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Abstract: Nowadays, China stands as the global leader in terms of potato planting area and total potato production. The rapid
and nondestructive detection of the potato quality before processing is of great significance in promoting rural revitalization and
augmenting farmers’ income. However, existing potato quality sorting methods are primarily confined to theoretical research,
and the market lacks an integrated intelligent detection system. Therefore, there is an urgent need for a post-harvest potato
detection method adapted to the actual production needs. The study proposes a potato quality sorting method based on cross-
modal technology. First, an industrial camera obtains image information for external quality detection. A model using the
YOLOVS5s algorithm to detect external green-skinned, germinated, rot and mechanical damage defects. VIS/NIR spectroscopy
is used to obtain spectral information for internal quality detection. A convolutional neural network (CNN) algorithm is used to
detect internal blackheart disease defects. The mean average precision (mAP) of the external detection model is 0.892 when
intersection of union (IoU) = 0.5. The accuracy of the internal detection model is 98.2%. The real-time dynamic defect
detection rate for the final online detection system is 91.3%, and the average detection time is 350 ms per potato. In contrast to
samples collected in an ideal laboratory setting for analysis, the dynamic detection results of this study are more applicable
based on a real-time online working environment. It also provides a valuable reference for the subsequent online quality testing
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of similar agricultural products.
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1 Introduction

Potatoes rank as the fourth most significant global food crop in
terms of production volume'. In 2020, China’s potato production is
130 million t, accounting for 24.91% of global production. Potatoes
require 30% less water for cultivation compared to rice, yet
exhibiting higher yields per hectare. Additionally, potatoes are well-
suited to thrive in adverse environments, including arid and alpine
regions. However, the presence of defects such as mechanical
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damage, rot, germination, green-skin and internal black heart
disease can significantly diminish the economic value of potatoes.
Therefore, the development of intelligent testing equipment capable
of comprehensively detecting both internal and external defects in
potatoes holds immense significance in safeguarding food security,
alleviating resources and environment pressures and promoting
farmers’ income and agricultural development in China.
Nondestructive detection technology has gained widespread
utilization in agricultural products detection,
of high

compared with the traditional manual detection techniques.

owing to its
advantages repeatability, high detection efficiency
Machine vision technology is widely used in the external
nondestructive detection of agricultural products. For instance, Jin
et al.”! used area thresholding and black ratio thresholding methods
to identify defects in potatoes, with better results for mechanical
damaged defects. Ebrahimi et al.’’ identified the green-skinned
defects of potatoes through color cameras and compared the
characteristics of different bands of RGB for defects identification.
Barnes et al.”! employed machine learning algorithm to identify
potato defects with an accuracy rate of over 89.5%. Elmasry et al."”
classified irregular potatoes to sort out malformed potatoes. With
the increasing advancements in deep learning research, scholars
have started using deep learning techniques for defect detection in
agricultural products. Oppenheim et al.! developed a CNN model
to classify four categories of potato disease defects. Elsharif et al.l”
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focused on classifying potatoes of different colors (red, red washed,
sweet, and white). Chen et al.® used migration learning for rice
disease detection, achieving an average accuracy of 98.63% for
identification. Zhao et al.”’ used CNN models to classify six types
of soybean seeds and the classification accuracy was 98.87%.
Ramos et al."” used the VGG19 network model to classify the grape
ripeness, achieving a maximum accuracy of 93.41%. Additionally,
machines for sorting garlic!"', pistachios!” and pomegranate seeds!”
are currently available. Most scholars use classification models to
classify agricultural products’ shape defects and colors. However, in
defect detection, the classification model can only identify the class
of the whole image, and may not accurately identify the specific
location of small defects, leading to unrecognized situations. On the
other hand, employing object detection methods, such as using
anchor boxes, can accurately locate the location of defects, which
can improve the accuracy of defect detection in potatoes.

Many researchers have also conducted in-depth research on
internal nondestructive detection of agricultural products. Hajjar et
al." used MRI to study internal defects in potato tubers. Sosa et
al."™ used X-ray fluorescence spectrometry to estimate iron and zinc
concentrations in potato tubers. Hyperspectral imaging technology
has also been used by several scholars for defect detection in
agricultural products!®'®. However, MRI and X-ray technology are
associated with high costs, and hyperspectral imaging technology
requires a large amount of data and a long calculation time, which is
difficult to use for online detection. In contrast, VIS/NIR
spectroscopy has emerged as a promising technique for
nondestructive detection of agricultural products, such as oranges!,
apples®™, root vegetables”!, lemons®, pears®, and drupe?*.
VIS/NIR spectroscopy offers advantages such as fast detection
speed and minimal equipment requirements, making it well-suited
for potato internal quality detection®”. For instance, Zhou et al.*
investigated the feasibility of wusing VIS/NIR transmission
spectroscopy in the 513-850 nm region combined with PLS-LDA
for the classification of blackhearted potatoes, achieving an
accuracy of 96.53% in the test set. However, it should be noted that
the accuracy was determined in a laboratory setting and serves as a
reference for online detection.

