October, 2024

Int J Agric & Biol Eng Open Access at https://www.ijabe.org Vol. 17 No. 5

247

Detection of fusarium head blight using a YOLOvS5s-based method
improved by attention mechanism
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Abstract: Fusarium head blight (FHB) is one of the most destructive diseases in global wheat production. In order to count the
FHB-infected wheat ears under field conditions, this study proposed an algorithm for diseased wheat ear detection based on
improved YOLOVSs (Tr-YOLOVSs). The Swin Transformer was used to replace the CSPDarknet backbone network to enhance
the extraction of characteristic information of the population wheat ears of FHB in the field background. The convolutional
block attention module (CBAM) attention mechanism was added to improve the detection effect of target wheat ears,
subsequently improving the overall accuracy of the model. The original loss function complete intersection over union (CloU)
was replaced by Scylla intersection over union (SIoU) loss to accelerate the model convergence and decrease the loss value.
The results showed that the mean average precision (mAP) of the Tr-YOLOvS5s model reached 90.64%, making a 4.63%
improvement compared to the original YOLOvV5s model. The improved model could quickly detect and count wheat FHB ear
in the field environment, which laid a foundation for the subsequent automatic disease identification and grading of wheat FHB
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1 Introduction

Wheat is one of the major grain crops in China, and the yield
and quality of wheat have always been major concerns for those
involved"?. Therefore, accurate and timely identification of wheat
fusarium head blight (FHB) can provide important guarantees to
prevent wheat FHB and improve wheat yield.

Since the mid-20th century, traditional machine-learning
algorithms have gradually been applied in agriculture®. Early
methods for intelligent disease recognition are based on machine
learning, where image preprocessing and feature extraction are used
to select specified features, and at the same time, machine learning
algorithms are used to train the classification ability of the model
for feature vectors to achieve disease recognition. Chaudhary et al.l¥
proposed an ensemble particle swarm optimization algorithm that
achieved 96% accuracy in identifying vegetable diseases. Abdu et
al.”! used a method to extract features from necrotic lesions,
achieving precision and recall of over 99% in plant disease
Devi et all

classification. employed a method, H2K, to
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automatically identify and classify five peanut leaf diseases with an
accuracy of 97.67%.

Using machine learning algorithms for disease identification
requires manual selection of feature variables and has stricter
requirements (image background, lighting conditions, leaf
placement, etc.), which is more challenging to promote and apply.
In contrast, the deep learning approach only requires the provision
of labeled datasets and can extract features from datasets without
human-designed features”. In the case of identifying wheat ears in
a field environment, where the size of a single wheat ear varies and
the background is complex and diverse, the target detection
technique can directly learn features by labeling disease areas as
examples, and output the location and category of each wheat ear
area in the image at the same time, which is suitable for recognizing
wheat ear diseases in complex scenarios. YOLO!"", as a common
target detection framework, can identify diseases quickly. Agarwal
et al.'"! verified the feasibility of a lightweight CNN model that
achieved 98.4% recognition accuracy on the public dataset of
PlantVillage. Fang et al."” introduced a CNN algorithm to classify
10 crop diseases in terms of disease leaf classes, and the recognition
accuracy reached 95.61%. Qi et al.™ constructed a SE-YOLOVS
algorithm to identify tomato virus disease with a mean average
precision of 94.10%. Zhang et al.'" proposed an FHB detection
method based on the improved YOLOV5 and the random forest
algorithm. The experimental results showed that the method could
effectively detect the severity of FHB in complex field conditions.
The above studies have employed different optimization strategies
to improve model accuracy. However, building a real-time and
accurate FHB recognition model remains a significant challenge.

In order to count the FHB-infected wheat ears accurately under
field conditions, this study proposed an FHB detection model based
on the improved YOLOVS5s for identifying and counting healthy and
diseased wheat ears in one image. The backbone network
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CSPDarknet was replaced by Swin Transformer, and the
convolutional block attention module (CBAM) attention mechanism
and the Scylla intersection over union (SIoU) loss function were
incorporated into the YOLOvSs model to obtain the Tr-YOLOvVS5s
model, improving the model detection accuracy. The proposed
model aimed to improve detection accuracy effectively in the
field environment and provide a reference for field detection of
wheat FHB.

