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Predictive control for greenhouse temperature and humidity and energy
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Abstract: Persistent low temperatures in autumn and winter have a huge impact on crops, and greenhouses rely on solar
radiation and heating equipment to meet the required indoor temperature. But the energy cost of frequent operation of the
actuators is exceptionally high. The relationship between greenhouse environmental control accuracy and energy consumption
is one of the key issues faced in greenhouse research. In this study, a non-linear model predictive control method with an
improved objective function was proposed. The improved objective function used tolerance intervals and boundary constraints
to optimize the objective evaluation. The nonlinear model predictive control (NMPC) controller design was based on the
wavelet neural network (WNN) data-driven model and applied the interior point method to solve the optimal solution of the
objective function control, thus balancing the contradiction between energy consumption and control precision. The simulation
results showed that the improved NMPC method reduced energy consumption by 21.02% and 9.54% compared with the model
predictive control and regular NMPC, which proved the method achieved good results in a low-temperature environment. This
research can provide an important reference for the field as it offers a more efficient approach to managing greenhouse
climates, potentially leading to substantial energy savings and enhanced sustainability in agricultural practices.
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1 Introduction

Agricultural production needs stable and suitable conditions,
but low temperatures can affect crop yields in autumn and winter.
Greenhouses, as an essential facility agriculture mode, can deal with
these problems by improving the stability of the environment
through environmental regulation in enclosed areas'. Generally,
control and adjustment methods cover: heating and cooling system,
ventilation system, CO, supply system, lighting system, and
and dehumidification control

humidification system®. The

processes can be achieved manually or by controllers. The main

> robust

control methods are fuzzy control®*, adaptive control'
control™¥, neural network algorithm control®'”, hierarchical optimal
control"'?, and model predictive control"*'Y, Unlike other methods,
model predictive control (MPC) is an optimal control strategy in the
finite time domain based on model prediction. Ghoumari et al.l"!

implemented a nonlinear constrained MPC to control temperature
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and humidity by online linearization methods to approximate linear
solutions of greenhouse models. Svensen et al.' recently proposed
a chance-constrained stochastic MPC scheme to explicitly address
parametric errors in the crop-climate model, demonstrating the
effectiveness of MPC in handling uncertainties and improving the
robustness of greenhouse control systems. Ito et al.'” studied the
effect of humidity deficit on greenhouses, improved the algorithm
of the linear model in the MPC, and proposed a new humidity
deficit objective function. The control of MPC in the greenhouse
requires approximately linear processing of the model, which also
results in a loss of model accuracy. Some studies used the nonlinear
model predictive control (NMPC) method for the application of
nonlinear models and data-driven models. Qi et al.'"® used a neural
network model as a predictive model to predict the controlled
process in combination with NMPC to control the greenhouse
temperature. Pelagagge et al.'” applied the dynamic response
surface methodology data-driven model as a nonlinear MPC model
to solve the optimal control problem of the non-equispaced finite-
level domain. Gruber et al.”?” applied an NMPC strategy based on a
second-order Volterra model to conduct a study of the nonlinear
dynamic effects of greenhouse temperature. Improvements in
controllers and models have certainly improved greenhouse control
results, but have also led to higher energy costs.

Environmental control and energy consumption of greenhouses
have been the key points of research by scholars. Mahmood et al.*"
proposed a data-driven model predictive control method based on
multi-layer perceptron to achieve greenhouse temperature control
and reduce energy consumption. Hu et al.” developed a data-driven
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robust model predictive control framework to build state space
models based on historical predictive data and system identification
methods, combined with a robust MPC framework, whereby the
efficiency of power utilization and crop yield were improved. Wang
et al." proposed a dual time domain multi-layered closed-loop
control method for greenhouse environments. This method aims to
accurately control environmental reduce energy
consumption, and improve economic efficiency. Lin et al."” have

factors,

applied multi-strategy processing to greenhouse control. The control
and optimization layers implement scenario classification and
control response, respectively. Most research on greenhouse energy-
saving is based on long-term crop growth environment optimization
or short-term multi-objective control optimization. The former
method does have better results in application, but at the same time
requires a complex greenhouse crop growth model, and lacks
adaptability to different crops or different environments. The latter
approach relies on solvers to obtain the optimal short-term control
output. The balance between control accuracy and energy
consumption is achieved by introducing a competition of weights
between energy consumption and greenhouse objects. The solvers
cannot guarantee the optimal solution for each control direction
when the output error is large. However, most methods lack
restrictions on weight competition and cannot always ensure a
balance between control objectives and energy consumption.
Control dysfunction is likely to occur in the presence of large
environmental changes.

This study focuses on a multi-objective optimization method
for short-term greenhouses with constraints to achieve a dynamic
balance between greenhouse control and energy consumption. An
NMPC with an improved objective function was proposed. The key
point of innovation was that by improving the objective function
and adding tolerance intervals and boundary constraints, greenhouse
energy consumption was able to be reduced while avoiding control
dysfunction. The work of this paper includes:

1) Building a Wavelet Neural Network (WNN) data-driven
model for the multi-step prediction process for controllers;

2) Proposing an improved objective function based on tolerance
interval for state evaluation of control processes;

3) Based on the above model and objective function, the
NMPC controls the indoor temperature and humidity through the
heating system, ventilation system, and lighting system. The
simulated results validate the effectiveness of the method.

