contents

The volumetric soil water content observed in the root zone
during the tomato growth period under various ratios is depicted in
Figure 4. Across all treatment scenarios, the RMSE, R?, d, EF, and
CV values ranged from 20.0 to 69.4 mm, 0.64 to 0.90, 0.48 to 0.94,
—4.61 to 0.74, and 5.8% to 19.5%, respectively. The results
indicated similar volumetric soil water contents levels at T2, T4,
and T5 during the middle and late stages of growth, with the lowest
content observed in the control (CK) plot. This suggests that the use
of agricultural waste materials significantly contributes to soil water
conservation. Towards the end of the growth period, the volumetric
soil water content in different ratio scenarios followed the sequence
of T3>T1>T5>T4>T2>CK.
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Figure 3 Validation results of tomato biomass simulation in 2021
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Figure 4 Validation results of volumetric soil water contents in the tomato root zone in 2021
3.14 Yield yield values, alongside calculating the associated water and

The model calibration and verification results of tomato yield
and biomass are presented in Table 3. The relative error of the
simulated tomato yield ranged from 1.01% to 2.83%, while for
biomass it ranged from 6.55% to 20.15%. The CK plot showed
higher error in the simulated tomato yield and biomass. With the
exception of the CK plot, the AquaCrop model demonstrated
effective simulation of tomato yield and biomass under various
irrigation scenarios.

Table 3 Calibration results of the tomato yield and biomass

Final yield Final mass
Model . Model .
. . Field . . Field
Treatment
simulation observations/ Pe/% simulation observations/ Pe/%
value/ ) value/
o t'hm? L thm?
t'hm t"hm
CK 8.430 8.198 2.83 14.872 12.378 20.149
T1 8.897 8.989 1.02 13.270 14.252 6.890
T2 8.787 8.632 1.80 13.105 14.024 6.553
T3 8.773 8.616 1.82 13.085 14.024 6.696
T4 8.698 8.524 2.04 12.978 11.957 8.539
T5 8.759 8.671 1.01 13.056 14.252 8.392

Note: Pe is the relative error.

3.2 Effects of different agricultural waste materials on tomato
quality

The impact of various agricultural waste materials on tomato
quality indicators such as hardness, soluble solids, soluble sugar,
titratable acid, and sugar-acid ratio was examined. Table 4 illustrates
significant differences in tomato quality among treatments T1, T2,
T3, T4, and TS5 compared to the standard CK measures. Treatment
T5 showed notable increases of 3.8% in hardness, 38.5% in soluble
solids, 89.2% in soluble sugar, and 124.0% in sugar-acid ratio
compared to CK. Treatment T1 exhibited a 1.6% increase in
hardness, 22.1% in soluble sugar, and 35.3% in sugar-acid ratio,
while soluble solids decreased by 10.8% compared to CK. Overall,
T5 had the highest hardness (1.90 kg'em?10° Pa), T4 had the
highest content of soluble solids (7.83%) and soluble sugar (3.19%),
and T3 had the highest titratable acid content (0.81%).
3.3 Scenario simulation results

The study utilized the AquaCrop model to simulate tomato

fertilizer use efficiency. By considering varying proportions of
agricultural wastes as the independent variables, regression analysis
was conducted to establish a two-factor regression equation.
Figure 5 illustrates the correlation between different agricultural
wastes and the simulated yield, WUE, PFP, and sugar-acid ratio
of tomatoes.

Table 4 Effects of different agricultural waste materials on
tomato quality

Treatments Hardness/ Diss_olved Soluble Titr_atable Sugar?acid

kgrem*10°Pa solid/%  sugar/%  acid/% ratio
Tl 1.86° 5.02¢ 1.82¢ 0.66° 2.76°
T2 1.61° 717 2.72° 0.60° 4.51°
T3 1.67° 7.42° 3.25¢ 0.81° 4.00°
T4 1.63° 7.83¢ 3.19° 0.66° 4.82
T5 1.90° 7.80° 2.82° 0.62° 4.57
CK 1.83¢ 5.63¢ 1.49° 0.75* 2.04¢

As demonstrated in Figure 5, the proportions of organic
fertilizer and distillers grains had a significant impact on simulated
yield, water use efficiency, partial factor productivity of fertilizer,
and sugar-acid ratio (p<0.05). Across various treatments with the
same water and fertilizer inputs, there were notable differences in
performance across the different indices. To determine the most
suitable substrate ratios for tomatoes, this study utilized substrate
ratios as independent variables and simulated yield, biomass, water
use efficiency, and partial factor productivity of fertilizer as
dependent variables for regression analysis. Two-factor regression
equations, Equations (8)-(11), were developed, and the NSGA-II
algorithm was applied to find the optimal Pareto solution, thus
identifying the optimal substrate ratio.