2 Materials and methods

2.1 Dataset construction
The field FHB trial was conducted in the Rocky Ford FHB
nursery, Kansas State University in the 2021-2022 wheat growing

i

season. Four winter wheat varieties “Clark”, “Jagger”, “Overley’
and “Everest” were used as the plant materials. About 30 seeds per
line were sown in a 1 m long single-row plot using a randomized
complete block design. In this study, wheat ear images of FHB were
collected in June 2022, the image acquisition equipment is a high-
pixel smartphone, the shooting process is taken from above, the
distance between the camera and the wheat ear is 50 cm, the image
resolution is 3024x4032 pixels, a total of 500 images. The images
were labeled by Labellmg graphical annotation tool, and the
corresponding XML files were generated. Crop an image with
832x832 pixels resolution from each image, the train set, validation
set, and test set are randomly divided according to the ratio of 8:1:1.
The image dataset is shown in Figure 1.

Fo

Ears of FHB

Healthy wheat ears

Note: FHB: Fusarium head blight.

Figure 1

2.2 Tr-YOLOvVSs Model Structure

The YOLOVS model has high detection accuracy and fast
detection speed, which is one of the best choices for target
detection'”. Depending on the network depth and feature map
width, they can be classified as YOLOvSs, YOLOvSm, YOLOVSI,
and YOLOVS5x. In this study, the YOLOvSs model with the smallest
storage footprint is selected for improvement, which is mainly
divided into the following three aspects:

1) Using Swin Transformer to replace YOLOvSs backbone
network CSPDarknet!"”. The Multi-head self-attention mechanism
based on the shifted windows in the Swin Transformer can
effectively capture global context information and has better feature
extraction capabilities.

2) The CBAM attention mechanism was added after the three
feature layers were extracted by the backbone network. The CBAM
attention mechanism makes the model pay more attention to the
characteristics of the ears of FHB by adjusting the weights of the
feature map on the channel and spatial at the same time, to improve
the recognition effect.

3) The original loss function complete intersection over union
(CIoU)"" was replaced by the SIoU!"” function, which takes into
account the vector angle between the desired regressions and
redefines the penalty indicator to make the model converge faster
and reduce the model loss.

The data input part used Mosaic data enhancement to process
the data and improve the detection accuracy of small targets. Tr-
YOLOVS5s model is the improved model, with its structure shown in
Figure 2.

2.2.1 Swin Transformer
The Swin Transformer is a deep learning model based on the

Healthy wheat ears and ears of FHB

self-attention mechanism, which consists of two parts: Encoder and
Decoder. The Multi-head self-attention mechanism based on the
shifted windows in the Swin Transformer can model dependencies
between features at different spatial locations, effectively capture
global context information, and have better feature extraction
capabilities. In this study, the Swin Transformer network was used
to replace the CSPDarknet network in YOLOvVSs. The powerful
feature extraction capability of the Swin Transformer and the
efficient inference speed of the YOLOvS5s object detection
algorithm were combined to improve the detection effect. The Swin
Transformer structure is shown in Figure 3.

2.2.2 CBAM Attention Mechanism

CBAM!™"™ contains two independent sub-models, channel
attention module (CAM) and spatial attention module (SAM). First,
the input feature layer is averaged pooling and maximum pooling to
obtain two compressed feature maps, then the output is summed by
a two-layer multilayer perceptron. Finally, the weight coefficients
are obtained by the Sigmoid activation function and multiplied with
the original feature layer to obtain the new feature map.

Due to the complex background of wheat ears growing in a
field environment, occlusion between the ears of wheat is common.
Therefore, this study added the CBAM attention mechanism to the
YOLOVS5s network to refine the features by weighting them in both
channel and spatial dimensions to improve the model attention to
healthy wheat ears and diseased wheat ears in both dimensions,
reduce the proportion of weights occupied by irrelevant features,
and thus improve the model accuracy. The CBAM attention
mechanism is shown in Figure 4.

