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Image recognition for crop diseases using a novel multi-attention module
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Abstract: Deep convolution neural networks constitute a breakthrough in computer vision. Based on this, the Convolutional
Neural Network (CNN) models offer enormous potential for crop disease classification. However, significant training data are
required to realize their potential. In the case of crop disease image recognition, especially with complex backgrounds, it is
sometimes difficult to acquire adequately labeled large datasets. This research proposed a solution to this problem that
integrates multi-attention modules, i.e., channel and position block (CPB) module. Given an intermediate feature map, the CPB
module can infer attention maps in parallel with the channel and position. The attention maps can then be multiplied to form
input feature maps for adaptive feature refinement. This provides a simple yet effective intermediate attention structure for
CNNs. The module is also lightweight and produces little overhead. Some experiments on cucumber and rice image datasets
with complex backgrounds were conducted to validate the effectiveness of the CPB module. The experiments included different
module locations and class activation map display characteristics. The classification accuracy reached 96.67% on the cucumber
disease image dataset and 95.29% on the rice disease image dataset. The results show that the CPB module can effectively
classify crop disease images with complex backgrounds, even on small-scale datasets, which providing a reference for crop
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disease image recognition method under complex background conditions in the field.
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1 Introduction

Traditionally, it has been necessary to turn to human experts to
diagnose plant anomalies caused by diseases, pests, nutritional
deficiencies, or extreme weather. However, this is expensive, time-
consuming, and frequently impractical'. At the same time,
identifying crop diseases can be a challenge for ordinary farmers
because there are too many different kinds of diseases with different
causes””, which often exceed their limited experience. This can
result in crops not being treated in time and environmental harm
through the misuse of drugs”. Therefore, the timely and correct
identification of crop diseases plays a vital role in ensuring
enhanced and sustainable agricultural productivity.

Computer vision technology based on machine learning, deep
learning, transfer learning, and attention mechanisms provides the
prospect for low-cost and contact-free automatic identification of
crop diseases”. Over the past few years, various vision-based
machine-learning techniques have come to be widely used in
agricultural disease -classification. Most are based on hand-
engineered features and intelligent algorithms. However, while
these methods have achieved good classification results, using hand-
crafted features generates an excessive waste of human and material
resources®. Due to the complexity of agricultural diseases, some
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features such as color, texture, shape, etc. have inter-class similarity
and intra-class differences, making it difficult to represent
information about diseases solely based on specific features, which
can easily have adverse effects on subsequent modeling.

Out of the options mentioned above, deep learning might seem
to offer one of the most promising ways forward. Deep learning was
first developed by Hinton et al. in 2006. It involves using an
algorithm based on artificial neural networks, which provide the
architecture for characterizing and learning data. One kind of deep
learning approach, deep Convolutional Neural Networks (CNNs),
has proven tremendously successful for crop classification tasks'™.
Here, a convolution-based method is used to extract image features,
resulting in a high-level fusion of semantics and deep feature
extraction®™. Mohanty et al.”’ have effectively used deep-learning
techniques to diagnose plant diseases. They used a public dataset
(PlantVillage) that contains 54 306 images of diseased and healthy
plant leaves. Their work is based on two popular architectures,
AlexNet"” and GoogLeNet!'l. These were originally designed for
the Scale Visual Recognition Challenge (ILSVRC) for the
ImageNet!"” dataset. Their approach delivered good classification
results for 14 crop species and 26 diseases in the Plant Village
dataset. However, deep learning is a supervised learning method"*.
As a result, especially in the studies of crop disease image
recognition, the modeling quality relies heavily on large batches of
labeled training samples'. The scale of agricultural disease image
data is often insufficient to directly support deep learning models
for training and often requires some data augmentation methods".
In addition, in agricultural contexts, the parameters for deep
learning models can become particularly complex because of the
diversity of crops and their diseases'‘.

Unlike traditional machine learning and deep learning, transfer
learning!"” provides a way of transferring learned knowledge to a
target domain to help train new models. Thus, even if the target
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domain lacks large-scale labeled datasets, it can still be effectively
modeled. This approach is especially effective when training
machine learning models with very limited training data®. Fang et
al."”! optimized a transfer learning method called Tradabost and
developed an example-based migration learning system to deal with
the lack of labeled training samples for agricultural disease image
recognition. Shi et al.”” used transfer learning to train a VGG net
model that can detect tomato diseases and pests. This achieved an
average classification accuracy of 8§9%. Jiang et al.*" improved the
VGG16 model based on the idea of multi-task learning and then
used the pre-training model on ImageNET for transfer learning and
alternating learning, achieving an accuracy of 97.22% for rice leaf
diseases and 98.75% for wheat leaf diseases. Liu et al.”” proposed
an improved network based on MobileNet V3 to identify cucumber
diseases from leaf images in natural scenes, and selected
PlantVillage and Apple Disease datasets for transfer learning,
achieving accuracy rates of 99.0% and 98.1%, respectively.
Unfortunately, while transfer learning can solve problems with
limited datasets, its modeling quality can be affected by several
factors, such as the quality of the dataset, the choice of the model
prototype, and negative transfer. Thus, the final results do not
always meet expectations, and there are still many problems in
transfer learning that need further research.

