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Evaluation of alternative surface runoff 

accounting procedures using SWAT model 
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Abstract: For surface runoff estimation in the Soil and Water Assessment Tool (SWAT) model, the curve number (CN) 
procedure is commonly adopted to calculate surface runoff by dynamically updating CN values based on antecedent soil 
moisture condition (SCSI) in field.  From SWAT2005 and onward, an alternative approach has become available to apply the 
CN method by relating the runoff potential to daily evapotranspiration (SCSII).  While improved runoff prediction with SCSII 
has been reported in several case studies, few investigations have been made on its influence to water quality output or on the 
model uncertainty associated with the SCSII method.  The objectives of the research were: (1) to quantify the improvements in 
hydrologic and water quality predictions obtained through different surface runoff estimation techniques; and (2) to examine 
how model uncertainty is affected by combining different surface runoff estimation techniques within SWAT using Bayesian 
model averaging (BMA).  Applications of BMA provide an alternative approach to investigate the nature of structural 
uncertainty associated with both CN methods.  Results showed that SCSII and BMA associated approaches exhibit improved 
performance in both discharge and total NO3 predictions compared to SCSI.  In addition, the application of BMA has a 
positive effect on finding well performed solutions in the multi-dimensional parameter space, but the predictive uncertainty is 
not evidently reduced or enhanced.  Therefore, we recommend additional future SWAT calibration/validation research with an 
emphasis on the impact of SCSII on the prediction of other pollutants. 
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1  Introduction1 

Hydrological models are used extensively for water 
resources planning and management[1,2].  Among these 
models, the Soil and Water Assessment Tool (SWAT) is a 
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widely used, semi-distributed river basin scale water 
quality and quantity model.  The SWAT was developed 
to quantify the effects of land use change and other 
anthropogenic activities and has been applied to a variety 

of water resources investigations[3-5]. 
In the SWAT model, certain hydrologic and water 

quality processes can be represented using alternative 
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algorithms which may be more representative of local 
conditions.  For example, surface runoff may be 
estimated using either of two following methods: the 
NRCS curve number (CN) procedure[6] and the Green & 
Ampt infiltration method[7].  The Green & Ampt method 
is not as commonly applied as the CN method because it 
requires more detailed climate observations with shorter 
time intervals such as hourly or sub-hourly time step.  
The CN method accounts for short-term losses of 
precipitation such as canopy interception, depression 
storage, and infiltration, but may not properly reflect local 
hydrologic properties in long-term simulations (e.g., 
evapotranspiration)[8].  The retention parameter of CN 
method has been calculated using antecedent soil 
moisture conditions[9] in accordance with the original CN 
procedure[10].  This approach has been utilized in earlier 
versions of the SWAT before SWAT2005 and widely 
applied.  However, this method tends to overestimate 
surface runoff in shallow soils when the storage condition 
is low[11-15]. 

An alternate approach that may provide improved 
output under such condition is to relate the CN retention 
parameter to daily evapotranspiration, which was first 
included in SWAT2005[3,4] and is an option available in 
all subsequent SWAT versions.  By relating the daily 
CN value to plant evapotranspiration, the daily CN values 
tends not to excessively dependent on soil moisture and 
more dependent on antecedent climate conditions.  To 
date, hundreds of SWAT studies have been conducted 
which used the CN antecedent soil moisture method[3,10].  
However, relatively few SWAT studies have been 
performed using the CN approach based on accumulated 
plant evapotranspiration[9,11-12,16-17] and even fewer 
studies compared SWAT hydrologic performance[9,11-12] 
and water quality responses[12] between the two CN 
approaches.  Water quality is largely driven by the 
quantity and timing of surface runoff and both of which 
are dependent upon the way CN values are estimated. 

In addition, the new CN method may lead to 
increased uncertainty in the model output due to added 
complexity in the structure of the model, which is called 
structural uncertainty.  Structural uncertainty is 
generally caused from the discrepancy between a 

mathematical model and the true system of a real life 
situation that the model describes.  As most 
mathematical expressions almost always approximate the 
reality, structural uncertainty is intrinsic to all simulation 
models including SWAT.  Standard statistical practices 
are generally insufficient to quantify the uncertainty in a 
model often leading to over-confident decisions.  
Bayesian model averaging (BMA)[18] is a recently 
developed technique that offers a systematic method for 
analyzing model uncertainty and checking the robustness 
of one model’s results to alternative model specifications.  
Since a direct comparison between SCSI and SCSII may 
not be sufficient to identify the advantages and 
disadvantages of the methods, the BMA technique can be 
a sophisticated tool that provides an alternative approach 
or strategy to investigate the nature of structural 
uncertainty associated with these CN methods.  

The overall goal of this study is to evaluate the role of 
structural uncertainty of the SWAT model attributable to 
these different CN methods on hydrologic and water 
quality predictions.  Specifically, the following 
objectives are defined: (1) Characterization of the 
differences in SWAT performance on predicting runoff 
and water quality with the two different CN methods; and 
(2) Quantification of the improvement in the accuracy of 
SWAT output enhanced by utilizing a combination of the 
CN methods for differing climatic conditions.  This 
study implements BMA to integrate hydrologic and water 
quality predictions by BMA weights and to characterize 
structural uncertainty associated with the different 
approaches on updating daily CN values.  

2  Materials and methods 

2.1  Site location and characteristics 
The Eagle Creek watershed (ECW) is a 248 km2 

sub-watershed within the Upper White River Basin 
located in Boone, Hamilton, Hendricks and Marion 
counties in central Indiana (Figure 1).  The average 
annual precipitation is between 960 and 1 020 mm; the 
lowest average temperature (-3°C) occurs in January and 
the highest average temperature is 24°C occurring in 
July[19].  The dominant land use is agricultural (59%), 
followed by rangeland (38%), forest (2%), and urban (1%).  
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Predominant soils include thin loamy deposits over loamy 
glacial till that are primarily classified as hydrologic group 
B (51%) and C (48%).  In the headwater subbasins, soils 
are generally deep and poorly drained.  Most soils are 
highly productive unless they are poorly drained.  