2.2.3 SlIoU Loss Function
The original YOLOvSs model utilizes CloU loss to expedite


https://www.ijabe.org

October, 2024 Shi L, et al.

Detection of fusarium head blight using a YOLOvSs-based method improved by attention mechanism

Vol. 17No.5 249

Patch partition

Concat CSP | Conv

Linear
embedding

Conv

AL

Conv

Patch merging

Patch merging

(CBAM

Patch merging

Conv H Upsampling ‘

»’ Conv H Upsampling

Note: CBAM: Convolutional block attention module; Conv: Convolution; CSP: Cross-stage partial network.

Figure 2 Tr-YOLOvSs model structure
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the regression speed of prediction frames to some extent. However,
CloU takes into account the distance between the center point of the
prediction frame and the target frame, the coverage area, and the
aspect ratio, but does not take into account the angle mismatch
between the actual frame and the prediction frame, so this study
introduced SloU loss function to replace CloU loss function. SloU
loss value is abbreviated as Lossg;,y. The Equations are as follows:

Lossgy = 1-ToU+ (N
IoU |BmBGT| 5
oU = {5u 5o @
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where, B and B" in Equation (2) represent the prediction box and
the real box, respectively; ¢, and ¢, in Equation (4) represent the
height and width of the minimum cordered rectangle of B and B,
¢, and o in Equation (5) represent the height difference and distance
between B and the center point of B, respectively, w and /4 in
Equation (7) represent the width and height of B, w* and A*
represent the width and height of B, and 6 controls the degree of
attention paid to shape loss.
2.3 Model evaluation metrics

In order to evaluate the detection effect of the algorithm on
wheat ears. The model uses precision (P), recall (R), average
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precision (AP), and mean average precision (mAP) as evaluation
metrics to examine the model performance. The formulas are as
Equations (8)-(11).

TP

P=Tp+rp ®)
TP

R=Tp+EN ©)

‘ 1

AP = jOP‘RdR (10)
1 N

mAP:ﬁZAP,- (11)
i=1

where, TP represents the number of positive samples detected
correctly, FP represents the number of positive samples detected
incorrectly, FN represents the number of negative samples detected
incorrectly, and N represents the number of categories of data.
While detecting wheat ears, it is necessary to analyze the
counting performance of the final counting results to measure the
accuracy and applicability of the algorithm in wheat ear counting. In
this study, the determination coefficient R?, root mean squared error
(RMSE), and mean absolute error (MAE) are selected as algorithm
counting evaluation metrics. The formulas are as Equations (12)-(14).

i(ti _Pi)2

R=1--21 (12)
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L
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i=1

where, n is the total number of images participating in the
calculation of the evaluation index, and # and p; represent the
number of measured ears of wheat and the number of ears of wheat
counted by the algorithm, respectively, #; represents the average
number of ears of wheat in each image.
2.4 Test Environment and Parameters

This study used the PyTorch deep learning framework, on a
computer with an Intel(R) Core(TM) i5-7300HQ CPU@2.50 GHz.
The software tools included Python 3.6, CUDA10.0, Cudnn7.4.1.5.
The batch size was set to 4, the epoch was set to 400, the learning
rate was 0.001, and the optimizer was the Adam optimizer.

3 Results and analysis

3.1 Model training results

In this study, the YOLOvVSs, YOLOv4"™. Faster Region-based
Convolutional Neural Networks (R-CNN)** and Tr-YOLOvS5s
models are trained while ensuring that the initial parameters such as
training batch, number of steps, optimizer, and learning rate are
consistent with the device. Table 1 lists the model training results.
Compared with the Faster R-CNN model, the improved model
exhibits increased precision by 20.58%, recall by 2.28%, and mAP
by 11.23%. In comparison to the YOLOv4 model, the enhanced
precision is 7.74%, recall improves by 6.30%, and mAP value
increases by 8.73%. Furthermore, when contrasted with the original

YOLOvVS5s model, the improved model demonstrates a precision rise
of 4.15%, achieves a recall rate of 86.01%, and attains an elevated
mAP value of 4.63%. From the training results, it can be seen that
the improved model achieves the highest mAP value after replacing
CSPDarknet with Swin Transformer and adding the CBAM
attention mechanism, which can improve the model’s ability to
extract features from both healthy and diseased wheat ears in the
field environment and improve the recognition effectiveness while
ensuring the mAP value.