An alternative option is to use attention mechanisms. Visual
attention is a signal processing mechanism associated with human
vision, where people quickly scan a global image to acquire a target
area that needs to be focused. The basic idea of attention
mechanisms in computer vision is to adopt a similar method, where
irrelevant information is ignored and important information is
focused instead. This can be implemented in ways that can be
roughly divided into soft attention and hard attention™. Typical
examples of soft attention are spatial transformer networks®™,
residual attention networks®, and two-level attention®”. The
specific attention mechanism can be based on calculus and can be
trained by backpropagation. Hard attention involves predicting the
areas of concern and usually uses reinforcement learning for the
training process. These different attention mechanisms have only
been tested on large public datasets, and their research and
validation on small-sample agricultural datasets are relatively
limited. Some recent works, such as Feng et al.”?”and Zheng et al.™®,
have conducted preliminary studies, indicating that this method has
good potential research value.

Given the above issues, this study adopted a different approach.
It began by developing a dataset of crop disease images that
includes four cucumber diseases and four rice diseases. These were
captured in real-life agricultural conditions containing a lot of noise,
e.g., cluttered field backdrops and uneven illumination intensities.
With the limited manpower available, only about one thousand
pictures of each kind of disease were able to be acquired. If large-
scale deep CNNs were applied to the dataset rather than the popular
large datasets they usually work with (i.e., 10 000+ images), they
would quickly start overfitting the training data. To deal with this, a
novel multi-attention net structure with a channel and position block
(CPB) module has been developed, which combines channel and
spatial information that can express the features of crop diseases.
Different experiments were designed to verify the CPB model, the
impact of different positions on the accuracy of the CPB model, and
the robustness of the CPB model under small-sample conditions.
Three main contributions of this paper are as follows:

1) A mechanism removes dependence on the scale of the
annotated data during the deep learning modeling process without

needing the help of auxiliary datasets like in transfer learning;

2) An experimental approach to collecting crop disease images
in the field that does not need complex operations such as
background removal or spot segmentation;

3) A CPB module enables neural networks to achieve better
classification accuracy than some popular deep-learning models.

2 Materials and methods

2.1 Image acquisition

The dataset used here is part of the Image Database for
Agricultural Diseases and Pests (IDADP)™, which is collected by
the researchers of this study. The images were captured in a real
field environment using a digital single-lens reflex camera (Canon
EOS6D, Japan). Some requirements need to be met during image
acquisition. For example, the light needs to be uniform, the plane of
the crop organ needs to be perpendicular to the shooting angle, etc.
To experimentally test the approach of this study, 4210 cucumber
disease images and 3081 rice disease images were used, including
four cucumber diseases and four rice diseases. For the convenience
of subsequent data processing, each cucumber disease and rice
disease was put in one folder with the same class label. The
resolution of all images is 3000x2000 pixels. Figure 1 shows some
examples of crop diseases in the original target dataset. It can be
seen that most of the crop disease images in this study have
complex backgrounds.

Note: a. Cucumber corynespora target leaf spot, b. Cucumber powdery mildew,
c. Cucumber downy mildew, d. Cucumber anthracnose, e. Bacterial rice blight,
f. Rice blast, g. Rice sheath blight, h. Rice brown spot

Figure 1 Images of eight kinds of crop diseases

Table 1 lists the number of samples for the cucumber diseases,
and Table 2 lists the number for the rice diseases. It can be seen
that, compared to other deep learning datasets, the number of
samples in the dataset was small and the data distribution was
unbalanced. In each of the experiments described in this study, 90%
of the disease images were used for training and the remaining 10%
were used for testing. The task was to classify crop disease images
in the test set.

Table 1 Number of cucumber disease samples

Class Number
Cucumber corynespora target leaf spot 828
Cucumber powdery mildew 1011
Cucumber downy mildew 1089
Cucumber anthracnose 1282

Table 2 Number of rice disease samples

Class Number
Bacterial blight of rice 684
Rice blast 958
Rice sheath blight 611
Rice brown spot 828
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2.2 Image preprocessing

The flow of image preprocessing is shown in Figure 2. First,
the image was resized to 448x448 pixels and randomly flipped
horizontally to increase the diversity of the features. Random
horizontal flipping means a 50% chance of flipping and a 50%
chance of not flipping. The dataset itself is not expanded when
samples are selected randomly for flipping in the input phase. The
purpose of center clipping is to cut the picture with the specified
length and width starting from the center of the picture, to obtain the
original picture’s central part. However, the disease not only occurs
in the central part of the leaves but also some lesions are distributed
on the edge of the leaves. As a result, rather than using central
clipping, random clipping was employed. This ensured that some
leaf edge information was incorporated into the input features. The
cropping ratio was also very important for data processing. The
cropping ratio needs to remove a lot of background noise and retain
most of the features for the network to recognize. By decreasing the
size of the ratio by 5 percentage points at a time, it was found that
the effect was best when the image was randomly cut into 400x
400 pixels.