Key data sources used for the study included a 30-m 
resolution Digital Elevation Model (DEM) obtained from 
the U.S. Geological Survey (USGS) National Elevation 
Dataset[20], the National Agriculture Statistics Service 
(NASS) Cropland Data Layer 2000-2003[21] for cropland 
inputs, and Soil Survey Geographic (SSURGO) soil data 
from National Resources Conservation Service 
(NRCS)[22].  These data were used in the delineation of 

the ECW in SWAT, which resulted in 35 subbasins and 
446 hydrologic response units.  Daily precipitation and 
the maximum and minimum temperature data for 12 
years (1999-2010) at three locations (COOPID: 413943 
in Harlingen, COOPID: 415836 in Mercedes, and 
COOPID: 419588 in Weslaco) were downloaded from 
the United States National Climatic Data Center[23].  
Streamflow data are available at a single site (station 35, 
USGS Gauge #03353200) and periodic (approximately 
monthly) grab samples of nitrate concentration were also 
available from four additional monitoring stations 20, 22, 
27, and 32 (Figure 1).  

 
Figure 1  Case study area: Eagle Creek Watershed, Indiana 

 

2.2  SWAT model  
The SWAT model (version 2012; rev547)[1] is a 

continuous-time and semi-distributed watershed 

simulation model which is able to simulate hydrologic and 

water quality processes at the watershed level, and has 

been applied extensively in the field of watershed 

management[17,24-28] along with various modifications in 

structure[29].  A detailed description of the SWAT model 

is presented in the published study of Arnold, et al[30].  

The water balance in SWAT is simulated based on the 
Equation (1): 

0 1
( )t surf seep gw

t i i i i ii
S S P Q E W Q


          (1) 

where, St is the final soil water content (H2O, mm); S0 is 
the initial soil water content at time step i (H2O, mm); Pi 



June, 2015     Yen H, et al.  Evaluation of alternative surface runoff accounting procedures using SWAT model      Vol. 8 No.3  57 

is the amount of precipitation at time step i (H2O, mm); 
Qi

surf is the amount of surface runoff at time step i   
(H2O, mm); Ei is the amount of evapotranspiration at time 
step i (H2O, mm); Wi

seep is the amount of water entering 
vadose zone from soil profile at time step i (H2O, mm); 
Qi

gw is the amount of return flow at time step i (H2O, mm).  
In SWAT2005 and later versions of SWAT, the 
Green-Ampt method and the two other previously 
mentioned CN methods are available to calculate the 
amount of Qi

surf.  
2.3  SCS curve number procedure 

The SCS curve number procedure[4] is designed to 
estimate surface runoff based on land use, hydrologic 
condition, and soil type[31].  Cumulative surface runoff is 
calculated by:  

2( )
( )

a

a

P I
Q

P I S



 

                (2) 

where, Q is cumulative surface runoff (mm); P is 
cumulative precipitation (mm); Ia is cumulative initial 
abstraction, that is, canopy interception (mm) and 
depression storage (mm) and S is the retention parameter 
(mm).  The initial abstraction is commonly approximated 
as 20% of the retention parameter (0.2S)[25].  Thus, 
Equation (2) can be re-written as:  

2( 0.2 )
( 0.8 )
P SQ
P S





               (3) 

From Equation (3), the value of surface runoff is 
controlled by precipitation and the retention parameter.  
The retention parameter can be calculated as: 

100025.4 10S
CN

   
 

            (4) 

where, CN is the empirically determined curve number 
associated with a given land use, slope, soil type, and 
cover condition, and in SWAT may be adjusted according 
to antecedent soil moisture condition or plant 
evapotranspiration.  The optional calculation of the 
retention parameter from plant evaporation became 
available in SWAT2005[9].  
2.3.1  Antecedent Soil Moisture Condition (SCSI) 

The original SCS approach assumes an antecedent soil 
moisture condition (AMC) of II (average conditions).  
Curve numbers for antecedent soil moisture conditions I 
(dry) or III (wet) can be adjusted from reported AMC 

values as follows: 
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3 2 2exp[0.00673(100 )]CN CN CN         (6) 

where, CN1 is the curve number of soil moisture 
condition I; CN2 is the curve number of soil moisture 
condition II; and CN3 is the curve number of soil moisture 
condition III.  The definition of the dry condition is 
defined to be the wilting point; the average condition is 
defined to be the average moisture condition; and the wet 
condition is defined as the filed capacity which can be 
found from the SWAT manual of theoretical 
documentation[32].  

Previous research indicates that the use of the AMC 
technique over predicts surface runoff results in shallow 
soils (<500 mm depth) with low total water storage[33].  
Therefore, a new approach was proposed to address this 
problem by including a simple structure one-parameter 
module based on plant evaporation, which is discussed in 
the following section.  
2.3.2  Plant Evapotranspiration (SCSII) 

This method utilizes plant evapotranspiration to update 
the retention parameter (St) in place of antecedent soil 
moisture condition to adjust the CN value.   By 
calculating the daily CN value as a function of plant 
evapotranspiration, this approach better reflects previous 
climatic conditions and less reliant on soil water storage, 
and has been shown to improve simulation of hydrologic 
processes in shallow soils[9,11] as follows: 