2 Materials and methods

2.1 Analysis and modeling of greenhouse environments

In a general greenhouse study, the first step is to find its
internal and external connections, which requires modeling the
greenhouse system. The Venlo-type greenhouse is a small-span
glass greenhouse. This type of greenhouse structure is widely
recognized and utilized globally, especially in southern regions. The
Venlo-type greenhouse is renowned for its distinctive design
features and superior performance, making it the most extensively
used type of glass greenhouse worldwide. Its key characteristics
include small component cross-sections, easy installation, high light
transmission, excellent sealing properties, and large ventilation
areas. These attributes offer significant advantages for agricultural
production by providing stable indoor environments and promoting
crop growth. The literature includes various studies™*! of Venlo-
type greenhouses. A Venlo-type greenhouse for tomato growing
was studied***"), and the control objects included greenhouse indoor
temperature and relative humidity; the control actuators included a

lighting system, a heating system, and a roof ventilation system; the
environmental observation objects included outdoor temperature,
humidity, the intensity of light, and indoor temperature, humidity,
and CO, concentration. According to the conditions, the common
greenhouse model equations based on energy transfer and material
exchange are established™"":
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where, T, is the indoor air temperature of the greenhouse, °C, H;,
and Hy, is the water vapor pressure and saturated vapor pressure
indoor air of the greenhouse, Pa, RH;, is the indoor relative
humidity, %, Iy, is the transfer energy of sunlight, W/m?, I, is the
transfer energy of the greenhouse cover, W/m?, I, is the transfer
energy of the crop transpiration, W/n0’, I, is the transfer energy of
the heating pipes, W/m? [, is the transfer energy of the
ventilation, W/m?, H,., is the exchange of vapor through
ventilation, H,,,, is the vapor produced by plant transpiration, H g4
is lost vapor for condensation, p, is the indoor air density, kg/m’, v,
is the greenhouse volume, m’, ¢, is the specific heat capacity of
indoor air, J/(kg°C), and / is the average height of the greenhouse.
Most of the parameters cannot be directly obtained, and the
calculation processes are complex and difficult, which is also one of
the reasons for the difficulty of greenhouse mechanism modeling.

In greenhouse research, it is considered that greenhouse
systems are nonlinear and strongly coupled, which makes the model
parameters always have certain deviations and leads to errors in the
control process. Compared with mechanistic modeling, data-driven
approaches achieve modeling with fewer parameters and have better
generalization capabilities for complex systems™., In this study, a
data-driven greenhouse model was built using WNN to reduce the
complexity of the modeling process.

WNN is based on the principles of wavelet transform and
neural network. It replaces the activation function of a neural
network with a wavelet basis function, which facilitates the model
representation of nonlinear objects by achieving multi-scale
refinement of the approximate wavelet transform process. Aly et
al.”! compared wavelet (WNN) and other methods for wind speed
and power prediction to demonstrate the advantages of WNN
models for short- and medium-term prediction. Chang et al.’
proposed an online battery accurate health condition assessment
method by using the nonlinear fitting feature of wavelet neural
network combined with genetic algorithm. WNN combined with
better learning
generalization, which shows better prediction results for different
prediction problems. The formulas of the WNN are as follows:

N
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Equation (2) is the output equation of the hidden nodes,
Equation (3) is the output equation of the output layer nodes, and
Equation (4) is the wavelet basis function. x; is the input node to the
network, w;; is the weight of the input node i and the hidden node /,
a; is the scaling value of the node j, and b, is the translation value of
the node j. WNN connects the hidden nodes with the input weights
and calculates the node outputs after translating and stretching. The
wavelet basis functions include Haar wavelet, Morlet wavelet,
Mexican wavelet, Meyer wavelet, etc.’ In this study, Morlet
wavelet was adopted as Equation (4), whose nonlinear fitting ability
has been verified in several related studies® .

2.2 NMPC controller design based on improved objective
function
2.2.1 Animproved objective function based on tolerance intervals

The objective function is part of the state evaluation of MPC
and NMPC. Generally multi-objective control problems are
transformed into a single objective problem by weight accumulation
of the difference between the objective and the current state, which
is used in the subsequent control optimization process. In the
greenhouse control process, the environmental control objectives
and energy consumption objectives of the greenhouse also guide the
greenhouse control direction through the weight accumulation.
However, the relationship between environmental control and
energy saving optimization is not a cooperative one, but a
competitive one. The high demand for energy saving optimization
will inevitably reduce the ability to control the environment. When
large changes occur and the necessary constraints are lacking, it is

25

0
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a. The MSE-based objective function

Figure 1

Considering the process of calculation, the gradient of the
exponential function changed too fast, which could lead to problems
in gradient calculation. In this study, the slope of two sides of the
function maintains the value of the nearest tolerance boundary slope
to ensure that the boundary of the target function grows steadily.
2.2.2 The improved NMPC controller design