Original images

4
iz?;eoz Random lf;?gg(;i)n Covert to
i Normali
448x443 |™ horizontal |mp 400x400 |™| tensor  [mb| Normalize
; flip X format
pixels pixels

Figure 2 Flowchart of image preprocessing

In machine learning or deep learning, the loss calculation of
most models needs to assume that all data features are zero-mean
and have the same order of variance. In this way, when calculating
loss, all feature attributes can be processed uniformly. The image
was normalized, that is, the feature attributes of the data were
subtracted from the mean, divided by the variance, and converted to
a standard normal distribution with a mean of 0 and a variance of 1
so that the data has a reasonably regular distribution and greater
generality. At the same time, data normalization can also improve
the convergence speed of the network.

2.3 Multi-attention module

As shown in Figure 3, the proposed CPB module has two
parallel sub-modules: one for max-pooling channel attention, and
the other for position attention. The CPB module adaptively refines
the intermediate feature map in the residual convolution block of
the deep network.

|

| . |
| Channel attention v |

o TR —t— LR ®—-— nian—+—

| Cx1x1 |
| |
| Input features Output features |
| CxHxW |
| |

1xHxW

Position attention
Figure 3  Overview of the CPB module

In the CPB module, given an intermediate feature map
FER"™ ag input, where R is the feature matrix; C, H, and W are
the number of channels, the height of the feature map, and the width
of the feature map, respectively; and the CPB parallel structure
infers a one-dimensional max-pooling channel attention map
M. E RO,

M,ER"™". The complete attention mechanism process can be

and a two-dimensional position attention map

summarized as follows:

F, =M. (F) (1)
F,=M,(F) )
F =F Q®F, 3)
F'=F®&F 4)

where, ® denotes element-wise multiplication, F is the result of the
input features after the channel attention mechanism operation, F, is
the result of the input features after the spatial attention mechanism
operation, and F” is the result of the bitwise multiplication of F; and
F,. A broadcast mechanism is used during multiplication to ensure
the attention values are functional. The channel attention values are
copied from the spatial dimension, while the position attention
values are copied from the channel dimension. F"' is the final
extracted feature output. Figure 4 shows how each attention map is
calculated. The details regarding each attention module are
given below.

l HxWxC
e e
l 1x1xC Input feature J [ H>xw matrix |
FC+ReLu
| 1xaxene | HrsC
[ Average by channel |
! Ix1xc | HxWx1
l 1x1xC l HxWx1

a. Max-pooling channel attention b. Position attention

Figure 4 Calculation processes of the max-pooling channel
attention and the position attention

As shown in Figure 4, the channel sub-module produces max-
pooling outputs. These outputs pass through two fully connected
layers. The purpose of the pooling is to maintain some invariance
(rotation, translation, scaling, etc.). It results in a reduced number of
features and parameters, thus limiting the risk of overfitting. There
are two commonly used pooling methods: mean pooling and max
pooling. Mean pooling involves averaging the feature points in a
neighborhood. Max-pooling involves taking the largest feature point
in a neighborhood. Errors in feature extraction mainly arise in two
ways:

1) The estimation variance may increase due to the limited
neighborhood size;

2) Errors in the convolution layer parameters may result in a
mean shift in the estimation.

Generally speaking, mean-pooling addresses the first error and
retains more background information, while max-pooling addresses
the second error and retains more texture information. The cropped
dataset contained a lot of background noise, but the texture
information was necessary for disease detection. This study
therefore used max-pooling to optimize the network structure.

In the channel attention block, the inter-channel relationship
between features was exploited to generate a channel attention map.
Each channel of the initial feature map was treated as a feature
detector™. The of each feature channel was
automatically obtained by learning the loss. Then, using this as a
weight, useful features can be enhanced and irrelevant features (for
the current task) suppressed. In this way, it was possible to achieve
adaptive feature channel calibration. The channel’s attention
focused on what is important in an image.

importance
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Max-pooling was used to aggregate the spatial information.
This enabled more important clues about the distinctive features of
an object to be collected. The detailed operations involved in doing
this can described as follows: First, the spatial information in the
feature map was aggregated by using max-pooling operations. This
generated a single spatial context descriptor: F¢, . The descriptor
was then forwarded to two fully connected layers to produce the
channel attention map, M,E R“"". This encoded what needs to be
emphasized or suppressed. The channel attention can be computed
using the following formula:

Mechannel (F/) =0 (Wl (WO (F:max) )) (5)

where, o denotes the sigmoid function, W is the weight parameter
for the first fully connected layer, and ¥, is the weight parameter
for the second fully connected layer.

A position attention map was produced by integrating the inter-
spatial relationships between features. Unlike channel attention,
position attention focuses onwherethe most useful information
is in a given input image. This can then be combined with the
channel attention. In order to compute the position attention, the
input feature matrix was multiplied by a given matrix of the same
size, bit by bit. To highlight informationally useful areas, it was best
to apply pooling operations along the channel axis®. An average
pooling operation was therefore applied in this way to generate the
effective feature descriptors, M,ER""“. When the input matrix
was multiplied by a given matrix of the same size, it generated a
new feature: F, € R, The channel information of the new feature
map was then converged by using average pooling operations to
produce a 2D spatial attention map. In short, the position attention
can be computed as follows:

mposilion (F) = O—(FP) (6)

where, o denotes the sigmoid function; F” represents the result of
multiplying the input matrix by a given matrix of the same size.