 
1

1
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exp t
t t t t t

CNCOEF SS S PET P Q
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 (7) 

where, St is the retention parameter at time; St-1 is the 
retention parameter at time; Smax is the maximum value of 
the retention parameter of all St; PETt is the potential 
evapotranspiration for the given time t; CNCOEF is the 
depletion coefficient; Pt s the precipitation depth for the 
given time  and Qt is the surface runoff[9].  The daily 
curve number adjusted for moisture content is calculated 
by rearranging Equation (4) and inserting the retention 
parameter, St, calculated for that moisture content.  
Obviously, the CN values for dry and wet soil moisture 
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conditions are not updated here because these parameters 
are only used in SCSI.  To apply SCSII, users have to 
predefine or calibrate the value for the CNCOEF input 
parameter before implementing SCSII.  
2.4  Parameter estimation procedure 

Model performance during calibration and validation 
was assessed with statistically valid likelihood functions[34] 
used as objective functions and based on other related 
criteria established by Moriasi, et al[35].  The appropriate 
selection of likelihood function is critical for statistically 
sound validation of model performance[36] and the use of 
established performance criteria allows for a more robust 
assessment of model performance utilizing multiple 
objective functions such as Nash & Sutcliffe efficiency 
(NSE) and percent bias (PBIAS)[35]. 
2.4.1  Likelihood function  

For a watershed model M with a vector of p parameters 
within the feasible parameter space (θ) that simulates the 
response vector of the watershed ( ŷ ), the discrete 

stochastic time-series vector of model residuals is: 

ˆ( ) ( )     ny y M y             (8) 

The application of the first-order autoregressive 
(AR-1) transformation of the residuals can be used to 
account for correlated errors: 

1      1, ,i i i i n                (9) 

where, ρ is the lag-1 serial correlation coefficient for the 

residuals ε; 2(0, )N  ∼  is the innovation term with zero 

mean and constant variance 2
  and n is the total 

number of observed data.  A proper likelihood function 
for multiple variables case is expressed as follows as 
proposed by Ahmadi[34]: 
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where, j is the number of variables; m is the total number 
of variables; nj is the total number of observed data for  

variable j; , j is the standard deviation of residuals for  

variable j; ρj is the lag-1 serial correlation coefficient for  

the residuals for variable j; The terms , j  and ρj can be  

estimated using the Bayesian approach[37] or can be 
assigned based on prior knowledge.  The value of the 
likelihood function above will be minimized for all 
approaches in case studies. 
2.4.2  Dynamically dimensioned search 

Dynamically dimensioned search (DDS)[38] is an 
automatic calibration algorithm designed for the purpose 
of solving high dimensional problems.  It has been shown 
that DDS has outstanding performance compared to other 
commonly used parameter estimation techniques[39] in 
different categories.  In this study, DDS is adopted as the 
sampling technique to explore the role of structural 
uncertainty attributable to CN methodology in the SWAT 
model.  Applications of DDS incorporated with SWAT 
can be found in literatures[5,15,40]. 
2.4.3  Model performance validation criteria 

During calibration, proposed parameter sets 
(candidate parameter sets) and related model predictions 
are compared to observed data using standard statistical 
metrics to adjudge performance.  In this study, the 
general performance ratings (GPR)[35], shown in Table 1, 
were used.  These criteria are used to identify parameter 
sets with acceptable performances (e.g., Very good, Good, 
and Satisfactory) by statistical standards.  However, 
methods which can generate more parameter sets with 
specific success rate do not guarantee better overall 
performance.  The number of qualified parameter sets 
represents only the parameter sets with better manually 
assigned statistical (it can also be defined by many other 
different ways[41], thresholds and there is still chance that 
global optimal solution is located outside the region that 
satisfies additional validation criteria such as GPR.  The 
purpose of conducting GPR is to take it as a 
supplementary guidance to have a better sense in 
evaluating output performance during model calibration.  

 

Table 1  General performance ratings 

PBIAS/% Performance 
Rating NSE 

Streamflow NOX 

Very good 0.75 < NSE ≤ 1.00 PBIAS < ±10 PBIAS < ±25 

Good 0.65 < NSE ≤ 0.75 ±10 ≤ PBIAS < ±15 ±25 ≤ PBIAS < ±40 

Satisfactory 0.50 < NSE ≤ 0.65 ±15 ≤ PBIAS < ±25 ±40 ≤ PBIAS < ±70 

Unsatisfactory NSE ≤ 0.50 PBIAS ≥ ±25 PBIAS ≥ ±70 

Note: NSE: Nash-Sutcliffe efficiency coefficient; PBIAS: Percent bias; NOX: 

Total nitrate; Statistical standards are taken from Moriasi, et al[35]. 
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2.5  Bayesian model averaging (BMA) 
The BMA[16,42] technique is a standard framework 

developed to combine models and predictive 
distributions[43-45].  According to the law of total probability, 
the posterior distribution of N different models with given 
data of observation Y can be written as[14]: 

1
( | ) ( | , ) ( | )N

n nn
P Y P M Y P M Y


       (11) 

where, Δ is the quantity of prediction; Mn (n=1, 2, 3, …, 

N) is the ensemble of implemented model predictions; 
P(Δ|Mn, Y) is the posterior probability of Mn (assume it is 
correct for the training data[46] which reveals the manner 
how Mn fits the training data; P(Δ|Mn, Y) is the forecast 
posterior distribution of Δ given prediction quantities 
from model Mn and observation data Y.  As shown in 
Equation (12), the term of posterior probability P(Mn|Y) 
sums to one: 

1 1
( | ) 1N N

n nn n
P M Y w

 
         (12) 

where, wn is the posterior probability of prediction (the 
one with best solution).  Therefore, the posterior 
probability of prediction can be regarded as weights 
which represent the contribution of each in favor of 
predictions.  Recently, the BMA has been extended to 
ensembles of dynamic models where the forecast fn is 
associated with a conditional probability distribution 
function (PDF)[44].  The BMA predictive model can be 
expressed as Equation (13) where gn(Δ|fn) is the 
conditional PDF of Δ given fn. 