MPC, as a short-period rolling predictive control method, is
divided into multi-step prediction, rolling optimization, and
feedback correction. Multi-step prediction uses a model to predict
the short-term control trend. Feedback correction uses an objective
function to assess the gap between the control trend and the target,
then selects the optimal target for feedback control. Rolling
optimization cycles the control process to maintain optimal control
in a finite time domain. MPC does not rely on specific models but
rather solves for future trend changes through multi-step iterations.
So MPC is applicable to both mechanistic and data-driven
models®*”. NMPC inherits the idea of MPC and improves the
NMPC optimization solution method by transforming the linear

easy to generate errors that cannot be eliminated in the optimization,
which leads to control dysfunction. This imbalance will have a
negative impact on the greenhouse crop. Therefore, this paper
proposes an improved objective function by adopting tolerance
intervals. Equation (5) and Equation (6) are the MSE-based
objective function and the improved objective function, and Figure 1
is the schematic diagram of the MSE-based objective function and
the improved objective function:

cost MSE = (x —ref)’ 5)
1+1og10x (ref—x—b) (x—ref < —-b)

10+ (-b<x-ref<b)  (6)
1+log10x (x—ref—b) (b<x—ref)

cost_imp =

where, x is the current state, ref is the reference state of the target, b
is the tolerance provided, and the tolerance interval is [ref-b,
ref+b]. From Figure 1, the graph of MSE shows a trend of concave
in the middle, steep, and straight on both sides. The improved target
function fluctuates less in the tolerance interval, and the trend of the
image is flatter. However, when the error of x-ref exceeds the
tolerance interval boundary, the value of the objective function
increases rapidly. With the help of this function, the controller
provides a low penalty tolerance during the evaluation process and
provides control target in a fluctuation range. By this allowed
fluctuation range, the maximum energy savings can be safely
achieved. In the case of exceeding the tolerance interval, the penalty
value will be increased rapidly to provide boundary constraints.

The improved
objective function

0
x—ref

b. The improved objective function

The schematic diagram of the MSE-based objective function and the improved objective function

derivative solution problem process into a nonlinear optimization
problem. In this study, the optimal daytime environmental
temperature was set between 24°C and 27°C to ensure optimal
photosynthesis of crops. For nighttime, the optimal temperature was
maintained between 14°C and 17°C to stabilize the green-house
environment while minimizing crop respiratory consumption.
Additionally, the humidity levels were kept within a stable range,
with a reference relative humidity set between 64% and 70%. When
the temperature exceeded or fell below these specified ranges,
appropriate actions were taken. For instance, if the temperature
exceeds the range, the ventilation system is activated to cool down
the greenhouse. Conversely, if the temperature falls below the
range, heaters and supplemental lighting are utilized. Similarly, if
the humidity exceeds or falls below the specified range, the
ventilation system is adjusted to restore the humidity to normal
levels. Furthermore, in cases where there is a discrepancy between
the model input and the reference model, it results in a state
difference. This difference prompts feedback correction of the
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model. Figure 2 shows the basic principle of NMPC. The control
targets are set by input in NMPC and the reference model is a
continuous time control target for comparison of control states.
When the control is launched, the controller inputs the state of the
object as input to the control internally. The future trends are
predicted by the predictive model and then the optimal control
output solution is solved according to the objective function and
nonlinear optimizer. Through continuous cycles, NMPC can
achieve continuous control.

Reference
model

v
_ [Predictive] [Objective
i | model function |i

LNonlinear J

optimizer

Control
error

i
|
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] e
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Figure 2 Basic schematic diagram of NMPC

For the greenhouse control, the greenhouse discrete state-space
model is transformed from Equation (5).

x(k+1) = fon (x(k),d (k) ,u (k)
x(k) = {T,,(k).RH,, (k) }
d(K) = { Ly (k) T (k) , RHo (k) , Viina () }
U (k) = { Preger (k) Py (K), Rycn (K) }
x(k+1) = { Ty prea (k+ 1), RH;, g (k+ 1) }

(N

where, f;y is the WNN model expression at the moment £, the input
x(k) is the controlled objects, which include the indoor temperature
Tn(k), °C, the indoor relative humidity RH;,, %, the disturbances
d(k) include the outdoor sunlight intensity /,,(k), W/m?, the outdoor
temperature 7,,(k), °C, the outdoor relative humidity RH,(k), %,
the outdoor wind speed V;,q(k), m/s, the actuator input u(k) include
the output power of heater Py.,.(k), W, the output power of light
Piign(k), W, the ventilation rate R,,(k), m/s, the outputs x(k+1) are
the predicted values at the moment 4+1, which include the predicted
indoor temperature Tj, eq(k+t1), °C, and the relative humidity
RH;j prea(A+1), %. This formula is used to evaluate the future state
trend of greenhouse, combining with the objective function to judge
the gap between the control objectives.

At moment £, the control output is u, the predicted time domain
is t,, the control time domain is #., and the reference model is ref.
The NMPC model iteratively predicts the state output from moment
k+1 to moment k+z.. The functions are as follows:

x(k+1) = fou(x(k), d(k), u(k))
x(k+2) = fou(x(k+1),d(k+1),u(k+1))

xtk+t.+1) = fou(x(k+1.),dk+1t.),uk+1.))
xtk+t.+2) = feu(xtk+1.+1),dk+t.+ 1),utk+1.))

x(tk+1t,) = fou(x(k+1,—1),d(k+1t,—1),u(k+1.))
(1<t.<t, t.=1,23..., t,=1,2,3..) (8)

where, the input u varies with the control period x from & to (k+2,);
the input u is maintained during the non-control period from (k+z.)
to (k+t,). Then the prediction results of the model and the reference
model are substituted into the objective function for comparison to
evaluate the results. The objective function J, is shown as follows:

Ji=A0)  cost_imp(x(k -+ j),wlk+ ),b)+ 4 Y [qutke+ )]+
Jj=1 i=1
Y [utk+ - [utke+ j-1)]]°
i=2
w(j) = ax(j) + (1 — ey ref
Upin S M(]) S Upnax
s.t. xmin S -x(./) S -xmax (9)
0<a/ <1

Jk=1,2,3,....1,

where, J; denotes the discrepancy between the control expectation
and the control objective at control period from k to k+¢,, which is
obtained from the improved objective function cost imp, b is the
tolerance of the objective function; w(j) is the softened output of the
reference model, ¢ is the softening factor. The control results are
smoothed by softening process to reduce the effects of overshoot
and oscillation; 1, 4, and A; are the weight of the control object, the
cumulative energy consumption and the change rate of the control
output respectively; 7 is the energy consumption coefficient. For the
tuning of the weight of the control object, NSAG-II and manual
experience methods were adopted for parameter setting. The
method used NSGA2 to initially screen individuals with optimal
weights in different directions, and then screened and adjusted to
obtain the optimal weights with manual experience. The objective
function is used for the evaluation of the gap between the
greenhouse state and the target point. By introducing the improved
objective function in the study, the objective is converted to an
interval range. The optimal output of the control can be solved by a
solver.

Unlike MPCP, NMPC transforms control problems into
optimization problems and applies global optimization methods to
solve min(J;). Commonly used methods include: Derivative free
optimization algorithms (genetic algorithm, ant colony algorithm,
etc.); active set strategies (successive quadratic programming, etc.);
and barrier methods with exact Hessians (the interior point method
based on the barrier method, etc.)"”. Considering the speed of the
control reaction, this study adopts the interior point method based
on the barrier method and implements the function of fmincon to
optimize the objective function in Matlab.

2.3 Controllers design of the contrast groups
2.3.1 The MPC controller design

The MPC and the NMPC are mostly the same in terms of
control principles, the difference being in the control model and
solver algorithm!**’*). The MPC model expressions are as follows:

x=Ax+Bu
{ (10)
y=x
x(k+1) = fou (x (k) u(k)) (11)

where, the model state equation is linearized by the model of
Equation 1. 4, B is the parameters after linearization; x is the state
parameters including the predicted indoor temperature T, pea(k+1),
°C and relative humidity RHj,eq(k+1), %; u is the output
parameters including the output power of heater Py, (k), W, the
output power of light Py, (k), W and the ventilation rate Rieqi(k),
m/s. And the discrete state-space model is as Equation 10. Multi-
step model prediction can be easily implemented with the help of
discrete state-space model:
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x(k+1) = fom(x(k), d(k), u(k))
x(k+2) = fon(x(k+1),dk+ 1), u(k+1))

xtk+1.+1) = fop(x(k+1,),d(k+1t.),utk+1.))
xtk+1,+2) = fop(xk+1,+1),dk+1t,+1),utk+1.))

x(tk+1t,) = fan(xtk+t,-1),d(k+1t,—1),u(k+1.))
1<t.<t,, t.=1,23..., t,=1,2,3...) (12)

where, the input u varies with the control period x from & to (k+2.);
the input u is maintained during the non-control period from (k+z.)
to (k+t,). Calculate the distance between the state and the target
from the objective function based on the prediction results. The
objective function J, is shown as follows:
J=2) " cost_mse(x(k+j), wik+i)+ 4 > [muk+ j)]+
Jj=1 i=1
Y utk+ = [ute+ j-1)]°
=2

w(j) = ax(j) + (1 — @) ref

Upin < U(J) < Uy

s.t. Xinin < X(]) < Kmax (13)
O<al<1
Jk=1,23,...1,

where, the objective function is based on the MSE method and
MPC is for the target control. w(j) is the softened output of the
reference model, ¢ is the softening factor. The control results are
smoothed by softening process to reduce the effects of overshoot
and oscillation; A}, A;, and A;, are the weight of the control object,
the cumulative energy consumption and the change rate of the
control output respectively; # is the energy consumption coefficient.

Then solve min(J,) for the optimal solution which uses SQP
linear optimization in Matlab to obtain the control output. When the
control output completes an MPC control, the cycle of controller
control continues at the next moment k+1.
2.3.2 The NMPC controller design

The control process of NMPC is the same as that of the
improved NMPC, the only difference lying in the application of the
MSE-based objective function:

Jy=A0) " cost_mse(x(k+j), wik+i)+ 4> [mulk+ )]+
Jj=1 i=1
5 [utk+ )= [utk+j-D]]’
=2
w(j) = ax(+ A -a)ref

Upin S U(J) < Uppex

S.te € Xnin < X(J) < Xinax (14)
0<a’<1
Jk=1,2,3,....1,

where, w(j) is the softened output of the reference model, ¢ is the
softening factor. The control results are smoothed by softening
process to reduce the effects of overshoot and oscillation; A7, A7
and A; are the weight of the control object, the cumulative energy
consumption and the change rate of the control output respectively;

n is the energy consumption coefficient.