When considering the basic network framework, ResNet has
five different depth structures in the official code of PyTorch, and
the depths are 18, 34, 50, 101, and 152, respectively. The depth of
the network refers to the number of layers that need to update
parameters through training, such as convolutional layers, fully
connected layers, etc. According to the type of Block, these five
types of ResNet can be divided into two categories: 1) based on
BasicBlock, the shallow network ResNetl8, 34 are composed of
BasicBlock, and 2) based on Bottleneck, the deep network
ResNet50, 101, 152 are composed of Bottleneck built. The
BasicBlock contains a residual branch and a short-cut branch, which
are used to transmit low-level information so that the network can
be trained very deeply. Bottleneck uses a 1x1 convolutional layer to
process inputs with a larger number of channels with a smaller
amount of parameters in a deeper network. The ResNetl8 and
ResNet50 structures are the classic structures in the ResNet series,
so these two network models were chosen for experimental
research.

Blocks are equivalent to building blocks; each layer is
constructed from several blocks, and the entire network is
composed of layers. Each ResNet network has four layers. Each
layer of a convolution neural network is an abstract representation
of an image. The higher the level, the more abstract the feature is. A
low-level convolutional layer aims to identify low-level features
such as curves and edges. A high-level convolutional layer then
extracts higher-level features, such as semicircles (a combination of
curves and edges) or rectangles (a combination of four edges). This

study needed to determine in which layer it would make the most
sense to add the CPB module. Figure 5 shows a schematic diagram
of its positional placement. The results regarding the block location’

s influence on model performance are in Section 3.3.
CPB CPB CPB CPB

Layerl  Layer2 Layer3 Layer4

Figure 5 Exploration of where the CPB module is added to the
ResNet network

The model structure resulting from using ResNetl8 as a
baseline is listed in Table 3, and the model structure resulting from
using ResNet50 as a baseline is listed in Table 4, where the value of
“FC+softmax” indicates the number of classifications. The output
size refers to the changed image size. The content in CPB-18 and
CPB-50 indicates the size of the convolution kernels and the
number of output channel convolution layers. FC is the abbreviation
of a fully connected layer. The output of the convolutional layer
represents the high-level features of the data. When the output can
be flattened and connected to the output layer, adding a fully
connected layer can often learn these nonlinear combined features

Table 3 CPB-18 network architecture

Layer Output Size CPB-18
Convl 200 %200 7% 7 stride 2
Max pooling 100 x 100 3% 3 stride 2
. . I1x1, 64
Residual unit +CPB 100 x 100 [ 3%3, 64 ] X2
. . 1x1, 128
Residual unit + CPB 5050 [ 3x3, 128 } X2
. . 1x1, 256
Residual unit 25%25 [ 3x3. 256 } X2
. . 1x1, 512
Residual unit 13x13 [ 3x3. 512 :| X2
Adaptive average pooling 1x1 7 X7 stride 1
FC+ softmax 4
Table4 CPB-50 network architecture
Layer Output Size CPB-50
Convl1 200 % 200 7 %7 stride 2
Max pooling 100 x 100 3% 3 stride 2
1x1, 64
Residual unit +CPB 100x 100 3x3, 64 | x3
1x1, 256
1x1, 128
Residual unit + CPB 5050 3x3, 128 | x4
1x1, 512
1x1, 256
Residual unit 25%25 3x3, 256 X6
1x1, 1024
1x1, 512
Residual unit 13x13 3x%x3, 512 x3
1x1, 2048
Adaptive average pooling 1x1 7 %7 stride 1
FC + softmax 4
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easily. ReLU is the most commonly used activation function in deep
learning model training. ReLU will make the output value of some
neurons 0, making the network sparse, reducing the interdepend-
ence of parameters, and alleviating the overfitting problem.

3 Results and discussion

3.1 Experimental settings

The CPB was evaluated by using it to classify images in the
cucumber and rice datasets. All the evaluated networks were
reproduced in the PyTorch framework to facilitate comparison. The
results for all of the experiments are reported below.

To evaluate the effectiveness of the final module, extensive
ablation experiments were first performed. Then it was verified that
the CPB could outperform all the baselines, thus demonstrating its
general applicability to the dataset across different architectures.
Tables 3 and 4 provide the details of having the CPB integrated
with ResNet18 and ResNet50 as examples. The CPB was put in the
first two residual modules of ResNetl18 and ResNet50, and then the
final classification was carried out.