1
( | , , ) ( | )N

n N n n nn
P f f w g f


         (13)  

The assumption of the original form of BMA[44] 
suggests that the conditional PDF can be approximated by 
a linear function which is normal distribution centered. 
As shown in Equation (14), the mean of a normally 
distributed PDF is an+bnfn with standard deviation.   

2| ( ,  )n n n nf N a b f              (14) 

   From above, the BMA mean and variance can be 
written as follows[36]:   
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   (16) 

In Equation (13), it is concerned in cases of discharge  

and water quality (both observation and simulation error 
are non-Gaussian) calibration that the BMA method is 
assumed to have conditional probability distribution to be 
Gaussian.  Data transformation is required to properly 
perform the BMA procedure.  Therefore, the 
log-likelihood function of Equation (13) is as follows 
(assume independence of forecast errors in time and 
space): 

2
1 1

( , , , ) log[ ( | )]N
N n n st nstn

L w w w g f


     (17) 

The values of the weights and variance can be derived 
by applying maximum likelihood estimation through 
various optimization techniques such as the Expectation- 
Maximization (EM) algorithm or the Shuffle Complex 
Evolution Metropolis (SCEM-UA) algorithm[44-45,47].  In 
this study, Equation (17) will be solved by the EM 
algorithm. 
2.6  Brier score 

In this study, the brier score (BS) is implemented to 
compare performance across different models and 
scenarios[48,49].  The BS is a quantified scalar measure of 
model simulation/forecast and has been widely applied in 
multi-model topics.  The BS is used for the evaluation of 
various models which generate same kind of outputs such 
as flow.  For example, in the work done by Ajami, et 
al.[48], the BS was implemented to evaluate the 
performance of the Sacramento Soil Moisture Accounting 
Model (SAC-SMA)[50], Hydrologic model (HYMOD)[51], 
and Simple Water Balance Model (SWB)[52].  Users can 
take advantage of the BS as an index of reference to 
evaluate the performance among various models which 
generate same kind of outputs (e.g., flow).  The base 
function of BS is written as follows[49]: 

2
1

11 [ ( ) ( )]N

i
BS f i o i

N 
          (18) 

where, f(i) is the frequency of the simulated target event 
at time step i estimated by the fraction of model 
simulations which satisfy (larger than) predefined 
threshold of Q*; o(i) equals to 1 if observed quantities at 
time step i are greater than Q*, otherwise o(i) is zero.  
Greater values of BS are preferred.  
2.7  ECW case study scenarios 

The ECW SWAT model is optimized for streamflow 
and NO3 under five different calibration scenarios.  In 
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scenario 1, the model is set to use the SCSI method while 
the SCSII method is used in scenario 2.  In scenarios 3 to 
5, the BMA technique is used for posterior output 
optimizations based on different configuration of 
weighting factors.  Scenario 3 uses the best results 
obtained in scenarios 1 and 2 to combine an improved 
result using a single weighting factor for each output of the 
two scenarios.  Scenario 4 expands the same concept to 
consider any seasonal variation in stream flow by splitting 
the year into 6 months of dry season and the other six 
months of wet season represented by two sets of weighting 
factors.  In scenario 5, the division of wet and dry seasons 
is combined with cold and hot weather and dynamically 
updated every month based on 50-year measured weather 
data.  An automated calibration technique (DDS) was 
employed in all scenarios to find an objective function that 
yielded the best performance criteria, or the optimal 
solutions. 

Streamflow is calibrated on a daily basis at one gauge 
station (station 35, Figure 1) and a monthly basis for 
nitrate at four water quality monitoring locations (station 
20, 22, 27, 32).  Calibration and validation periods are 
from 1997-2000 and 2001-2003, respectively.  
Computational time for each model validation for a total 
of 10 000 iterations ranged from 450 to 500 hours on an 
Intel® Core™ 2 Duo CPU E8400@3.00 GHz, 32-bit 
system operated with Microsoft Windows XP.  Model 
simulations are assessed using an objective function 
(statistically valid likelihood function) and multi-criteria 
model validation standards.  
2.7.1  Scenario 1: SCSI calibration 

In Scenario 1, the SWAT model utilizing SCSI was 
calibrated using 28 parameters (as shown in Table 2, total 
number of parameters under calibration: 28) where the CN 
is calculated by embracing information from antecedent 
soil moisture conditions.  In the SWAT settings, the 
system parameter ICN (selection of daily curve number 
calculation method) should be set to the value of 0. 
2.7.2  Scenario 2: SCSII calibration 

In Scenario 2, the SWAT model calibration is using the 
approach of SCSII for surface runoff calculation where the 
plant evapotranspiration is applied (as shown in Table 2, 
total number of parameters under calibration: 29).  In the 
SWAT settings, the system parameter ICN was set to a 

value of 1 (this method is available from the version of 
SWAT2005) with an extra model parameter CNCOEF 
included. 
 