3 Results and discussion

The simulations were based on Matlab R2020a. The data
utilized in this study was collected from the greenhouse situated at
the Wageningen Research Centre in Bleiswijk (The Netherlands),
spanning over a 6-month period of tomato cultivation (winter,
spring, and summer). This dataset comprises details regarding both
outdoor and indoor greenhouse climates, irrigation, actuator
statuses, requested and implemented climate setpoints, resource
consumption, harvests, crop-related parameters, tomato quality,
analyses of irrigation and drainage samples, as well as root zone/
board information. With a total of 47 809 records, the dataset is
extensive and diverse, encompassing various facets of greenhouse
environmental control. The sampling time was set to 3 d, 72 h in
total; the minimum sampling interval was set to 5 min; the control
interval was set to 5 min; the optimal reference temperature of
daytime 24°C-27°C  to
photosynthesis of crops; and the optimal nighttime temperature was
set at 14°C-17°C to maintain a stable greenhouse environment and
reduce crop respiration. The humidity of the greenhouse was kept in
a stable range, and the reference relative humidity was set at 64%-
70%. The internal structure of the greenhouse is depicted in
Figure 3. Temperature and humidity sensors are positioned at nodes

environment was set to ensure

1-6 and nodes 10-12, respectively. Light radiation sensors are
placed at nodes 7-9. The temperature and humidity sensors are of
the SIN-TH800 model, with a humidity measurement accuracy of
+3% RH and a temperature measurement accuracy of +0.3°C. The
light radiation sensor model is BRW100-2015A (Firstrate, China),
with a resolution of 1 W/m’ and a measurement range of 0-
2000 W/m? The sampling period for all sensors is set to 5 min.

The model predictive process is an important part of the MPC,
which uses models to predict future trends. Firstly, the continuous
iteration prediction ability of the model was compared under the
same conditions. Contrast groups were established to compare with
the back propagation neural networks (BPNN) model, radial basis
function (RBF) model and WNN model. In terms of model
structure, BPNN, and WNN were set to the 8-16-2 structures, which
include a single hidden layer with 12 nodes. The RBF structure was
trained with the newrbe function in Matlab, and the parameter
spread was set to 100. The root mean square error (RMSE), mean
absolute error (MAE) and R? of the predicted results are as follows.
For model performance metrics, smaller values of Root Mean
Squared Error (RMSE) and Mean Absolute Error (MAE) indicate
better performance, whereas higher values of R-squared (R?) closer
to one indicate a better fit of the model to the data.

From Figure 4a and 4c and Table 1, the WNN, BPNN, and
RBF models had good performances in the prediction of indoor
temperature, where WNN had the most minor errors and stable
prediction with MSE of 0.083, MAE of 0.067, and R2 of 0.999. For
indoor relative humidity prediction, RBF had a significant drop in
prediction performance for long-term prediction, while WNN and
BP performed well. WNN still had the best performance with MSE
of 0.826, MAE of 0.739, and R* of 0.943.

It is observed from Figure 4b and 4d that the increase in
iterations made the prediction errors cumulatively. The errors in the
actual greenhouse prediction process were also unavoidable.
Therefore, better models or shorter prediction steps were selected as
needed to ensure controllable errors in the prediction and control
sessions.
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Figure 4 Prediction performance results of different models

Table 1 Prediction performance results of different models

Temperature prediction results

Relative humidity prediction results

Model

RMSE MAE R RMSE MAE R
BPNN  0.765 0.649 0.968 0.947 0.885 0.925
RBF  0.368 0.310 0.993 7.367 5.787 -3.567
WNN  0.083 0.067 0.999 0.826 0.739 0.943

The simulations compared the environmental regulation ability
and energy consumption. Common MPC and common NMPC were
set up to compare with the improved NMPC. The model of
greenhouse adopted the WNN model mentioned above. In the
prediction process, the prediction step was set to 5, the control step
was set to 2, and the step was consistent with the data sampling
period of 5 min. The initial indoor environment of the greenhouse
was set at 15°C, and the indoor relative humidity was 65%. The
weather data were from the actual measurement, the outdoor
temperature range was 6°C-14°C, and the outdoor relative humidity
range was 50%-80%. The control results are shown in Figure 4, and
the RMSE and R’ results are listed in Table 2. RMSE reflects the
error distribution between the control results and the optimal

reference model; MAE reflects the average error between the
control results and the optimal reference model.

From Figures 5 and 6 and Table 2, it is seen that MPC control
results had more significant temperature fluctuations, especially at
low temperatures at night. The temperature control performance of
NMPC is better than MPC with RMSE of 0.281 and MAE of 0.138.
NMPC shows more stable temperature control performance both
daytime and nighttime. Due to the tolerance intervals, the improved
NMPC  kept
temperature range according to the energy saving and temperature
requirements, so the RMSE and MAE are poor at 1.195 and 1.125,
respectively.

the greenhouse environment within the low-

Table 2 Greenhouse environmental control performance

Temperature results Humidity results

Controller RMSE MAE RMSE MAE
MPC 0.620 0.389 0.623 2.019
NMPC 0.281 0.138 0.372 1.602
Improved NMPC 1.195 1.125 1.060 1.256
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For humidity control, the MPC had small but frequent
fluctuations, and suffered from low humidity problems as the
ambient temperature decreased. The NMPC fluctuated less
frequently but the control error increased. The fluctuation of NMPC
control results was lower, and humidity stayed within the required
interval most of the time, but sudden changes in humidity occurred
during the period of alternation of daytime and nighttime. The
common NMPC was more prone to short-term overshoot when it
was affected by rapid environmental changes. The improved NMPC
benefited from the high penalty of the improved objective function
on the boundary constraint, which better overcame the problem of
sudden changes and made the results fully satisfy the requirements
of the greenhouse.