To compare the effects of the CPB, the hyper-parameters were
standardized in all of the experiments. This study fully refers to
similar model designs in related literature and a series of
experiments based on this agricultural disease dataset and finally
unifies the hyper-parameters. The hyper-parameters are described in
Table 5. The model adopted the stochastic gradient descent (SGD)
optimization algorithm. The learning rate determined the update
speed of the weights. A high learning rate will cause the model to
skip the optimal solution, resulting in large shocks, increasing the
loss value, and reducing the accuracy. Combined with the data
parameter settings previously saved in the laboratory, it was set to
0.001 to ensure accurate results within an acceptable time. Dropout
rate can be used to prevent overfitting. According to the empirical
value, it was set to 0.5. When dropout was set to 0.5, the randomly
generated network structure was the most and the generalization
ability was the best. The cross-entropy loss function was often used
in the PyTorch deep learning framework for classification training.
Cross-entropy was mainly used to determine how close the actual
output was to the expected output. It was very useful when faced
with a training set with unbalanced samples. Accuracy was defined
as the ratio of all correctly classified samples to the total number of
samples, and this was used to evaluate the model’s performance.

Table 5 Hyper-parameters of the experiments

Hyper-parameter Value
Optimization algorithm SGD
Learning rate 0.001
Momentum 0.9
Weight decay le—4
Learning rate adjustment Multi Step LR ([10,20,30])
Epochs 40
Batch size 10
Dropout 0.5

Loss function Cross entropy loss function

Evaluation indicators Accuracy

3.2 CAM-based network visualization

Class activation mapping (CAM)" is a tool that can help with
visualizing CNNs by revealing their focal points. Therefore, CAM
visualization was used for the final convolution outputs. In Figure 6
and Figure 7, the busier regions are visible. The various classes’
discriminative regions of the images were also highlighted.

Observing which part of the image the neural network thought was
effective for classification prediction made it easier to assess
whether the module had played a useful role. The visualization
results were compared for a CBAM-integrated network in ResNet50
(ResNet50+CBAM)™ with those for a SENET-integrated network
(ResNet50+SENET)® and a CPB-integrated network (ResNet50+
CPB).

CBAM SENET

Original image

Cucumber
corynespora
target leaf
spot
Cucumber
powdery
mildew

Cucumber
downy
mildew

Cucumber
anthracnose

Figure 6 CAM visualization results of cucumber diseases under
different attention mechanisms

CBAM

Original image SENET CPB

Bacterial rice
blight

Rice blast 8

Rice sheath
blight

Rice brown
spot

Figure 7 CAM visualization results of rice diseases under
different attention mechanisms

Four images were selected that had been correctly classified by
the three methods mentioned above (i.e., CBAM net, SENET, and
CPB) from the disease validation dataset. Each category contained
two pictures. The red area in each image is the part containing
characteristic information that was used by the network. The blue
area is the part that was relatively unimportant for output prediction.
Compared with the other two attention networks, it can be seen
from the features that the CPB was better able to ignore the
background while extracting more essential information. This
means that the CPB module makes more effective use of the disease
characteristics in the data.

3.3 Location of the CPB module

Different CPB module positions produced different effects
during the experiments. CNN layers are not black boxes, and each
layer has its specific function. Shallow CNN filters detect the initial
features such as edge and color. The filters in the middle layer can
identify various texture patterns. When reaching the deeper layers,
the filters can detect patterns composed of basic features. Taking the
ResNet18 network as an example, the most suitable position of the
CPB module was explored in a neural network. The CPB module
was experimented with placing in the first two layers, the last two
layers, and all layers of ResNet18 to discover the most appropriate
position for prediction. This experiment was conducted on the
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cucumber dataset. The accuracy of the test set is shown in Figure 8.
The formula for calculating the accuracy is as follows:

Number of images classified accurately

Accuracy = (N

Total number of images in the test set

The accuracies of adding CPB module in the first two layers,
the last two layers, and all layers of ResNet18 are 96.15%, 94.36%,
and 91.54%, respectively. The experimental results show that the
module can extract enough feature information when placed in the
first two layers. Still, it leads to overfitting and poor generalizability
when placed in other positions. This means that the CPB module
uses a feature’s edge and color information, but that more abstract
information has an inhibitory effect.

°
\3‘ 100 299900000, 8890,850,,2089080%e°
g 9 gt

9 y
g soL \.’A ¥
g 701 —o—In the first two layers
g 60 In the last two layers
g 50 [ In all layers
=5 40
B 0 5 10 15 20 25 30 35 40

Epoch

Figure 8 Accuracy comparison of adding CPB modules in
different positions in ResNet18 on the cucumber dataset

3.4 Influence of different attention structures

To refine the design of the module, the impact of having
different numbers of attention channels was also compared. This
experiment was conducted on the cucumber dataset with ResNet18
as the basic model. The structure of the model is shown in Figure 9.
The input features were processed through a 3%3 convolution layer,
then an extra attention channel was extracted. Figure 10 shows the
effect of increasing the number of channels. It can be seen from
Figure 10 that increasing the number of attention channels does not,
by itself, make the module more effective. Thus, when using an
attention mechanism to enhance feature extraction, the appropriate
number of channels is important, and adding too many channels
does not bring better results.

| 3x3 H Additional channel attention ‘

S

Position attention

Input feature

Figure 9 Adding channel in the original CPB module

651 —+—One channel
60 r Two channels

0 5 10 15 20 25 30 35 40
Epoch

Validation accuracy/%
o]
(=}
<y
o

Figure 10 Experimental results of ResNet18 adding additional
channels on the cucumber dataset