Table 2  Adjusted SWAT parameters for all case scenarios 

Parameter Description Range 

CDN Denitrification exponential rate coefficient 0-1 

CMN Rate factor for humus mineralization of active 
organic nutrients 0.0003-0.03 

NPERCO Nitrogen percolation coefficient 0.01-1.00 

SDNCO Denitrification threshold water coefficient 0-1 

SFTMP Snowfall temperature/°C ±5 

SMFMN Melt factor for snow on 21 December/ 
(mm H2O·d-1·°C-1 ) 0-10 

SMTMP Snowmelt base temperature/°C ±5 

SNOCOVMX Minimum snow water content that corresponds to 
100% snow cover/mm 0-650 

SNO50COV Snow volume fraction denoted by 50% snow 
cover of SNOCOVMX/mm 0.01-0.99 

SURLAG Surface runoff lag coefficient/d 0-12 

SOL_ORGN Initial organic nitrogen concentration in the soil 
layer/(mg N·kg-1) 1-10 000 

ALPHA_BF Baseflow alpha factor/d 0-1 

GW_DELAY Groundwater delay time/d 0-60 

GW_REVAP Groundwater “revap” coefficient 0.02-0.2 

GW_SPYLD Specific yield of the shallow aquifer/% ±50 

GWQMN Threshold water depth in the shallow aquifer 
required for return flow to occur/mm 0-5 000 

ESCO Evaporation compensation coefficient 0-1 

CANMX Evaporation compensation coefficient/mm 0-10 

OV_N Manning’s “n” for overland flow 0.01-0.6 

DEP_IMP Depth to impervious layer in soil profile/mm 1 500-2 500 

CN_F SCS runoff curve number/% ±10 

DDRAIN Depth to subsurface drain/mm 500-1 500 

CH_K2 Effective hydraulic conductivity in main channel 
alluvium/(mm·h-1) 0-500 

CH_N2 Manning’s “n” value for the main channels 0.01-0.3 

SOL_AWC Soil available water capacity/% ±20 

SOL_K Saturated hydraulic conductivity /% 1-1 000 

CH_K1 Effective hydraulic conductivity in tributary 
channel alluvium/(mm·h-1) 0-300 

CH_N1 Manning’s “n” value for the tributary channels 0.01-0.3 

CNCOEF* Plant ET curve number coefficient 0-2 

Note: *: CNCOEF is only applied for SCSII; **: Parameter values of 
GW_SPYLD, CN_F and SOL_AWC are the changes of fraction from default 
values.  
     

2.7.3  Scenario 3: Application of universal BMA weights 
(BMAI) 

The BMA will be applied in scenarios 3, 4 and 5 where 
the results of scenario 1 and 2 are aggregated by BMA 
weights using different posterior optimization schemes as 
follows.  In scenario 3, the same set of BMA weights are 
assigned for all time series for each gauge station.  As 
shown in Table 3, the BMA weights optimized for SCSI 
(i.e., scenario 1) and SCSII (i.e., scenario 2) appear to be 
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highly inclined to SCSII result in most scenarios and at 
most gage stations, which implies that the model output 
based on SCSII is preferred over the SCSI-based output by  
the BMA model.  

 

Table 3  BMA model weights for scenario 3, 4, and 5 (daily 
streamflow: station 35; monthly NO3: station 32, 27, 22, 20) 

BMAI ω @ st.35 ω @ st.32 ω @ st.27 ω @ st.22 ω @ st.20 

SCSI 0.5237 0.0204 0.0001 0.0004 0.2086 

SCSII 0.4763 0.9796 0.9999 0.9996 0.7914 

BMAII Dry Season ω @ st.35 ω @ st.32 ω @ st.27 ω @ st.22 ω @ st.20 

SCSI 0.8636 <0.0001 0.0002 <0.0001 0.0007 

SCSII 0.1364 >0.9999 0.9998 1.0000 0.9993 

BMAII Wet Season ω @ st.35 ω @ st.32 ω @ st.27 ω @ st.22 ω @ st.20 

SCSI 0.2688 <0.0001 0.0006 0.0007 0.1879 

SCSII 0.7312 >0.9999 0.9994 0.9993 0.8121 

BMAIII Wet-Warm ω @ st.35 ω @ st.32 ω @ st.27 ω @ st.22 ω @ st.20 

SCSI 0.5204 0.0002 0.0004 0.0006 0.1029 

SCSII 0.4796 0.9998 0.9996 0.9994 0.8971 

BMAIII Dry-Warm ω @ st.35 ω @ st.32 ω @ st.27 ω @ st.22 ω @ st.20 

SCSI 0.5629 0.2415 0.3381 0.3174 0.3526 

SCSII 0.4371 0.7585 0.6619 0.6826 0.6474 

Note: ω: BMA weight (BMA weights in each gauge station is summed to one); 
st.: gauge station number shown in Figure 1. 
 

2.7.4  Scenario 4: Application of wet/dry seasonal BMA 
weights (BMAII) 

In scenario 4, the whole year is divided into a 6-month 
dry season and the other 6-month wet season based on the 
55-year precipitation data (1950-2004) downloaded from 
the National Climatic Data Center[53].  Months with 
relatively more precipitation will be grouped as wet season 
(from March to August) and the rest of the year is defined 
as dry season (from September to the next February).  
Streamflow responses were assumed to show different 
characteristics during these dry and wet seasons, which are 
represented by two sets of BMA weights in scenario 4.  
This approach is designed to give the BMA model a 
flexibility to capture any seasonal variation in the 
streamflow characteristics while combining the SCSI and 
SCSII outputs. 
2.7.5  Scenario 5: Application of warm/cool and wet/dry 
seasonal BMA weights (BMAIII) 

Instead of using comparative quantity of precipitation 
to categorize different characters of dry/wet seasons, 
another approach is also implemented to classify weather 
conditions.  The historical median of the temperature and 
precipitation data (1950-2004) is set as thresholds to 
evaluate if it is under the first classification of warm or 

cool conditions in temperature and the second 
classification of wet or dry conditions.  In developing 
scenario 5, only wet-warm and dry-warm conditions were 
found to be significant because the temperature for the 
calibration period is above historical median constantly.  
The BMA weights for Scenario 5 are shown in Table 4. 