As shown in Figure 6 and Figure 7, due to the improvement of
the controller itself for nonlinear control, NMPC effectively reduced
temperature and humidity fluctuations and brought lower energy
consumption. Compared with MPC, the daytime consumption was
reduced by 10.06%, and the nighttime consumption was reduced by
23.11%. For the period of alternating daytime and nighttime, the
energy consumption increased by 8.33%. During the period, energy
consumption increased due to the overshoot of controllers.
However, this period was short and the energy consumption did not

have a significant impact on the total energy consumption.
Improved NMPC relied on the range requirements of the crop to
control the greenhouse actuators to reduce energy consumption by
reducing the expectation of control. These control losses were still
within the crop growth requirements and were acceptable.
Compared to the NMPC, the daytime consumption of improved
NMPC was reduced by 3.97%; the nighttime consumption was
reduced by 16.65%; and the period of alternating daytime and
nighttime was reduced by 4.74%. The cumulative energy
consumption of improved NMPC was 21.02% lower than MPC and
9.54% lower than NMPC.
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Figure 7 Comparison of NMPC energy consumption of different
models at different periods

Detailed analyses were conducted regarding the influence of
different greenhouse structures, testing data point locations, and
various positions within the greenhouse on the test results.
Variations in environmental control, such as temperature
distribution and humidity maintenance, exist among different
greenhouse structures (e.g., connected and standalone greenhouses).
Our study focuses on a Venlo-type greenhouse, known for its
widespread use and performance, ensuring the

representativeness and generalizability of our findings. Despite

superior
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potential variations in specific environmental parameters, the
NMPC method, incorporating tolerance intervals and boundary
constraints, can effectively adapt to such changes and ensure control
effectiveness. (e.g.,
humidity, light) may vary across different locations within the
greenhouse. To account for these differences, multiple sensor nodes
were installed at various heights and orientations, facilitating
comprehensive environmental data collection. For instance, nodes 1-
6 and 10-12 measure temperature and humidity, while nodes 7-

Environmental parameters temperature,

9 measure light radiation. This multi-point approach enhances the
accuracy and robustness of our model. Variations in environmental
parameters within the greenhouse primarily relate to light exposure,
ventilation, and temperature gradients. Positions near ventilation
greater temperature
fluctuations compared to those farther away. Through multi-point

openings and heaters may experience
data collection and the introduction of tolerance intervals, this
method effectively balances data differences across various
positions, ensuring overall control effectiveness. In summary, while
different greenhouse structures, testing data point locations, and
positions within the greenhouse may impact specific environmental
parameters, the improved objective function NMPC method can
adeptly adapt to these variations, resulting in reduced energy
consumption and enhanced control accuracy. These simulation

results affirm the method’s efficacy across diverse environments.

4 Conclusions

In this study, a nonlinear model predictive control method of
greenhouse temperature and humidity based on improved objective
function was proposed for greenhouse environmental control and
energy optimization in autumn and winter. Firstly, a wavelet neural
network data-driven model was developed for the multi-step
prediction process of NMPC. Secondly, an improved tolerance
interval-based objective function was proposed to evaluate the state
of the control process. Thirdly, the model was combined with the
improved objective function to design an NMPC controller based on
the improved objective function for greenhouse temperature and
humidity control and energy-saving optimization. Finally, the
simulation compared the performance of multiple models and
controllers.

Comparing the prediction performance of models, WNN had
the highest prediction accuracy in the first ten times with an RMSE
of 0.083 for temperature prediction and 0.826 for humidity
prediction. Simulation results for the controller show that the
improved NMPC further reduced energy consumption significantly
and improved the problems caused by control overshoot while
maintaining the control requirements. The cumulative energy
consumption of the improved NMPC was reduced by 21.02%
compared to MPC and 9.54% compared to NMPC. The results
show that the improved NMPC effectively meets the greenhouse
control requirements and achieves the best balance of greenhouse
control and energy consumption.

Acknowledgements

This work was financially supported by the National Natural
Science Foundation of China (Grant. No. 31901400) and the
Fundamental Research Funds for the Provincial Universities of
Zhejiang (Grant. No. 2023YW09).

[References]
[1] He K S, Chen DY, Sun L J, Liu Z L, Huang Z Y. The effect of vent

[2]

B3]

[4]

[3]

(6]

71

(8]

9]

[10]

[11]

[12]

[13]

[14]

[13]

[1e]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

openings on the microclimate inside multi-span greenhouses during
summer and winter seasons. Engineering Applications of Computational
Fluid Mechanics, 2015; 9(1): 399—410.

Katzin D, van Henten E J, van Mourik S. Process-based greenhouse
climate models: Genealogy, current status,
Agricultural Systems, 2022; 198: 103388.
Tabaraki R, Khodabakhshi M. Performance comparison of wavelet neural
network and adaptive neuro-fuzzy inference system with small data sets.
Journal of Molecular Graphics and Modelling, 2020; 100: 107698.