3.5 Results of the disease recognition experiments

To further assess the impact of the CPB module, a series of
ablation experiments was conducted. ResNet50 and ResNet18 were
used as the basic models, and the CPB module, a SENET attention
mechanism, or a CBAM attention mechanism was added
respectively. Tables 6 and 7 list the outcome of these experiments in
terms of validation accuracy. Table 6 lists the recognition accuracy
of all models on the cucumber test dataset, and Table 7 lists the
recognition accuracy of all models on the rice test dataset. The CPB

model of this study produced the best results overall.
Table 6 Validation accuracy of the cucumber test dataset

Model Accuracy/%
ResNet50+CPB 96.67
ResNet18+CPB 96.15

ResNet18+SENET 95.90
ResNet50+SENET 95.90
ResNet50+CBAM 95.13
ResNet1§+CBAM 94.87
ResNet50 94.87
ResNet18 87.95

Table 7 Validation accuracy of the rice test dataset

Model Accuracy/%

ResNet50+CPB 95.29
ResNet50+CBAM 94.41
ResNet18+CPB 93.82
ResNet18+CBAM 93.24
ResNet50+SENET 92.94
ResNet1 8+SENET 92.82
ResNet50 92.35
ResNet18 91.18

Besides, to better evaluate the performance of CPB under the
condition of small samples, six datasets were constructed by
randomly selecting from the rice disease datasets, namely,
Dataset600, Dataset500, Dataset400, Dataset300, Dataset200, and
Dataset100, where the number of rice disease images in each dataset
is shown in Table 8. Similarly, in each dataset, 90% of the images
were used for training and the remaining 10% were used for testing.

Table 8 Datasets of different sizes

Dataset  Rice blast Rice sheath blight Rice brown spot Rice bacterial blight
Dataset600 600 600 600 600
Dataset500 500 500 500 500
Dataset400 400 400 400 400
Dataset300 300 300 300 300
Dataset200 200 200 200 200
Dataset100 100 100 100 100

The model ResNet50+CPB with the best performance in the
above experiments was used. The results are shown in Table 9. It
can be seen that the proposed method can still maintain good
classification performance even as the dataset size gradually
decreases.

Table 9 Experimental results on datasets of different sizes

Dataset Accuracy/%
Dataset600 95.00
Dataset500 95.00
Dataset400 93.75
Dataset300 93.33
Dataset200 93.75
Dataset100 95.00

4 Conclusions

This study proposed a novel multi-attention CPB module that

can improve the representational power of attention-based
networks. When applied to crop disease images collected in the
field, it can obviate the need for complex operations such as
background removal and spot segmentation.

The CPB-based method was adopted for feature refinement and

achieved significant performance improvements without additional
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overhead. It is recommended to use max-pooled features for the
module’s channel attention and position attention components. Its
performance can be further improved by connecting the two
attention components in parallel. Due to the small number of image
samples available, the CPB module was put in the first two residual
blocks of the network. This enabled it to extract the required
features while avoiding overfitting. The final CPB learned where
and what to focus on in a disease image to extract intermediate
features effectively.

To verify the capability of the CPB module, extensive
experiments were conducted with various models using cucumber
and rice disease datasets with significant differences in disease

characteristics. The results confirmed that the model could

outperform other attention-based approaches.

This work will continue to be pursued along the following
lines: 1) the testing of more agricultural datasets; 2) ongoing
optimization and improvement of the CPB module, so that it can be
loaded into other basic classification models for testing; and
3) integrating with multimodal technology to further enhance the
performance of attention mechanisms.

Acknowledgements

This work was financially supported by the National Natural
Science Foundation of China (Grants No. 32271981, No. 32071901)
and the database in the National Basic Science Data Center (No.
NBSDC-DB-20).

[References]

[1] Ngugi L, Abelwahab M, Abo-Zahhad M. Recent advances in image
processing techniques for automated leaf pest and disease recognition-A
review. Information Processing in Agriculture, 2021; 8(1): 27-51.

[2] Kasinathan T, Singaraju D, Uyyala S R. Insect classification and detection
in field crops using modern machine learning techniques. Information
Processing in Agriculture, 2021; 8(3): 446-457.

[3] ChenJ D, Chen J X, Zhang D F, Nanehkaran Y A, Sun Y D. A cognitive
vision method for the detection of plant disease images. Machine Vision
and Applications, 2021; 32(1): 31.

[4] Wells IIl W M. Medical image analysis - past, present, and future. Medical
Image Analysis, 2016; 33: 4-6.

[5] WanlJ, Wang D Y, Hoi S C H, Wu P C, Zhu J K, Zhang Y D, et al. Deep
learning for content-based image retrieval: A comprehensive study. In:
Proceedings of the 22nd ACM International Conference on Multimedia,
2014; pp.157-166. doi: 10.1145/2647868.2654948.

[6] Hinton G E, Salakhutdinov R R. Reducing the dimensionality of data with
neural networks. Science, 2006; 313(5786): 504-507.