The above analysis indicates that machine vision technology is
effective in detecting the external quality of potatoes but cannot
reflect the internal quality information. VIS/NIR spectroscopy
technology can accurately characterize the internal quality of
potatoes but may have limitations in reflecting the external quality.
To overcome these limitations, researchers have studied Data fusion
techniques by combining image-based and spectroscopy-based
approaches. Song et al.” utilized near-infrared spectroscopy and
computer vision systems to evaluate the flavor and appearance
quality of tea. The accuracy of the test set increased from 98.57% to
100% when features from multiple sensors were used. Yu et al.™”!
used machine vision technology to locate wood defects and used
near-infrared spectroscopy to obtain spectra data for defect
detection. Furthermore, image-spectroscopy fusion has been
explored in other applications such as fish freshness detection”' and
foreign contaminants detection in food"™.

Therefore, it is feasible to design a method for potato defect
detection by integrating machine vision and VIS/NIR spectroscopy.
This study employs deep learning and spectral analysis to achieve
rapid and nondestructive detection of the external quality problems
such as green-skin, germination, rot, mechanical damage, as well as
internal quality problems like blackheart disease in potatoes. In this
work, an online flow line sorting system is developed to efficiently

eliminate potato defects.

The organization of this paper is outlined as follows: The first
part discusses the methods used to achieve nondestructive detection
of internal and external potato defects. The second part introduces
the design of hardware system, the acquisition of data set, the
utilization of relevant algorithms for internal and external potato
defect detection and the establishment of verification standards. The
third part presents the results of the algorithm experiments and their
application in the actual production line. In the algorithm
experiment part, various comparative experiments are conducted,
and the results are comprehensively evaluated and analyzed. Lastly,
a summary is presented in the fourth part.

2 Materials and methods

2.1 Experimental samples
2.1.1 Defective samples

Potatoes are susceptible to various forms of damage during
their growth and harvesting stages, leading to significant
degradation in fruit quality. The experimental potato samples
utilized in this study were purchased from local farmers’ markets.
The selection of five specific types of defects for this experiment is
in accordance with relevant national industry standards®™!. Figure 1
shows the sample of these defects. It is worth noting that the sample
of different degrees of black heart disease are cut for display and
whole potatoes are used in actual online production. Defects are
defined as follows.

Germinated defects: Germinated defects are characterized by
the presence of visible germs on the surface of potatoes, which can
result in the production of solanine, a harmful compound for
humans.

Mechanical damage defects: Mechanical damage defects occur
due to deep cracks in the flesh of potatoes caused by external
mechanical stimulation during harvesting, increasing the risk of
internal tissue infection.

Rot defects: Rot defects manifest as areas of wet rot on the
potato surface following mechanical damage.

Green-skinned defects: Green-skinned defects are caused by
exposure of potatoes to sunlight, diffused light, or other sources of
light, resulting in the development of green coloration in the
epidermis and flesh.

Internal blackheart disease defects: Internal blackheart disease
defects occur due to anaerobic respiration in an oxygen-deficient
environment, leading to internal tissue rot and blackening.

To augment the availability of samples for the study, artificial
methods were employed to induce certain defects in potatoes that
may be difficult to procure directly from the market. For example,
green-skinned defects were obtained by exposing potatoes to light.
After the surface of these potatoes were intentionally damaged, they
were placed in the black plastic bags and cultured for several days
in a humid environment at room temperature to induce germination
and rot. To simulate internal defects, potatoes were washed and
individually sealed in plastic bags and then subjected to a
temperature of 38°C-40°C. After 24-36 h, symptoms of slight
blackheart disease appeared while moderate and severe blackheart
disease potatoes were cultivated for 48-72 h. This approach
facilitated the acquisition of samples with varying degrees of
blackheart disease, thereby expanding the dataset for the study.

2.1.2  Samples collection platform

As is shown in Figures 2a and 2b, a comprehensive data
acquisition setup comprising of an image data acquisition platform
and a spectral data acquisition platform was established to capture
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external image data and internal spectral data of potatoes. The

image data acquisition system uses an industrial camera (MV-
CE050-30UC, HIKVISION, Hangzhou, China) with a 16 mm fixed-
focus lens and white LED ring light source (DRL-170-45-W, HZN
Automation Technology Co., Shanghai, China). The spectral data
acquisition system uses a spectrometer with a slit width of 100 ym
(FLAS5000, Fight Technology Co., Hangzhou, China) and a 600 ym
optic

core diameter of fiber (FIB-600-NIR, IdeaOptics

Technologies, Shanghai, China) to measure the spectral range of
200-1100 nm. A halogen lamp is used as a light source (50 W,
Philips Lighting NV, Shanghai, China). In Figure 2a, a camera is
positioned on top of the potato to acquire image data of the upper
surface. In Figure 2b, the fiber optic is placed on opposite side to
the spectrum to obtain the VIS/NIR transmission spectrum of the

potato.

a. Germinated b. Mechanical damage

c. Rot d. Green-skinned

e. Different degrees of blackheart disease
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Figure 2 Data acquisition platform and building datasets

2.1.3 Potatoes data collection
To enhance the robustness of the model, the following three
considerations are considered during the production of the potato

image dataset:
1) Color features. The surfaces of defective potatoes exhibit
distinct colors, with green-skinned defects appearing as green, blue-
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green, or gray-green, rot defects appearing as gray or gray-black
and germinated defects appearing as white or dark-green. Therefore,
accurate color representation is crucial for locating and identifying
potato defects. To ensure color fidelity, the white balance of the
industrial camera was calibrated prior to image acquisition.