 

Table 4  Success rate of parameter sets satisfy the performance 
criteria of all case studies in calibration and validation periods 

Success rate/% SCSI SCSII BMAI BMAII BMAIII 

Calibration 67.19 75.18 75.3 75.93 76.37 
Validation 0.30 3.01 2.56 1.31 1.04 

Note: Success rate in Table 4 is applying the “Satisfactory” category in GPR. 

3  Results  

The effectiveness of the SCSI and SCSII methods as 
constructed in the five different scenarios was evaluated 
based on the following criteria: the convergence speed of 
objective functions, the percentage of model simulations 
meeting acceptable model performance criteria, and the 
BMA weights assigned to the CN calculation technique.  
Structural uncertainties in these CN methods were 
assessed using the fraction of observed data within the 
95% confidence interval and the average width of 
uncertainty bands.  Predictive uncertainty under the five 
approaches for calibration and validation periods was 
estimated by directly comparing the predicted and 
observed values in quantile-quantile (QQ) plots. 

To characterize potential improvements in model 
predictions associated with the CN methods, we first 
tested model’s ability to achieve better objective function 
values.  Then, a GPR was implemented to compensate the 
disadvantage that the objective function may not be able to 
determine representative watershed behavior according to 
only one aggregated term.  Third, the BMA technique 
was implemented through the calibration and validation 
periods to get corresponding statistical results.  The BS 
was applied to evaluate the performance among different 
methods.  Finally, an uncertainty analysis was performed 
to investigate the predictive uncertainties in all case 
scenarios.  
3.1  Objective function validation 

The advantage of the likelihood function as described 
in Equation (10) is that it provides a statistically proven 
objective function that incorporates multiple variables (in 
this study, they include streamflow and NO3).  The 
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objective function tends to decrease as results improve 
and asymptotically approaches to zero as the optimization 
proceeds and the result improves.  

The rate at which objective function values under SCSI 
and SCSII were reduced is shown in Figure 2.  The SCSI 
method resulted in a slightly better overall model 
performance and converged more quickly, indicating 
slightly more computationally efficient calibration using 
SCSI.  After 4 000 model validations no significant 
progress was made for either method.  Final objective 
function values were similar for both methods (SCSI: 
342.1; SCSII: 343.1).  

 
Figure 2  Overall performance of objective function versus model 

validations of scenario 1 (apply SCS method by antecedent soil 
moisture condition) and scenario 2 (apply SCS method by plant 

evapotranspiration) 
 

3.2  Performance criteria 
The percentage of parameter sets rated as 

“Satisfactory” or better is given in Table 4.  All CN 
methods resulted in a relatively high success rate in the 
calibration period (67% to 76%) but not in the validation 
period (1% to 3%).  This was primarily due to a severe 
drought (as shown in Figure 3a) in the last two years of 
calibration (1999 and 2000) where the validation period 
was not well predicted by SWAT using any CN methods. 
3.3  BMA statistics 

Monthly streamflow (streamflow is calibrated and 
validated in daily basis but shown monthly) and NO3 are 
shown in Figure 3, and the statistical results are 
summarized in Table 5 based on NSE and PBIAS. In most 
cases as presented in Table 5, scenarios 2, 3, 4 and 5 
generally perform better compared to scenario 1 (SCSI) in 
both calibration and validation periods.  Therefore, the 

 
a. Streamflow at gauge station 35 

 
b. NO3 at gauge station 32 

 
c. NO3 at gauge station 27 

 
d. NO3 at gauge station 22 

 
e. NO3 at gauge station 20 

 

Figure 3  Observed and simulated (best results of 10 000 model 
runs) time series for streamflow discharge rate and NO3 loads using 

SCSI and SCSII during the calibration (month 1 to 48) and 
validation (month 49 to 84) periods 
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BMA model assigned higher weights to scenario 2 to make 
better composite output of simulated data in scenarios 3, 4, 
and 5 (Table 3).  The BMA posterior processor puts 
higher weights onto a reference output closer to the 
observation than onto an output that is farther off from the 
measured values.  Since the SCSII method gave better 
output, all BMA scenarios tended to converge to similar 
statistics to that of SCSII. 
 

Table 5  Results of statistics for calibration and validation 
period in all scenarios (daily streamflow: station 35; monthly 

NO3: station 32, 27, 22, 20) 

Percent bias (PBIAS, %) 
Period Scenarios 

st.35 st.32 st.27 st.22 st.20 

SCSI 11.94 -6.27 7.69 0.22 21.08 

SCSII 3.39 2.09 13.75 -5.37 21.43 

BMAI 8.16 2.87 14.6 -3.8 22.2 

BMAII 7.85 1.90 13.75 -5.37 21.20 

Calibration 
(1997-2000) 

BMAIII 7.99 2.09 13.75 -5.37 21.20 

SCSI 14.18 -23.09 -1.60 -32.02 20.54 

SCSII 4.26 -23.73 -5.76 -55.94 5.91 

BMAI 9.69 -23.8 -5.58 -54.6 8.1 

BMAII 9.40 -23.69 -5.72 -55.94 8.92 

Validation 
(2001-2003) 

BMAIII 9.16 -23.73 -5.76 -55.94 6.77 

Nash-Sutcliffe Efficiency (NSE) 
Period Scenarios 

st.35 st.32 st.27 st.22 st.20 

SCSI 0.92 0.54 0.78 0.62 0.93 

SCSII 0.91 0.85 0.93 0.76 0.95 

BMAI 0.94 0.85 0.93 0.76 0.95 

BMAII 0.94 0.85 0.93 0.76 0.95 

Calibration 
(1997-2000) 

BMAIII 0.94 0.85 0.93 0.76 0.95 

SCSI 0.81 0.30 0.32 -1.96 0.56 

SCSII 0.84 0.26 0.42 -1.06 0.66 

BMAI 0.84 0.26 0.40 -1.09 0.56 

BMAII 0.84 0.27 0.42 -1.08 0.57 

Validation 
(2001-2003) 

BMAIII 0.84 0.26 0.42 -1.08 0.60 

Note: st.: gauge station number shown in Figure 1. 
 