Y1 =8.949—0.0124X —0.033X2 — 0.0358X, X, (8)
Y2 =2.3+0.0052X? +0.0249X2 +0.0238X, X, )
Y3 =2.0387+0.0046X> +0.0221X2 +0.0211X,X,  (10)

Y4 =2.04+0.156X2 +0.0.578X2 +0.4045X, X, (11)
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where Y1, Y2, Y3, and Y4 are the simulated tomato yield (thm?),
WUE (kg/m®), PFP (kg/kg), and sugar-acid ratio, respectively.
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Figure 5 Regression relationship between different agricultural wastes and simulated tomato yield, water use efficiency, fertilizer partial

productivity, and sugar-acid ratio

The multi-objective optimization model was established using
the equations provided. The upper and lower limit values for
organic fertilizer were designated as T1 and TS5 treatments,
respectively, while the upper and lower limit values for distiller
grains were designated as T5 and T1 treatments, respectively. The
NSGA-II algorithm was implemented using MATLAB 2020b.
Parameters such as population size, mutation density, crossover
probability, mutation probability, and maximum genetic algebra
were set at 100, 0.002, 0.7, 0.1, and 600, respectively. The optimal
yield was 8.79 t/hm? optimal WUE was 2.105 kg/m’, optimal PFP
was 2.375 kg/kg, and optimal sugar-acid ratio was 4.17. The results
indicated that the optimal treatment scenario for agricultural waste
materials to achieve the Pareto solution was T5.

4 Discussion

4.1 Applicability of the AquaCrop model

The calibrated AquaCrop model using the tomato planting data
from 2020 demonstrated accurate simulations of volumetric soil
water content, canopy cover, biomass, and tomato crop yield. The
simulation errors fell within acceptable ranges, aligning with
previous studies utilizing the AquaCrop model. Notably, canopy
cover simulations performed well across various crops®?. Lu et
al.”™ introduced a method involving Monte Carlo simulation to
determine planting dates and quasi-calibrated phenological
parameters, enhancing the AquaCrop model’s ability to estimate
maize yield. The study showed slight improvements in RMSE
values for simulated yield and biomass data post-calibration. While

the model tends to overestimate volumetric soil water content at
initial stages, the prediction errors remain minimal®-, consistent
with existing literature. Zhu et al.®" also reported consistent results
between simulated and measured aboveground biomass and yield
values. Overall, this study underscores the AquaCrop model’s
effectiveness in simulating volumetric soil water content, tomato
growth, and yield under different scenarios, accurately predicting
changes in soil water content and tomato crop outcomes.
4.2 Determination of the optimal agricultural waste materials
Agricultural waste materials cultivation technology not only
enhances the efficient utilization of agricultural waste resources but
also saves water and fertilizer while ensuring good crop yield.
Numerous researchers worldwide have demonstrated the
effectiveness of agricultural waste material cultivation techniques in
enhancing yields, water and fertilizer use efficiency, and the quality
of lettuce, garlic, cucumber, and tomato!**>**l, However, Palencia et
al.’ found small differences in fruit yield under different
agricultural waste materials (such as agricultural textiles, coconut
shell fiber, perlite, and rock wool) without affecting fruit growth
and quality, which contrasts with the results observed in this study.
This discrepancy in the findings may be attributed to the absence of
nutrient materials in Palencia’s agricultural waste materials. Yang et
al.’! discovered that compound agricultural waste materials can
effectively increase plant height, leaf area, root area, yield, and
other morphological traits, consistent with the results reported in
this study. The enhancement of morphological traits may be due to
the application of distiller grains, which improve soil physical
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properties, increase soil organic matter, and ensure the slow release
of nutrients necessary for crop growth.

This research investigated the suitability of the AquaCrop
model in various input ratio scenarios. The findings suggest that this
model is a valuable tool for studying the utilization of agricultural
waste and the production of high-quality fruits and vegetables. By
varying the proportions of different agricultural wastes in
simulation scenarios, valuable insights were gained for the
cultivation of premium tomatoes. The cultivation techniques using
agricultural waste materials not only promote environmentally
friendly agricultural practices and improve crop production but also
contribute to the efficient utilization of agricultural waste resources,
prevention of non-point source pollution in agriculture, and
reduction of carbon emissions. Substrates composed of diverse
agricultural waste materials offer a cost-effective solution for
growing high-quality tomatoes, requiring less material compared to
conventional modified substrates. Furthermore, the potential use of
large quantities of agricultural waste in establishing solar
photovoltaic conservation agricultural waste material farms could
revolutionize the cultivation of premium fruits and vegetables while
supporting traditional agriculture practices in the future.

5 Conclusions

In this study, the AquaCrop model was used to calibrate and
validate crop growth parameters using tomato planting data from
2020 and 2021, under different agricultural waste materials. The
validation results indicated that the AquaCrop model reasonably
simulated canopy cover, biomass, and soil water content of the
tomato crop. The R* values for soil water content simulation ranged
from 0.63 in the CK plot to over 0.8 in other treatment scenarios.

By integrating the AquaCrop model with multi-objective
optimization, an optimization model was developed to maximize
tomato yield, WUE, PFP, and sugar-acid ratio. The NSGA-II
algorithm was employed to find the optimal Pareto solution. The
results suggested that agricultural waste materials TS (loessial soil:
straw: grains in a ratio of 5:1:4) could provide high yield, WUE,
and PFP, with an optimal tomato yield of 8.79 t/hm* and WUE of
2.015 kg/m®.
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