2) Distance impact. The shooting distance can significantly
affect the size of potatoes in the acquired images, as well as the size
of the defects in the images. This is particularly relevant for small
defects such as germinated defects. To account for this, the height
of the camera holder is adjusted to obtain potato images from
different shooting distances.

3) Light impact. Different illumination conditions can result in
variations in the imaging effects. Therefore, the dataset is expanded
by modifying the exposure time of the industrial camera to simulate
different lighting conditions, thereby adapting the model to more
lighting conditions.

The experiment involved 2307 images of potatoes, each of
which was meticulously annotated with rectangular bounding boxes
to delineate the areas of defects using the Colabeler labeling tool as
exemplified in Figure 2c. The defects were comprehensively
labeled, with a total of 2389 defects labeled as germinated defects,
accounting for 53.2% of the dataset; 700 defects are labeled as
mechanical damage, accounting for 15.6% of the dataset; 776
defects are labeled as rot, accounting for 17.3% of the dataset; 623
instances are labeled as green-skinned, accounting for 13.9% of the
dataset.

The spectrometer was powered on and allowed to preheat for a
duration of 30 min to ensure stable performance. Subsequently, the
original spectral data was acquired using the spectrometer, with the
integral time set to 80 ms and the number of spectral smoothing
frequency set to 3. To reduce interference in the data, the
acquisition wave band is carefully chosen as 500-900 nmP*.
Spectral data is collected at different locations and angles of
potatoes, and 280 samples of normal potatoes and 280 samples of
black heart potatoes are collected. Representative spectral data
points are illustrated in Figure 2d, with wavelength depicted on the
horizontal axis and relative irradiance on the vertical axis. The

spectral data of potatoes containing blackheart disease is depicted
by the yellow curve, while the spectral data of normal potatoes is
represented by the blue curve. Notably, discernible differences
between the spectral data of potatoes with internal defects and
healthy potatoes can be observed around 700 nm. The acquired
spectral data, along with their corresponding class labels, were
compiled to create a comprehensive dataset for subsequent
development of a non-destructive detection model.
2.2 Relative algorithms
2.2.1 External detection algorithm

The YOLOVS object detection algorithm is employed to detect
external defects in potato images. The fundamental concept of the
YOLO framework involves taking the entire image grid as input
and use a convolutional network to obtain bounding box confidence
and class probability of multiple candidate bounding box. Currently,
YOLO series models have progressed from YOLOvl (2016) to
YOLOvV5 (2020). YOLOV5 boasts several advantages, including
high detection accuracy, efficient detection speed and a compact
model size with fewer parameters. Compared to YOLOvV3 and
YOLOv4, YOLOvV5 has been demonstrated to achieve superior
accuracy in detecting mold and other defects on food surfaces™.

The YOLOVS network architecture comprises input, backbone,
neck network and head components, as illustrated in Figure 3. On
the input terminal, YOLOvVS5 employs mosaic data augmentation,
adaptive anchoring and adaptive image scaling techniques. Mosaic
data augmentation enhances the detection performance of small
objects. The adaptive anchor frame method adaptively calculates the
optimal anchor frame values for different training sets during
training and adaptive image scaling reduces the computational
effort of model inference, resulting in a significant improvement in
detection speed. The backbone network layer is a convolutional
neural network that aggregates and extracts image features at
different fine-grained levels, composed of FOCUS, CBL, CSP1 X
and other modules. The neck network layer mainly mixes and
combines a series of image features and passes them to the
prediction layer, which consists modules of CBL, upsampling,
CSP2 X and other modules. The head terminal mainly generates the
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Figure 3 ' YOLOVS network structure diagram
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bounding box and predicts the category for the image features, and
this part uses GloU Loss as the loss function of the bounding box.
YOLOVS5 include several variants, including YOLOVSs,
YOLOv5m, YOLOvVS5], and YOLOv5x. These variants share a
consistent backbone, neck, and head architecture, with the main
differences lying in the number of feature extraction modules and
convolutional sums at specific locations (Table 1). Due to the
increase in the number of feature extraction modules and

convolution sums, YOLOvVS] and YOLOvVS5x have more parameters.

Although the detection accuracy of them is improved, the detection
speed will be affected in the online detection. YOLOvVSs and
YOLOv5m require fewer model parameters, resulting in faster
algorithm execution during actual detection, making them more
suitable for real-world scenarios. The model accuracy can be further
improved with an increase in the subsequent sample dataset,
compensating for any potential loss in choosing a smaller parameter
model. Considering this, this study employs YOLOv5s and
YOLOvV5m models for comparison of results.

Table 1 Comparison of different YOLOvVS model network depths

Model Backbone: CPS1_X Neck: CSP2_X
First Second Third First Second Third Fourth Fifth
YOLOVS5s CSP1_1 CSP1_3 CSP1_3 CSP2_1 CSP2_1 CSP2_1 CSP2_1 CSP2_1
YOLOvV5Sm CSP1_2 CSP1_6 CSP1_6 CSP2 2 CSP2 2 CSP2 2 CSP2 2 CSP2 2
YOLOVS5I CSP1_3 CSP1_9 CSP1.9 CSP2_3 CSP2_3 CSP2 3 CSP2_3 CSP2_3
YOLOv5x CSP1_4 CSP1_12 CSP1_12 CSP2 4 CSP2 4 CSP2 4 CSP2 4 CSP2 4

222

In the context of detecting internal potato defects, deep
learning algorithms are employed due to their ability to
automatically learn data features from large inputs and their

Internal detection algorithm

computational efficiency.