3.4  Brier score model performance 
The BS for SCSI, SCSII and BMA associated methods 

is shown in Figure 4.  For scoring, the entire flow regime 
was divided into ten intervals with one representing low 
flow and ten representing high flow.  A score value near 
one represents good matching between predicted and 
observed.  Figure 4a shows the BS evaluated on 
streamflow, and Figure 4b depicts the score on NO3 at the 
station 32.  As noted earlier, either SCSI or SCSII 
performs unsatisfactorily in the low flow regime.  The 
SCSI is demonstrated to better perform in predicting 
stream flow in the intermediate flow regime, but SCSII 

presents a better performance in the low flow regime.  
The BMAII scenario combined a significantly improved 
result on predicting streamflow, especially in the 
intermediate and high flow regimes.  In Figure 4b, All 
BMA scenarios and the SCSII scenario results are almost 
identical making it difficult to identify the results in the 
figure.  In case of NO3 prediction, SCSII outperformed 
SCSI and the BMA scenarios successfully took the good 
result of SCSII output rather than from SCSI.  The BS for 
other nitrate stations demonstrate similar results as that in 
Figure 4b which are not shown here (SCSII and BMA 
associated methods present superior forecast in simulating 
nitrate process).  

 
Figure 4  Brier score for SCSI, SCSII and BMA associated 

methods.  The flow and the NO3 threshold intervals are defined by 
ranking from the highest (interval = 10) to the lowest (interval = 1) 

quantities of observation data for specific gauge station 
 

3.5  Structural uncertainty  
Uncertainty may be embedded within model 

integrations and it can be added to model uncertainty as 
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new algorithms are developed in large models like SWAT.  
One way to quantify and compare such structural 
uncertainty is to construct uncertainty bands in the output 
and then to identify the differences of characteristics.  
The evaluation techniques may be supplemented by other 
techniques like QQ plots for validation purposes.  The 
influence of different settings in the five scenarios on the 
streamflow and NO3 outputs was estimated in each of the 
10 000 iterations made during the calibration, then 
inclusion rates for each scenario and output variable were 
counted (Tables 6 and 7).  Inclusion rate is defined as a 
number of iterations (or the outputs) that gave satisfactory 
statistical results among the 10 000 iterations.  For 
uncertainty analysis, the central tendency of the inclusion 
rate was calculated by counting observation data points 
located within 95% of predictive uncertainty intervals and 
the spread was assumed to be the average width of the 
uncertainty band. 
 

Table 6  Inclusion rates of observed streamflow/NO3 data 
included in 95% confidence interval and the corresponding 

spread for the calibration period (1997-2000) 
Calibration st.35 st.32 st.27 st.22 st.20 

IR/% 33.33 18.52 33.33 14.81 33.33 
Scenario 1 

Spread 0.50 1.00 1.00 0.66 0.68 
IR/% 29.17 37.04 48.15 29.63 48.15 

Scenario 2 
Spread 0.48 0.82 0.82 0.86 0.80 

IR/% 41.67 44.44 51.85 40.74 55.56 
Scenario 3 

Spread 0.92 1.55 1.57 1.62 1.26 
IR/% 45.83 48.15 51.85 40.74 55.56 

Scenario 4 
Spread 0.94 1.57 1.57 1.62 1.36 
IR/% 41.67 44.44 40.74 29.63 48.15 

Scenario 5 
Spread 0.92 1.55 1.40 1.24 1.15 

Note: IR: Inclusion rate; st.: gauge station number on Figure 1; Unit of spread for 
scenario 1 is m3/s, and kg/month for scenario 2-5. 
 

Table 7  Inclusion rates of observed streamflow/NO3 data 
included in 95% confidence interval and the corresponding 

spread for the validation period (2001-2003) 
Validation st.35 st.32 st.27 st.22 st.20 

IR/% 38.89 33.33 27.78 27.78 38.89 
Scenario 1 

Spread 0.74 2.52 3.01 1.77 4.02 
IR/% 44.44 61.11 66.67 50.00 50.00 

Scenario 2 
Spread 1.30 1.80 1.85 1.68 1.78 
IR/% 44.44 61.11 66.67 50.00 55.56 

Scenario 3 
Spread 0.81 1.78 1.85 1.68 1.99 
IR/% 41.67 61.11 66.67 50.00 55.56 

Scenario 4 
Spread 0.83 1.80 1.85 1.68 1.62 
IR/% 41.67 55.56 55.56 44.44 61.11 

Scenario 5 
Spread 0.79 1.57 1.54 1.39 1.66 

Note: IR: Inclusion Rate; st.: gauge station number on Figure 1; Unit of spread 
for scenario 1 is m3/s, and kg/month for scenario 2-5. 