[7] Picon A, Alvarez-Gila A, Seitz M, Ortiz-Barredo A, Echazarra J, Johannes
A. Deep convolutional neural networks for mobile capture device-based
crop disease classification in the wild. Computers and Electronics in
Agriculture, 2019; 161: 280-290.

[8] ShiZF,LiH, CaoQJ,RenH Z, Fan B Y. An image mosaic method based
on convolutional neural network semantic features extraction. Journal of
Signal Processing Systems, 2020; 92(4): 435-444.

[9] Mohanty S P, Hughes D P, Salathé M. Using deep learning for image-
based plant disease detection. Frontiers in Plant Science, 2016; 7: 1419.

[10] Arya S, Singh R. A comparative study of CNN and AlexNet for detection
of disease in potato and mango leaf. In: Proceedings of 2019 International
Conference on Issues and Challenges in Intelligent Computing Techniques
(ICICT), Ghaziabad: IEEE, 2019; pp.1-6. doi: 10.1109/ICICT46931.2019.
8977648.

[11] Szegedy C, Liu W, Jia Y Q, Sermanet P, Reed S, Anguelov D, et al. Going
deeper with convolutions. In: 2015 IEEE Conference on Computer Vision
and Pattern Recognition, Boston, 2015; pp.1-9. doi: 10.1109/
CVPR.2015.7298594.

[12] Russakovsky O, Deng J, Su H, Krause J, Satheesh S, Ma S, et al. Imagenet
large scale visual recognition challenge. International Journal of Computer
Vision, 2015; 115(3): 211-252.

[13] Yuan Y, Chen L, Wu H R, Li L. Advanced agricultural disease image

[14]

[13]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

B31]

[32]

[33]

[34]

recognition technologies: A review. Information Processing in Agriculture,
2022; 9(1): 48-59.

Yuan'Y, Chen L, Ren Y C, Wang S M, Li Y. Impact of dataset on the study
for crop disease image recognition. Int J Agric & Biol Eng, 2022; 15(5):
181-186.

Yang L, Yu X Y, Zhang S P, Long H B, Zhang H H, Xu S, et al.
GoogLeNet based on residual network and attention mechanism
identification of rice leaf diseases. Computers and Electronics in
Agriculture, 2023; 204: 107543.

Loey M, ElSawy A, Afify M. Deep learning in plant diseases detection for
agricultural crops: A survey. International Journal of Service Science,
Management, Engineering, and Technology, 2020; 11(2): 41-58.

Dai W, Yang Q, Xue G, Yu Y. Boosting for transfer learning. In:
Proceedings of the 24th International Conference on Machine Learning,
2007; pp.193-200.

Pan S J, Yang Q. A survey on transfer learning. IEEE Transactions on
Knowledge and Data Engineering, 2009; 22(10): 1345-1359.

Fang S S, Yuan Y, Chen L, Zhang J, Li M, Song S D. Crop disease image
recognition based on transfer learning. In: Proceedings of International
Conference on Image and Graphics, 2017; pp.545-554. doi: 10.1007/978-3-
319-71607-7_48.

Jia S J, Jia P J, Hu S P, Liu H B. Automatic detection of tomato diseases
and pests based on leaf images. In: Proceedings of 2017 Chinese
Automation Congress (CAC), Jinan: IEEE, 2017; pp.2537-2564. doi:
10.1109/CAC.2017.8243388.

Jiang Z C, Dong Z X, Jiang W P, Yang Y Z. Recognition of rice leaf
diseases and wheat leaf diseases based on multi-task deep transfer learning.
Computers and Electronics in Agriculture, 2021; 186: 106184.

Liu Y M, Wang Z L, Wang R J, Chen J S, Gao H J. Flooding-based
MobileNet to identify cucumber diseases from leaf images in natural
scenes. Computers and Electronics in Agriculture, 2023; 213: 108166.
Zhao B, Wu X, Feng J S, Peng Q, Yan S C. Diversified visual attention
networks for fine-grained object classification. IEEE Transactions on
Multimedia, 2017; 19(6): 1245-1256.

Jaderberg M, Simonyan K, Zisserman A. Spatial transformer networks. In:
Proceedings of the 28th International Conference on Neural Information
Processing Systems, Cambridge, MA, USA: MIT Press, 2015;
pp.2017-2025.

Wang F, Jiang M Q, Qian C, Yang S, Li C, Zhang H, et al. Residual
attention network for image classification. In: 2017 IEEE Conference on
Computer Vision and Pattern Recognition, Honolulu, 2017; pp.6450-6458.
doi: 10.1109/CVPR.2017.683.

Xiao T J, Xu Y C, Yang K Y, Zhang J X, Peng Y X, Zhang Z. The
application of two-level attention models in deep convolutional neural
network for fine-grained image classification. In: 2015 IEEE Conference
on Computer Vision and Pattern Recognition, Boston, 2015; pp.842—850.
doi: 10.1109/CVPR.2015.7298685.