In this study, the detection of internal defects is formulated into
a binary classification problem and two models, Model 1 and Model
2, are developed for comparison: Model 1 is a one-dimensional
convolutional neural network(1D-Conv), inspired by the work of
Rong et al.b¥ and Model 2 is a fully connected neural network

(FCN). The structure diagram of these models is shown in Figure 4.
The 1D-Conv model incorporates three convolutional layers with
batch normalization (BN) layers to mitigate gradient vanishing and
three blocks (1D-Conv average pool, BN) to extract deep feature
from the input spectral variables, which are one-dimensional
features. The classifier output unit, consisting of global average
pooling and sigmoid layers, is used for the identification of internal
defects. Model 2 consists of an input layer, multiple hidden layers
and an output layer with sigmoid activation functions. Both of two
models use the Adamax optimizer.
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2.3 Hardware and software design
2.3.1 Hardware system

To be close to a real-world production environment, an
industrialized flow line is built. The system consists of a transport
conveyor, a spectral data acquisition system, an image data
acquisition system and a sorting system. The hardware setup used in
the study is consistent with the description in Section 2.1.2. The
operational process of the hardware system is shown in Figure 5a.
Potatoes are placed on pallets and conveyed along the flow line
when the system is running. The camera and spectrometer will be
triggered by infrared sensors when the potato reaches the designated
location. Then the software system obtains the image and spectral
information and employs the developed algorithms to analyze the
potatoes for the presence of defects. Based on the determination, the
potatoes are sorted into different channels.

]

1 I

H I

1 ! Spectral data

: acquisition

Image data
acquisition

......... —»! | Use .onnx model file

2.3.2  Software system

The software system is developed using the C" language and
Qt Creator, based on the Qt framework and serves as the control
interface for the entire system. OpenCV, an open-source computer
vision library (version 4.5.2), is used to facilitate the operations of
images®”. In this study, functions of OpenCV are used for image
processing on the acquired images and the deep learning models are
loaded using the DNN module. The algorithmic workflow is
depicted in Figure S5b. Firstly, the region of interest (ROI) of a
potato in the image is identified. If no ROI is found, it indicates that
the pallet does not contain a potato, and the model algorithm does
not proceed. If an ROI is detected, the trained YOLOvSs model is
loaded for image information detection, and the CNN model is
loaded for spectral> information detection. Based on the model
results, a comprehensive judgment is made to determine the
presence of defects.

l Algorithm operation process l

Get potato ROI

' Spectral data
' l
: Use .pb model file
i i
[
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Figure 5 System operation and algorithm process flow

2.4 Experimental setup
2.4.1 Implementation details

A computer with an Intel® CPU i9-10900K @3.7GHz
processor, 32GB of RAM, and NVIDIA GeForce RTX 3060 12GB
is used in the deep learning network model training of this study.
Python3.8 was used as the main programming language. A
computer with an AMD Ryzen 9 4900HS @3.00GHz processor,
16GB of RAM, and NVIDIA GeForce RTX 2060 6GB is used to
run the software system.
2.4.2 Model evaluation metrics

In order to provide a comprehensive evaluation of the model
performance, a confusion matrix is used in this study. TP, FN, FP,
and TN indicate true positives, false negatives, false positives, and
true negatives, respectively, as listed in Table 2.

Table 2 Confusion matrix

Predicted value

Positive Negative
Positive TP FN
True value .
Negative FP TN

In the evaluation of the external defect detection model, the
primary evaluation metrics employed are the average precision (AP)
and mean average precision (mAP). AP, defined as the area under
the curve of the precision-recall curve, is used to measure the
overall performance of the model in terms of precision and recall.
The mAP is the mean value of each category AP after summation.
Intersection over union (IoU) calculates the ratio of the overlap
between the predicted box to the true box. A standard IoU threshold
of 0.5 is typically used to calculate AP and mAP.

In the evaluation of internal defect detection model, the three
key evaluation metrics, accuracy, recall, and Fl-score are used.
Accuracy measures the overall correctness of the classification;
recall is the ratio obtained by dividing the number of correct cases
in the sample predicted to be positive by the sample of all positive
cases, which measures the classifier’s ability to identify positive
cases; precision is the proportion of the samples classified as
positive cases that are actually positive cases; the F1-score, a widely
used metric for classification problems, is the harmonic mean of
precision and recall, and higher Fl-score indicates better model
performance.
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3 Results and discussion

3.1 External detection
3.1.1 Overview of image

The acquired image is a three-channel RGB image. As is
mentioned in Section 2.1.3, the surfaces of defective potatoes
exhibit distinct colors. So the color feature can be used as a basis for

Q"

detecting defects®*.
3.1.2 Comparison of external detection models

To examine the impact of training data size on model accuracy,
data augmentation techniques are used in this study. As shown in
Figure 6, a single image is augmented to 10 images with variations.
Specifically, Gaussian blur, brightness transformation, mirror flip,
left-right flip, zoom in/out, and angle rotation are applied randomly
to the images during data augmentation. The performance of the
models is then evaluated on the same test set to assess the
effectiveness of the data augmentation.