As shown in Table 6, the BMA scenarios (scenarios 3, 
4 and 5) resulted in increased uncertainty and a higher 

inclusion rate in the calibration period (including all 
streamflow and NO3 stations) than the other SCSI and 

SCSII scenarios.  In the validation period (Table 7), the 
SCSII and BMA associated approaches (scenario 2) 

resulted in higher spread and inclusion rate for 
streamflow and NO3 (scenario 1, 3, 4 and 5 have similar 

results).  In addition, the average spread of NO3 stations 
in scenarios 2, 3, 4 and 5 is narrower than that in scenario 

1 but with higher inclusion rate.  In general, the 
inclusion rate for NO3 increases with the application of 

BMA (scenarios 3 and 4) in both calibration and 

validation periods.  However, the dynamic monthly 
updates made to the BMA weights in scenario 5 do not 

improve the results of either SCSI or SCSII. 
The QQ plots are a graphical tool to assess model 

predictive uncertainty.  A QQ plot compares the 
quantiles of two variables such as predicted and observed 

flows.  If the variables come from the same type of 
distribution, or identical to each other, the QQ plot is a 

straight line.  Instructions as guidance in interpreting 
QQ plot can be found in literature[54].  The QQ plots for 

calibration and validation periods are shown in Figure 5.  
As shown in Figure 5a, 5b for calibration period, most 

scenarios do not have major differences in matching with 
observation data (theoretical quantiles) but slightly 

overestimating streamflow and NO3.  The SCSI is the 
only case with distinct performance compared to other 

four cases.  According to a visual inspection of the QQ 

plots for validation period, the SCSII and BMA 
associated scenarios perform better than SCSI in 

predicting both streamflow and NO3 (Figures 5c and 5d).  
In addition, the SCSII and BMA associated methods are 

generating QQ plots with smoother shape which means 
more consistent results (i.e., less fluctuation in cumulative 

distribution) can be expected from these approaches and 
the state of over- or under-estimated predictive 

uncertainty is not as noticeable as SCSI.  The QQ plots 
for other nitrate gauge stations also showed similar 

patterns which are not presented in this paper.  
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a. QQ plot for calibration period at the streamflow gauge station (st.35)  b. QQ plot for calibration period at a nitrate gauge station (st.32) 

 

 
c. QQ plot for validation period at the streamflow gauge station (st.35)  d. QQ plot for validation period at nitrate gauge station (st.32) 

Figure 5  Quantile-Quantile (QQ) plots for calibration and validation periods for all cases  
 

4  Discussion and conclusions 

   From the viewpoint of finding better solutions and the 
speed of convergence of the objective function, SCSI and 
SCSII show compatible results although the SCSII 
converges a little slower.  The application of a formal 
likelihood function sustains high inclusion rate in the 
“Satisfactory” level for calibration but it decreases 
dramatically in the validation period.  The SCSII and 
BMA associated methods derive more solutions which 
satisfy additional model performance validation criteria in 
both calibration and validation periods.  As mentioned 
previously, SCSI tends to overestimate surface runoff in 
shallow soils when storage condition is low[10,12].  During 
the severe drought in the first year of the validation period, 
SCSII and BMA associated methods show better quality 

solutions.  In other words, SCSI is less capable of 
properly simulating low flow or drought conditions[10,12].  
Moreover, SCSII and BMA associated approaches 
consistently generate solutions with better statistics in both 
calibration and validation periods.  

The higher inclusion rate for NO3 with the 
incorporation of the BMA technique offers another major 
benefit of aggregating SCSI and SCSII during 
optimization processes by improving the likelihood of 
confining the observed pollutograph within the uncertainty 
bands of predicted output.  As demonstrated in Table 3, 
the SCSII output had a dominant impact to the BMA 
scenarios with significant weights for NO3 gauge stations 
compared to SCSI, which means that SCSI is not able to 
simulate NO3 processes as well as SCSII in practice.  
Therefore, in this study, SCSII (and also BMA 
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applications along with SCSII) performed relatively better 
on predicting nutrient loads than the SCSI method.  The 
SCSII method also performed better than the SCSI method 
in predicting streamflow.  However, it resulted in higher 
PBIAS at two stream gages among the five gages.   

In this study, the impact of structural uncertainty on 
hydrologic and water quality predictions which may be 
intrinsic in the two SWAT CN methods was investigated 
with an application of the BMA technique.  Several 
conclusions are made based on the analyses of the five 
scenarios. 

(1) SCSI and SCSII show similar performance in 
convergence speed or optimization of the objective 
function.  However, SCSII and BMA methods give 
superior model predictions with statistically better 
solutions and higher success rate compare to SCSI. 

(2) SCSI has relatively higher BMA weights on 
streamflow outputs over SCSII (except for the wet season 
in scenario 4) but its predicted streamflow is not 
perceptibly superior to SCSII.  

(3) In simulating water quality variables, SCSII 
outperforms SCSI in simulating NO3 in the case study of 
ECW.  Evidently, higher BMA weights are assigned to 
SCSII for NO3 outputs.  Error statistics, predictive 
uncertainty and NO3 profiles of the BMA associated 
scenarios were particularly close to that in SCSII because 
dominant weights are assigned to SCSII on NO3 outputs. 

(4) The seasonal classification approach does not show 
substantial improvements in either statistical metrics or 
predictive uncertainty.  Applications of BMA have 
positive effects in increasing inclusion rate but the 
predictive uncertainty is not evidently reduced. 

For a complex large-scale watershed simulation 
model as SWAT, optional alternatives can be applied on 
different functions for specific hydrologic/nutrient 
processes (e.g., surface runoff in this study).  
Advantages and disadvantages ensue with the application 
of each algorithm can be demonstrably affected 
especially when methods are designed to catch dissimilar 
watershed characters or various engineering purposes.  
In this study, the use of the plant evapotranspiration CN 
method in SWAT demonstrated outstanding performance 
in the prediction of both discharge and NO3.  SCSII was 

originally designed to improve runoff simulation, and it 
also improves SWAT’s ability to predict pollutants which 
result in water quality impairment as demonstrated in this 
research by nitrate.  We recommend additional SWAT 
calibration/validation research with an emphasis on the 
impact of SCSII on the prediction of other pollutants (e.g., 
pesticide, phosphorus).  In addition, we also recommend 
testing with additional watersheds with differing climatic 
conditions to establish recommendations on the best CN 
method to utilize.  
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