Table 1 Comparison of different models

Model Recall Precision mAP
Faster R-CNN 84.12% 63.06% 79.41%
YOLOv4 80.10% 75.90% 81.91%
YOLOVS5s 86.42% 79.49% 86.01%
Tr-YOLOvVS5s 86.40% 83.64% 90.64%

Note: mAP: mean average precision. Same below.

From the comparison of model parameters results listed in
Table 2, it can be obtained that the improved model in this study
exhibits minimal differences from the YOLOv7 model in terms of
mAP. Moreover, the number of parameters and floating point
operations has been reduced compared with the original YOLOV7,
and the model operation speed has been improved. Therefore, the
improved Tr-YOLOvS5s model in this study achieves better results
in model size and complexity compared with the original YOLOvV7
model in wheat ear FHB target identification, and the model
performance has been improved and can be used for wheat ear FHB
target identification.

Table 2 Comparison of model parameters

Model mAP Parameters Gflops
YOLOvV7 91.61% 37.2 MB 1012G
Tr-YOLOVS5s 90.64% 31.3 MB 50.7 G

3.2 Results of model ablation experiments

In this study, the Tr-YOLOVSs model replaces the CSPDarknet
network with the Swin Transformer network based on the
YOLOv5s model and adds the CBAM attention module and the
SIoU loss function. In order to analyze the improvement of the Tr-
YOLOv5s model compared with the original model more
intuitively, five groups of experiments were conducted and the mAP
of the experiment were compared, and the results are listed in Table 3.

Table 3 Model ablation experiments
CBAM SloU mAP

Experiment number Swin Transformer

1 86.01%
2 «/ 87.19%
3 \ 86.85%
4 «/ \ 88.55%
5 \ \ \ 90.64%

Note: V indicates that the baseline model uses this module.

Experiment 1 is the original YOLOvSs model with an mAP of
86.01%, without the addition of Swin Transformer, CBAM, and
SIoU; Experiment 2 and Experiment 3 improve the mAP by 1.18%
and 0.84%, respectively, compared to the original YOLOvSs model
with only the addition of Swin Transformer and CBAM modules.
Experiment 4 is the Tr-YOLOvS5s model with both Swin
Transformer and CBAM modules, and the mAP is improved by
2.54%; Experiment 5 is the improved model of this study, and the
mAP is 90.64%, which is improved by 4.63%.
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Figure 5 shows the loss functions of the original YOLOVSs
model and the Tr-YOLOvSs model after training. It can be seen that
the training stabilizes after 300 rounds and the model converges,
and the improved model has a lower loss value compared with the
original model, and the training effect is improved.
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Figure 5 Training loss of the models.

3.3 Wheat ear FHB counting
3.3.1 Comparison of wheat count results on the test set

In order to measure the difference between the proposed Tr-
YOLOvV5s model and the original YOLOvSs model in wheat count
results, the algorithmic predicted values of wheat counts and
manually obtained true values were counted on the test set images
separately. Subsequently, a linear fit was performed on the
predicted and true values of wheat ear counting. From the figure, it
can be seen that the points in the count results of the Tr-YOLOvS5s
model are close to the fitted line, while the points in the count
results of the original YOLOvVSs model are more scattered, which
indicates that the significance of the Tr-YOLOvVSs model is
stronger. The determination coefficient R*> of the Tr-YOLOvSs
model was 0.92, which was 0.02 higher than that of the original
YOLOvV5s model, indicating that the Tr-YOLOv5s model had a
significant linear correlation between the predicted values of wheat
ear counting on a single wheat ear image and the true values of the
manual statistics. The fitting results of wheat ear counting before
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a. Healthy wheat ears

and after YOLOVSs improvement are shown in Figure 6.