Before training model, the Mosaic data augmentation technique
is applied to the dataset in this study. Mosaic data augmentation
involves performing translation, rotation, scaling, and other
transformations on four images, followed by synthesizing these
images into one to increasing the diversity of the data. The blending
of multiple images is equivalent to increasing the batch size, which
makes the training converge faster. The experimental training
parameter epoch is set to 100. The AP@0.5 and mAP@0.5 of the
model in the training set are listed in Table 3. The result shows that
the models trained with the data augmentation exhibit a 3%-5%
improvement in mAP@0.5, compared to the non-augmented models.

~ 2%

Figure 6 Data augmentation effects

Table 3 Comparison of the performance of the models,
YOLOVS5s and YOLOvV5m, for potatoes defects detection

Rot  Green- Mechanical Germinate mAP/ Model
Datatype Model AP/ skinned damageAP/ d % size/
%  AP/% % AP/% ° MB
Unaugment * <0V 862 975 71.0 866 844 137
ed
data YOanOVS 857 962 759 88.1 865 455
YOLOVS 46 904 84.0 87.9 892 137
Augmented S
dat
aa Yofnovs 954 936 83.2 869 898 455

Comparing the model performance revealed that there was no
significant difference in terms of AP and mAP between YOLOVSs
and YOLOvVS5m, with values of 89.2% and 89.8%, respectively.
However, the model size of YOLOv5m is nearly three times larger
than that of YOLOvVSs, which suffers greatly in regard to the
efficiency of real-time detection. Considering the efficiency
influence to the flow line, the YOLOVSs algorithm is ultimately
chosen as the model for external defect detection because its small
parameters are well suited for application. The current mAP of the
model may be limited by the insufficient sample size, and further
expansion of the dataset with additional images in subsequent
production can effectively improve the mAP of the model.

Figure 7 presents the model’s detection results on the potato
dataset, showing the detection results of different defect types and
sizes. Figure 7a is the result of the unaugmented training dataset and

Figure 7b is the result of the augmented training dataset. As the
results show, the model trained by augmented dataset can accurately
detect potato defects, has higher accuracy for defect detection, and
detects defects that are not detected by the original model. The data
augmentation method improves the robustness of the model.

Figure 8 shows the AP confusion matrix of the YOLOvSs
models’ results on the test set. Figure 8a displays the result of the
unaugmented training dataset while Figure 8b displays the result of
the augmented training dataset. The horizontal axis of the figure
shows the predicted results, and the vertical axis shows the actual
results, with R indicating rot, GR indicating green-skinned, M
indicating mechanical damage, GE indicating germinated, and BG
representing background. It is observed that the model trained with
the augmented training dataset has significantly improved mAP,
albeit with a decrease in AP of green-skinned defects. This could be
attributed to the use of brightness transformation during data
augmentation, which may impact the detectability of features
related to green-skinned defects, consequently leading to a decrease
in AP for this defect type.

The models misjudge the background seriously. The probability
of background misjudgment as germinated was 0.67 and 0.70 in the
two models, and the probability of misjudgment as mechanically
damaged was 0.24 and 0.13, misjudgment of the background can
affect detection accuracy. To alleviate this issue, a two-step
approach is employed, wherein the presence of potatoes on a pallet
is first determined, followed by algorithmic analysis and processing
for flow line detection. Therefore, the maximum contour algorithm
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is used to identify the potato region. The source image is converted
to HSV color space, and segmentation of the color is performed to
extract the potato portions. Subsequently, grayscale and binary
processing are applied. Finally, morphological operations are

conducted to eliminate small black dots and determine outer
contours, the largest contour is identified as the potato ROI. With
this algorithm, it is possible to suppress environmental influences
and improve detection accuracy.

a. Detectionresult of unaugmented training dataset

Mechanical domage C.82

b. Detection result of augmented training dataset

Figure 7 Comparison of detection algorithm before and after training dataset augmentation

1.0
R 0.04 0.14
0.8
GR | 0.06
0.6
Q
2 Mp 0.02 0.20
=
0.4
GE 0.15
0.2
BGF 0.06 0.03 0.24 0.67
1 1 1 1 1 —0
R GR M GE BG
Predicted

a. Before augmentation
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b. After augmentation

Note: R is rot, GR is green-skinned, M is mechanical damage, GE is germinated, and BG is background.

Figure 8 YOLOVSs confusion matrix for the test dataset detection effect before and after training dataset augmentation

3.2 Internal detection
3.2.1 Overview of Spectra

The prominent spectral response observed in the potato samples
is characterized by the doubled and combined frequency
absorptions of hydrogen-containing groups C-H, O-H, N-H, S-H,
and P-H vibrations. Based on the spectral data acquired, it appears
that internal blackheart disease tissues of potatoes affect the spectral
content transmitted through the potatoes. The energy value of the
transmission lowers with the severity of the blackheart disease. The
difference in spectral data between the potatoes with slight
blackheart disease and normal potatoes is not very significant, this
will increase the difficulty of detection. These changes in spectral
response may be attributed to the presence of black portions in the
flesh, drier (i.e., lower OH) regions, and flour-textured cortical
tissue in the diseased potatoes. The drier tissue might typically be
expected to increase the apparent absorbance, as light is scattered
more due to increased numbers of air tissue interfaces, resulting in