Wang L N, Wang B R, Zhu S M. Multi-model adaptive fuzzy control
system based on switch mechanism in a greenhouse. App. Eng Agric,
2020; 36(4): 549-556.

Xu D, Du S F, van Willigenburg G. Adaptive two time-scale receding

and future directions.

horizon optimal control for greenhouse lettuce cultivation. Comput
Electron Agric, 2018; 146: 93—103.

Wang L N, Zhang H H. An adaptive fuzzy hierarchical control for
maintaining solar greenhouse temperature. Computers and Electronics in
Agriculture, 2018; 155: 251-256.

Yu D. Application of the model forecast control in the greenhouse system.
ASSHM 2015, 2015; 1027-1034. Available: https://webofscience.clarivate.
cn/wos/alldb/full-record/ WOS:000380290300128. Accessed on [2024-
01-11].

Subin M C, Singh A, Kalaichelvi V, Karthikeyan R, Periasamy C. Design
and robustness analysis of intelligent controllers
greenhouse. Mech Sci, 2020; 11(2): 299-316.

Jung D-H, Kim H-J, Kim J Y, Lee T S, Park S H. Model predictive control
via output feedback neural network for improved multi-window
greenhouse ventilation control. Sensors, 2020; 20(6): 1756.

Ucak K, Gunel G O. Online support vector regression based adaptive
NARMA-L2 controller for nonlinear systems. Neural Process Lett, 2021;
53:405-428.

Wang L N, Xu M J, Zhang Y, Wang B R. Benefit-prioritized greenhouse
environment dual-time domain multi-layered closed-loop control strategy.
Computers and Electronics in Agriculture, 2024; 225: 109284.

Liu T, Yuan Q Y, Wang Y G. Hierarchical optimization control based on
crop growth model for greenhouse light environment. Comput Electron
Agric, 2021; 180: 105854.

Lin D, Zhang L J, Xia X H. Model predictive control of a Venlo-type
greenhouse system considering electrical energy, water and carbon dioxide
consumption. App. Energy, 2021; 298: 117163.

Bersani C, Ouammi A, Sacile R, Zero E. Model predictive control of smart

for commercial

greenhouses as the path towards near zero energy consumption. Energies,
2020; 13(14): 3647.

El Ghoumari M Y, Tantau H- J, Serrano J. Non-linear constrained MPC:
Real-time implementation of greenhouse air temperature control. Comput
Electron Agric, 2005; 49(3): 345-356.

Svensen J L, Cheng X D, Boersma S, Sun C C. Chance-constrained
stochastic MPC of greenhouse production systems with parametric
uncertainty. Computers and Electronics in Agriculture, 2024; 217: 108578.
Ito K, Tabei T. Model predictive temperature and humidity control of
greenhouse with ventilation. Procedia Computer Science, 2021; 192:
212-221.

Qi K, Chen Y F, Liu B C, Du S F. Research on neural network model for
greenhouse temperature predictive control. In:
Automation Conference (CIAC), Yangzhou, China: Springer, 2013;
pp.551-557

Pelagagge F, Georgakis C, Pannocchia G. Data-driven nonlinear MPC
using dynamic response surface methodology. IFAC-PapersOnLine, 2021;
54(6): 272-2717.

Gruber J K, Guzman J L, Rodriguez F, Bordons C, Berenguel M, Sanchez J
A. Nonlinear MPC based on a Volterra series model for greenhouse

Chinese Intelligent

temperature control using natural ventilation. Control Engineering Practice,
2011; 19(4): 354-366.

Mahmood F, Govindan R, Bermak A, Yang D, Khadra C, Al-Ansari T.
Energy utilization assessment of a semi-closed greenhouse using data-
driven model predictive control. J Clean Prod, 2021; 324: 129172.

Hu G Q, You F Q. Model predictive control and machine learning for
greenhouse energy and crop production optimization. In: 7th IEEE
International Symposium on Advanced Control of Industrial Processes
(AdCONIP), Vancouver, BC, Canada: IEEE, 2022; pp.36-41.

Wang B R, Li X, Xu M J, Wang L N. Research on improved partial format
MFAC greenhouse temperature control method based on low energy


https://doi.org/10.1080/19942060.2015.1061553
https://doi.org/10.1080/19942060.2015.1061553
https://doi.org/10.1016/j.agsy.2022.103388
https://doi.org/10.1016/j.jmgm.2020.107698
https://doi.org/10.13031/aea.13837
https://doi.org/10.1016/j.compag.2018.02.001
https://doi.org/10.1016/j.compag.2018.02.001
https://doi.org/10.1016/j.compag.2018.10.023
https://doi.org/10.1016/j.compag.2018.10.023
https://doi.org/10.5194/ms-11-299-2020
https://doi.org/10.3390/s20061756
https://doi.org/10.1007/s11063-020-10403-8
https://doi.org/10.1016/j.compag.2024.109284
https://doi.org/10.1016/j.compag.2020.105854
https://doi.org/10.1016/j.compag.2020.105854
https://doi.org/10.1016/j.apenergy.2021.117163
https://doi.org/10.3390/en13143647
https://doi.org/10.1016/j.compag.2005.08.005
https://doi.org/10.1016/j.compag.2005.08.005
https://doi.org/10.1016/j.compag.2023.108578
https://doi.org/10.1016/j.procs.2021.08.022
https://doi.org/10.1016/j.ifacol.2021.08.556
https://doi.org/10.1016/j.ifacol.2021.08.556
https://doi.org/10.1016/j.ifacol.2021.08.556
https://doi.org/10.1016/j.conengprac.2010.12.004
https://doi.org/10.1016/j.jclepro.2021.129172

136

October, 2024 Int J Agric & Biol Eng

Open Access at https://www.ijabe.org

Vol. 17 No. 5

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

consumption optimization. Computers and Electronics in Agriculture,
2024; 220: 108845.