Table 4 lists the results of wheat ear counting before and after
the improvement of the YOLOv5s model. From the table, it can be
seen that the RMSE of the original YOLOvSs model is 0.13 higher
than that of the Tr-YOLOvV5s model, and the MAE is 0.16 higher,
indicating that the Tr-YOLOvVSs model in this study outperforms the
original YOLOvS5s model in terms of wheat ear counting results.
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Figure 6 Fitting results of wheat ear counting before and after

YOLOvVS5s improvement

Table 4 Comparison of wheat ear counting before and after
model improvement

Model R RMSE MAE
YOLOvS5s 0.90 1.84 1.40
Tr-YOLOVSs 0.92 1.71 1.24

3.3.2 Counting Results of Healthy Wheat ears and Diseased
Wheat ears

In order to further analyze the effect of improved YOLOVSs
algorithm on wheat ear counting, this study was tested by 50
images. The measured values of healthy wheat ears and ears of FHB
in a single image were fitted with the predicted values of the
algorithm by linear regression method, and the fitting results are
shown in Figure 7.
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— ¥=1.04X+0.35

R*=0.94

25+

Predicted value
[

5 10 15 20 25
True value
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Figure 7 Fitting results of healthy wheat ears and diseased wheat ears

From the regression plot, it can be seen that the fitting results
for FHB wheat ears counting in the improved YOLOVSs algorithm
surpass those of healthy wheat ears, with an R?* of 0.94, which is 0.1
higher than that of healthy wheat ears. This could be attributed to
the initial dataset containing fewer healthy wheat ears than diseased
wheat ears, resulting in less training for healthy wheat ears.
Consequently, the model recognition effect on healthy wheat ears is

weaker than that on diseased wheat ears.

4 Discussion

Studies have shown that traditional machine learning
algorithms have been widely used in many fields and have achieved
certain research results. These algorithms are also gradually being

applied to the field of agricultural production””?. The main
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processes related to crop disease identification using traditional
machine learning algorithms include image pre-processing™?*,
feature extraction, and classification recognition. In order to
improve the accuracy of crop disease recognition, more and more
researchers have been improving and innovating traditional machine
learning algorithms. Basavaiah et al.” proposed a method for
identifying tomato leaf diseases that incorporates multiple features,
achieving a classification accuracy of over 90%.

Although crop disease identification methods based on
traditional machine learning algorithms can achieve relatively good
results, the identification process is tedious and requires manual
extraction of the best features. To avoid the inconvenience of
manually searching for features, researchers have gradually turned
to using deep convolutional neural networks (CNN) to classify and
identify crop diseases and achieved better results than traditional
machine learning algorithms in crop classification”, weed
detection®”!, disease identification®**", and pest monitoring®**.
Liu et al® used an improved convolutional neural network-
based algorithm to identify 6 grape leaf diseases with an accuracy
of 97.22%. Chen et al.” improved the YOLOv4 algorithm to
detect weeds with an average accuracy of 98.52%. However, the
impact of different deep learning models on different datasets
varies; therefore, to enhance the model performance on the dataset
in this study, improvements are made to increase recognition
accuracy.

In this study, three models, Faster R-CNN, YOLOv4, and
YOLOVS5s, were used to train the collected wheat dataset. The
results showed that the YOLOvSs model achieved the highest
accuracy of 86.01% with the same parameters as the three models.
Therefore, the YOLOv5s model was chosen for improvement.
Firstly, the CSPDarknet network is replaced by Transformer to
improve the model’s recognition ability for different scales of wheat
ears. Secondly, The CBAM attention mechanism is added after the
three feature layers extracted from the backbone network to further
enhance the recognition ability for small wheat ears. Finally, we
replace the CloU loss function in the original YOLOvSs model with