reduced transmitted intensity™.
3.2.2 Comparison of internal detection models

The dataset is divided into training and test sets at a ratio of 8:2.
Three metrics, accuracy, recall and Fl-score, are used to evaluate
the performance of the internal detection models. To assess the
performance of algorithm models based on deep learning, this study
compares the proposed method with the decision tree (DT), random
forest (RF), logistic regression (LR) and support vector machine
(SVM) methods. The performance parameters of the models on the
test set are listed in Table 4. Model 1 has the highest accuracy at
98.6%, with Model 2 achieving the second-highest accuracy at
95.5%. The DT method shows a poor accuracy rate of only 81.3%.
This is caused by the instability of the DT itself, where small
changes in the data can lead to completely different tree generations
and affect the model performance. In terms of recall and F1-score,
Model 1 demonstrated the best performance, achieving scores of
98.2% and 98.2%, respectively, while Model 2 attained scores of
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94.6% and 95.4%, respectively, ranking second to Model 1. Based
on the above comparison, it can be concluded that the algorithm
model builds by the convolutional neural network outperforms the
traditional machine learning methods in terms of detection accuracy
and overall performance.

Table 4 Model comparison effect on the test set

Model Accuracy/% Recall/% Fl-score/% Model size/MB
DT 81.3 85.7 82.0 0.007
RF 91.0 89.3 90.9 0.46
LR 92.0 91.1 91.9 0.004
SVM 92.0 92.9 92.0 0.26
Model 1 98.2 98.2 98.2 1.62
Model 2 95.5 94.6 95.4 1.43

Note: DT is Decision tree, RF is random forest, LR is logistic regression, SVM is
support vector machine, Modell is convolutional neural network and Model2 is
fully connected neural network.

The spectral characteristics of potatoes with blackheart disease
and normal potatoes exhibit both similarities and differences,
manifested in the position and intensity of the spectral feature
peaks. For potato spectral data with slight blackheart disease, the
spectral feature peaks tend to resemble those of normal potatoes,
potentially leading to misclassification by the detection model. As
shown in Figure 9, a confusion matrix is constructed to analyze and
compare the generalization performance of each model on the test
set. The horizontal axis of the figure shows the prediction results,
and the vertical axis shows the actual results. Among the 112 test
samples, the deep learning-based model demonstrated superior
detection performance compared to other methods, with only a very
small number of potatoes not being correctly sorted. Model 1 had

the best results, with only 1 missed and 1 false detection.
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d. Support vector machine

e. Model 1 (convolutional neural network)

f. Model 2 (fully connected neural network)

Figure 9 Confusion matrix of the model’s detection effect in the test set

In summary, Model 1, the proposed algorithm model built by
the convolutional neural network with the best effect, is selected as
the model for online internal defect detection in this study. The
limited sample size remains a challenge leading to false detections
and missed detections, indicating potential for further optimization
of the model as the sample size increases.

3.3 System realization
3.3.1

The hardware system is shown in Figure 10. It comprises a
halogen lamp positioned 87mm away from the fiber optic, a fiber
optic situated 12mm above the pallet, and a vision system
positioned 360mm above the pallet. The detection system is placed
in a dark box to minimize the impact of external environmental
factors. The software system communicates with the hardware
system by the Modbus/TCP protocol. Upon clicking the start button,
the hardware system receives the start command and begins the
operation of the flow line. Each pallet has a small hole at its center,
and as the potatoes pass through this hole in the pipeline, the sensor

Hardware System

in the hardware system is triggered, sending a command to the
software system. After receiving the command, the software system
captures the image data from the camera and spectrum data from the
spectrometer. The algorithm then analyzes the spectral and image
data to detect the presence of defects in the potatoes and classifies
them into different channels.
3.3.2 Software system

The software system provides redevelopment of the
spectrometer and the industrial camera to obtain the image and
spectral information, which is then displayed in the software
interface. The algorithm predicts external and internal defects in
potatoes, with the location of predicted external defects marked
using a red box on the potato’s image. For internal defects, the
algorithm’s judgment is verified through potato cutting after flow
line detection. Representative results of potato inspection are shown
in Figure 11, depicting images with external defects (a), internal
defects (b), and no defects (c). The external defect detection
algorithm model takes approximately 300 ms, and the internal


https://www.ijabe.org

November, 2023 Wei Q Q, etal. Nondestructive perception of potato quality in actual online production based on cross-modal technology

Vol. 16 No. 6 289

defect detection algorithm takes about 50 ms, both of which meet
the requirements. fo i i ter i

a. Spectral data acquisition part

b. Image data acquisition part

online defect detection rate of approximately 91.3% and can
i process around 1200 potatoes per hour.

e _}A./

e

c. Mechanical part

Figure 10 Hardware System

a. External defects

b. Internal defects

¢. No defects

Note: The upper half of the interface is the image display area. The lower half is the spectrum display area. External defects are selected with red boxes, and the judgment

results are displayed in the upper right corner of the interface.

Figure 11

4 Conclusions

This study addresses the existing challenges in potato detection
in the market by leveraging the YOLOvVS5s object detection model
for detecting external defects such as green skin and rot, and
employing a CNN algorithm for detecting internal defects like
blackheart disease in potatoes. A potato quality online rapid
nondestructive detection system is developed based on the method,
and the effectiveness of the method is verified on a rapid flow line,
with a defect detection rate of 91.3%. This study is more
representative of real-world production scenarios compared to static
data collection in the laboratory. Furthermore, this nondestructive
detection system, combined with a high-accuracy model, can be
quickly applied for other crops as well as for potatoes.