Wang L N, Li X, Xu M J, Guo Z W, Wang B R. Study on optimization
model control method of light and temperature coordination of greenhouse
crops with benefit priority. Computers and Electronics in Agriculture,
2023;210: 107892.

Yan H F, Deng S S, Zhang C, Wang G Q, Zhao S, Li M, et al.
Determination of energy partition of a cucumber grown Venlo-type
greenhouse in southeast China. Agric Water Manage, 2023; 276: 108047.
Singhal R, Kumar R, Neeli S. Receding horizon control based on
prioritised multi-operational ranges for greenhouse environment regulation.
Comput Electron Agric, 2021; 180: 105840.

Prieto J, Ajnannadhif R M, Fernandez del Olmo P, Coronas A. Integration
of a heating and cooling system driven by solar thermal energy and
biomass for a greenhouse in Mediterranean climates. App. Therm Eng
2023;221: 119928.

Manonmani A, Thyagarajan T, Elango M, Sutha S. Modelling and control
of greenhouse system using neural networks. Trans Inst Meas Control,
2018; 40(3): 918-929.

Aly H H H. A novel deep learning intelligent clustered hybrid models for
wind speed and power forecasting. Energy, 2020; 213: 118773.

Chang C, Wang Q Y, Jiang J C, Wu T Z. Lithium-ion battery state of
health estimation using the incremental capacity and wavelet neural
networks with genetic algorithm. Journal of Energy Storage, 2021; 38:
102570.

Li B, Chen X F. Wavelet-based numerical analysis: A review and

[32]

[33]

[34]

[33]

[36]
[37]

[38]

[39]

classification. Finite Elements in Analysis and Design, 2014; 81: 14-31.
Dai W B, Wang L N, Wang B R, Cui X H, Li X. Research on WNN
greenhouse temperature prediction method based on GA. Phyton-
International Journal of Experimental Botany, 2022; 91(10): 2283-2296.
GeLJ,LiY L, Yan J, Wang Y Q, Zhang N. Short-term load prediction of
integrated energy system with wavelet neural network model based on
improved particle swarm optimization and chaos optimization algorithm.
Journal of Modern Power Systems and Clean Energy, 2021; 9(6):
1490-1499.

Du W D, Zhang Q Y, Chen Y P, Ye Z L. An urban short-term traffic flow
prediction model based on wavelet neural network with improved whale
optimization algorithm. Sustainable Cities and Society, 2021; 69: 102858.
Sharma V, Yang D, Walsh W, Reindl T. Short term solar irradiance
forecasting using a mixed wavelet neural network. Renewable Energy,
2016; 90: 481-492.

Mayne D Q. Model predictive control: Recent developments and future
promise. Automatica, 2014; 50(12): 2967-2986.

Biegler L T. A perspective on nonlinear model predictive control. Korean
Journal of Chemical Engineering, 2021; 38(7): 1317-1332.

Wang B R, Wang Y C, Huang J Q, Zeng Y X, Liu X L, Zhou K. Computed
torque control and force analysis for mechanical leg with variable rotation
axis powered by servo pneumatic muscle. ISA Transactions, 2023; 140:
385-401.

Chen L J, Du S F, He Y F, Liang M H, Xu D. Robust model predictive
control for greenhouse temperature based on particle swarm optimization.
Information Processing in Agriculture, 2018; 5(3): 329-338.


https://doi.org/10.1016/j.compag.2024.108845
https://doi.org/10.1016/j.compag.2023.107892
https://doi.org/10.1016/j.agwat.2022.108047
https://doi.org/10.1016/j.compag.2020.105840
https://doi.org/10.1016/j.applthermaleng.2022.119928
https://doi.org/10.1177/0142331216670235
https://doi.org/10.1016/j.energy.2020.118773
https://doi.org/10.1016/j.est.2021.102570
https://doi.org/10.1016/j.finel.2013.11.001
https://doi.org/10.35833/MPCE.2020.000647
https://doi.org/10.1016/j.scs.2021.102858
https://doi.org/10.1016/j.renene.2016.01.020
https://doi.org/10.1016/j.automatica.2014.10.128
https://doi.org/10.1007/s11814-021-0791-7
https://doi.org/10.1007/s11814-021-0791-7
https://doi.org/10.1016/j.isatra.2023.06.014
https://doi.org/10.1016/j.inpa.2018.04.003
https://www.ijabe.org

	1 Introduction
	2 Materials and methods
	2.1 Analysis and modeling of greenhouse environments
	2.2 NMPC controller design based on improved objective function
	2.2.1 An improved objective function based on tolerance intervals
	2.2.2 The improved NMPC controller design

	2.3 Controllers design of the contrast groups
	2.3.1 The MPC controller design
	2.3.2 The NMPC controller design


	3 Results and discussion
	4 Conclusions
	Acknowledgements
	References