the SIoU loss function to make the model convergence. The results
show that the Tr-YOLOvVSs model has an mAP value of 90.64%,
which is 4.63% higher than the original model, with an accuracy of
92.55% for the identification of FHB wheat ears and 88.73% for the
identification of healthy wheat ears. The possible reason is that in
this study, the occurrence of FHB is artificially induced by blast
spores, and there are more diseased ears than healthy ears in the
image dataset, resulting in a lower training amount of the model for
healthy ears compared to diseased ears. Hence, the recognition
accuracy of the model for healthy ears is lower than that for
diseased ears. The convergence speed of the Tr-YOLOvSs model is
faster because SloU introduces the vector angle between the real
frame and the predicted frame, redefining the correlation loss
function. In contrast, CloU does not consider the direction between
the real frame and the predicted frame, resulting in a slower
convergence speed than SIoU. The experimental results show that
the Tr-YOLOvVS5s model is feasible for identifying healthy and
diseased wheat ears under field conditions, and can achieve better
results. This serves as a reference for the subsequent automatic
identification of FHB in wheat under field conditions.

In addition to the above work, this study also achieved an
estimated counting of wheat ears. The research on recognition
counting of wheat using CNN mainly includes three methods:
image segmentation®’, object detection®” " and regression
counting®”. Wang et al."” constructed an improved EfficientDet-DO
algorithm based on counting wheat ears, and its counting accuracy
reached 94%. Yang et al.* employed an improved YOLOv4-based
model with a mAP of 94% on the local wheat dataset. Figure 8
shows the visualization image of part of the original YOLOvSs
model and the Tr-YOLOvS5s model, it can be seen that the
recognition effect and confidence of the Tr-YOLOv5s model are
better than the original YOLOvV5s model. It can be seen that the
YOLOVSs improvement model proposed in this study counts the
wheat ears in the close-up image, and directly counts the number of

ears in each image, which can provide data information for
subsequent accurate estimation of wheat yield.

Note: a-c: Visualization results of the original YOLOvVS5 model with different samples; d-f: Visualization results of the original Tr-YOLOvVS5 model with different samples.

Figure 8 YOLOVSs and Tr-YOLOVSs detection results
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In future work, researchers can acquire more images of wheat
ears in real environments to expand the dataset to train a more
robust model and improve the accuracy of wheat ear counting. In
addition, this study used the YOLOVS5s algorithm to identify healthy
and diseased wheat ears under field conditions. Although this study
can achieve good results, it may not always get ideal results when
identifying wheat ears in a highly complex farmland environment.
In the future, it is hoped to further study this algorithm and enhance
its accuracy in recognizing wheat ears in complex farmland
environments.

5 Conclusions

In order to achieve the rapid identification and counting of
healthy and diseased wheat ears in a field environment, this study
introduced the Swin Transformer structure to fuse global and local
information to improve the generalization performance of the model
based on the YOLOv5 model, added the Convolutional Block
Attention Module (CBAM) attention module to enhance the
extraction of the network for the ears of wheat feature information.
Additionally, replaced the original Complete Intersection over
Union (ClIoU) loss function with the Scylla Intersection over Union
(SIoU) loss function; and counted the healthy wheat ears and
diseased wheat ears.

1) Compared with the YOLOvSs model, the Tr-YOLOvVSs
model improved the precision of wheat ears by 4.15% and the mean
average precision (mAP) by 4.63%. In comparison to the YOLOv4
model, the Tr-YOLOvV5s model enhanced precision by 7.74%, recall
by 6.30%, and mAP by 8.73%. Furthermore, when compared with
the Faster Region-based Convolutional Neural Networks (R-CNN)
model, the Tr-YOLOvVSs model showed improvements in precision
by 20.58%, recall by 2.28%, and mAP by 11.23%. The Tr-
YOLOVS5s model has improved in both mAP and precision and has
better recognition results.

2) In the ear counting experiment, the improved YOLOVSs
model has root mean squared error (RMSE) and mean absolute
error (MAE) values of 1.71 and 1.24, respectively, indicating a
decrease of 0.13 and 0.16 compared to the original YOLOVSs
model. The improved model exhibits the lowest error in the ear
counting experiment, further reducing the counting error of wheat
ears, and can provide data information for subsequent estimation of
wheat yield.

The results show that the Tr-YOLOv5s model had a better
effect on the detection and counting of fusarium head blight (FHB)
in wheat under field environments.
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