In actual detection scenarios, the missed rate is more critical for
evaluating the system performance. Although this study has not
extensively discussed strategies for reducing the missed rate. it will
be a focal point of future research. The following improvements
will be made based on the existing system:

1) Design the feeding device to realize the function of
automatic potato feeding;

2) Increase the number of cameras to allow whole surface
detection of potatoes;

3) Expand the dataset, collect more samples for model training,
and improve the detection accuracy;

4) Conduct further research work on the mechanism.

Acknowledgement

The authors would like to thank all the members of the
Research Group for the valuable discussions about the ideas and
technical details presented in this paper. This work was supported
by the Zhejiang Province Key Research and Development Program
(Grant No. 2021C02011), Zhejiang Province Public Welfare
Technology Application Research Project (Grant No. LGNI18-
F030002), Hangzhou Science and Technology Bureau (Grant No.

Result of potato detection

20201203B116), Program of “Xinmiao” (Potential) Talents in
Zhejiang Province (Grant Number: 2022R4-07B055), the Graduate
Scientific Research Foundation of Hangzhou Dianzi University
(Grant No. CXJJ2022177) and the Major Science and Technology
Projects of Breeding New Varieties of Agriculture in Zhejiang
Province (Grant No. 2021C02074).

[References]

[1] Xie C H. Potato industry: Status and development. Journal of Huazhong
Agricultural University (Social Sciences Edition), 2012; 97(1): 1-4. (in
Chinese)

[2] Jing J, Li J W, Liao G P, Yu X J, Viray C. Methodology for potatoes
defects detection with computer vision. Proceedings. The 2009
International Symposium on Information Processing (ISIP 2009), 2009;
346p.

[3] Ebrahimi E, Mollazade K, Arefi A. Detection of greening in potatoes using
image processing techniques. Journal of American Science, 2011; 7(3):
243-247.

[4] Barnes M, Duckett T, Cielniak G, Stroud G, Harper G. Visual detection of
blemishes in potatoes using minimalist boosted classifiers. Journal of Food
Engineering, 2010; 98(3): 339-346.

[5] Elmasry G, Cubero S, Molt6é E, Blasco J L. In-line sorting of irregular
potatoes by using automated computer-based machine vision system.
Journal of Food Engineering, 2012; 112(1-2): 60-68.

[6] Oppenheim D, Shani G. Potato disease classification using convolution
neural networks. Advances in Animal Biosciences, 2017; 8(2): 244-249.

[7]1 Elsharif A A, Dheir I M, Mettleq A, Abu-Naser S S. Potato classification
using deep learning. International Journal of Academic Pedagogical
Research, 2020; 3(12): 1-8.

[8] Chen J D, Zhang D F, Nanehkaran Y A, Li D L. Detection of rice plant
diseases based on deep transfer learning. Journal of the Science of Food
and Agriculture, 2020; 100(7): 3246-3256.

[91 Zhao GY,QuanL X, Li HL, Feng H Q, Li S W, Zhang S H, et al. Real-
time recognition system of soybean seed full-surface defects based on deep
learning. Computers and Electronics in Agriculture, 2021; 187: 106230.

[10] Ramos R P, Gomes J S, Prates R M, Filho E F, Teruel B J, Costa D S. Non-
invasive setup for grape maturation classification using deep learning.
Journal of the Science of Food and Agriculture, 2021; 101(5): 2042-2051.

[11] Thuyet D Q, Kobayashi Y C, Matsuo M. A robot system equipped with
deep convolutional neural network for autonomous grading and sorting of


https://doi.org/10.1016/j.jfoodeng.2010.01.010
https://doi.org/10.1016/j.jfoodeng.2010.01.010
https://doi.org/10.1016/j.jfoodeng.2012.03.027
https://doi.org/10.1017/S2040470017001376
https://doi.org/10.1002/jsfa.10365
https://doi.org/10.1002/jsfa.10365
https://doi.org/10.1016/j.compag.2021.106230
https://doi.org/10.1002/jsfa.10824

290

November, 2023 Int J Agric & Biol Eng

Open Access at https://www.ijabe.org

Vol. 16 No. 6

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

root-trimmed garlics. Computers and Electronics in Agriculture, 2020; 178:
105727.

Nouri-Ahmadabadi H, Omid M, Mohtasebi S S, Firouz M S. Design,
development and evaluation of an online grading system for peeled
pistachios equipped with machine vision technology and support vector
machine. Information Processing in Agriculture, 2017; 4(4): 333-341.
Blasco J, Cubero S, Gomez-Sanchis J, Mira P, Molto E. Development of a
machine for the automatic sorting of pomegranate (Punica granatum) arils
based on computer vision. Journal of Food Engineering, 2009; 90(1):
27-34.

Hajjar G, Quellec S, Pépin J, Challois S, Joly G, Deleu C, et al. MRI
investigation of internal defects in potato tubers with particular attention to
rust spots induced by water stress. Postharvest Biology and Technology,
2021; 180: 111600.

Sosa P, Guild G, Burgos G, Bonierbale M, Felde T. Potential and
application of X-ray fluorescence spectrometry to estimate iron and zinc
concentration in potato tubers. Journal of Food Composition and Analysis,
2018; 70: 22-27.

Lopez-Maestresalas A, Keresztes J C, Goodarzi M, Arazuri S, Jarén C,
Saeys W. Non-destructive detection of blackspot in potatoes by Vis-NIR
and SWIR hyperspectral imaging. Food Control, 2016; 70: 229-241.