Feng S, Zhao D X, Guan Q, Li J P, Liu Z Y, Jin Z Y, et al. A deep
convolutional neural network-based wavelength selection method for
spectral characteristics of rice blast disease. Computers and Electronics in
Agriculture, 2022; 199: 107199.

Zheng J Y, Li K'Y, Wu W B, Ruan H J. RepDI: A light-weight CPU
network for apple leaf disease identification. Computers and Electronics in
Agriculture, 2023; 212: 108122.

Chen L, Yuan Y. Agricultural disease image dataset for disease
identification based on machine learning. In: Proceedings of International
Conference on Big Scientific Data Management, 2018; pp.263-274.

Zeiler M, Fergus R. Visualizing and understanding convolutional networks.
In: Proceedings of the European Conference on Computer Vision, 2014;
pp.818-833.

Komodakis N, Zagoruyko S. Paying more attention to attention: Improving
the performance of convolutional neural networks via attention transfer. In:
Proceedings of International Conference on Learning Representations,
2017; pp.1-13.

Zhou B L, Khosla A, Lapedriza A, Oliva A, Torralba A. Learning deep
features for discriminative localization. In: 2016 IEEE Conference on
Computer Vision and Pattern Recognition, Las Vegas, 2016;
pp.2921-2930. doi: 10.1109/CVPR.2016.319.

Woo S, Park I, Lee J-Y, Kweon I S. CBAM: Convolutional block attention
module. In: Proceedings of the European Conference on Computer Vision,
2018; 11211: 3-19.

Hu J, Shen L, Albanie S, Sun G, Wu E H. Squeeze-and-excitation
networks. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 2018; 42(8): 2011-2023.


https://doi.org/10.1016/j.inpa.2020.04.004
https://doi.org/10.1016/j.inpa.2020.09.006
https://doi.org/10.1016/j.inpa.2020.09.006
https://doi.org/10.1007/s00138-020-01150-w
https://doi.org/10.1007/s00138-020-01150-w
https://doi.org/10.1016/j.media.2016.06.013
https://doi.org/10.1016/j.media.2016.06.013
https://doi.org/10.1145/2647868.2654948
https://doi.org/10.1126/science.1127647
https://doi.org/10.1016/j.compag.2018.04.002
https://doi.org/10.1016/j.compag.2018.04.002
https://doi.org/10.1007/s11265-019-01477-2
https://doi.org/10.1007/s11265-019-01477-2
https://doi.org/10.3389/fpls.2016.01419
https://doi.org/10.1109/ICICT46931.2019.8977648
https://doi.org/10.1109/ICICT46931.2019.8977648
https://doi.org/10.1109/CVPR.2015.7298594
https://doi.org/10.1109/CVPR.2015.7298594
https://doi.org/10.1007/s11263-015-0816-y
https://doi.org/10.1007/s11263-015-0816-y
https://doi.org/10.1016/j.inpa.2021.01.003
https://doi.org/10.25165/j.ijabe.20221505.7005
https://doi.org/10.1016/j.compag.2022.107543
https://doi.org/10.1016/j.compag.2022.107543
https://doi.org/10.4018/IJSSMET.2020040103
https://doi.org/10.4018/IJSSMET.2020040103
https://doi.org/10.1109/TKDE.2009.191
https://doi.org/10.1109/TKDE.2009.191
https://doi.org/10.1007/978-3-319-71607-7_48
https://doi.org/10.1007/978-3-319-71607-7_48
https://doi.org/10.1007/978-3-319-71607-7_48
https://doi.org/10.1007/978-3-319-71607-7_48
https://doi.org/10.1007/978-3-319-71607-7_48
https://doi.org/10.1007/978-3-319-71607-7_48
https://doi.org/10.1007/978-3-319-71607-7_48
https://doi.org/10.1007/978-3-319-71607-7_48
https://doi.org/10.1007/978-3-319-71607-7_48
https://doi.org/10.1109/CAC.2017.8243388
https://doi.org/10.1016/j.compag.2021.106184
https://doi.org/10.1016/j.compag.2023.108166
https://doi.org/10.1109/TMM.2017.2648498
https://doi.org/10.1109/TMM.2017.2648498
https://doi.org/10.1109/CVPR.2017.683
https://doi.org/10.1109/CVPR.2015.7298685
https://doi.org/10.1016/j.compag.2022.107199
https://doi.org/10.1016/j.compag.2022.107199
https://doi.org/10.1016/j.compag.2023.108122
https://doi.org/10.1016/j.compag.2023.108122
https://doi.org/10.1109/CVPR.2016.319
https://doi.org/10.1007/978-3-030-01234-2_1
https://doi.org/10.1109/TPAMI.2019.2913372
https://doi.org/10.1109/TPAMI.2019.2913372
https://www.ijabe.org

	1 Introduction
	2 Materials and methods
	2.1 Image acquisition
	2.2 Image preprocessing
	2.3 Multi-attention module

	3 Results and discussion
	3.1 Experimental settings
	3.2 CAM-based network visualization
	3.3 Location of the CPB module
	3.4 Influence of different attention structures
	3.5 Results of the disease recognition experiments

	4 Conclusions
	Acknowledgements
	References