Wu L G, He J G, Liu G S, Wang S L, He X G. Detection of common
defects on jujube using Vis-NIR and NIR hyperspectral imaging.
Postharvest Biology and Technology, 2016; 112: 134-142.

Ye D D, Sun L J, Tan W Y, Che W K, Yang M C. Detecting and
classifying minor bruised potato based on hyperspectral imaging.
Chemometrics and Intelligent Laboratory Systems, 2018; 177: 129-139.
Jamshidi B, Minaei S, Mohajerani E, Ghassemian H. Reflectance Vis/NIR
spectroscopy for nondestructive taste characterization of Valencia oranges.
Computers and Electronics in Agriculture, 2012; 85: 64—69.

Peirs A, Lammertyn J, Ooms K, Nicolai' B M. Prediction of the optimal
picking date of different apple cultivars by means of VIS/NIR-
spectroscopy. Postharvest Biology and Technology, 2001; 21(2): 189-199.
Tusek A J, Benkovi¢ M, Malesi¢ E, Mari¢ L, Jurina T, Kljusuri¢ J G. Rapid
quantification of dissolved solids and bioactives in dried root vegetable
extracts using near infrared spectroscopy. Spectrochimica acta Part A:
Molecular and Biomolecular Spectroscopy, 2021; 261: 120074.

Moomkesh S, Mireei S A, Sadeghi M, Nazeri M. Early detection of
freezing damage in sweet lemons using Vis/SWNIR spectroscopy.
Biosystems Engineering, 2017; 164: 157-170.

Li J B, Huang W Q, Zhao C J, Zhang B H. A comparative study for the
quantitative determination of soluble solids content, pH and firmness of
pears by Vis/NIR spectroscopy. Journal of Food Engineering, 2013;
116(2): 324-332.

Scalisi A, O’Connell M G. Application of Visible/NIR spectroscopy for the
estimation of soluble solids, dry matter and flesh firmness in stone fruits.
Journal of the Science of Food and Agriculture, 2021; 101(5): 2100-2107.
Wang F, Li Y Y, Peng Y, Yang BN, Li L, Yin X Q. Hand-held device for

[26]

[27]

[28]

[29]

[30]

B1

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

non-destructive detection of potato quality parameters. Transactions of the
CSAM, 2018; 49(7): 348-354.

Wang F, Li Y Y, Peng Y K, Yang B N, Li L, Liu Y C. Multi-parameter
potato quality non-destructive rapid detection by visible/near-infrared
spectra. Spectroscopy and Spectral Analysis, 2018; 38(12): 3736-3742.
Zhang X Y, Liu W, Xing L, Zhao F M, Yang Y C, Yang B N. An near-
infrared prediction model for quality indexes of potato processing. Infrared,
2012; 33(12): 33-39.

Zhu Z, Zeng S W, Li X Y, Zheng J. Nondestructive detection of blackheart
in potato by visible/near infrared Transmittance Spectroscopy. Journal of
Spectroscopy, 2015; 2015: 1-9.

Song Y, Wang X Z, Xie HL, Li L Q, Ning J M, Zhang Z Z. Quality
Evaluation of Keemun black tea by fusing data obtained from near-infrared
reflectance spectroscopy and computer vision sensors. Spectrochimica Acta
Part A:Molecular and Biomolecular Spectroscopy, 2021; 252(5): 119522.
Yu HL, Liang Y L, Liang H, Zhang Y Z. Recognition of wood surface
defects with near infrared spectroscopy and machine vision. Journal of
Forestry Research, 2019; 30(6): 2379-2386.

Huang X Y, Xu H X, Wu L, Dai H, Yao L Y, Han F K. A data fusion
detection method for fish freshness based on computer vision and near-
infrared spectroscopy. Analytical Methods, 2016; 8(14): 2929-2935.

Yin J F, Hameed S, Xie L J, Ying Y B. Non-destructive detection of
foreign contaminants in toast bread with near infrared spectroscopy and
computer vision techniques. Journal of Food Measurement and
Characterization, 2021; 15(1): 189—198.

Ministry of Agriculture of the PRC. Grades and specifications of potatoes,
2006. Available: http://www.moa.gov.cn/govpublic/SCYJIXXS/201006/
t20100606_1532967.htm.

Han Y F, Li C X, Yuan Y W, Yang B N, Zhao Q L, Cao Y F, et al. PLS-
discriminant analysis on patato blackheart disease based on VIS-NIR
transmission spectroscopy. Spectroscopy and Spectral Analysis, 2021;
41(4): 1213-1219.

Jubayer F, Soeb J A, Mojumder A N, Paul M K, Barua P, Kayshar S, Akter
S S, et al. Detection of mold on the food surface using yolov5. Current
Research in Food Science, 2021; 4: 724-728.

Rong D, Wang H Y, Ying Y B, Zhang Z Y, Zhang Y S. Peach variety
detection using VIS-NIR spectroscopy and deep learning. Computers and
Electronics in Agriculture, 2020; 175: 105553.

Tazehkandi A A. Computer Vision with OpenCV 3 and Qt5: Build visually
appealing, multithreaded, cross-platform computer vision applications.
Packt Publishing Ltd, 2018; 486p.

Yao L J, Lu L, Zheng R. Study on detection method of external defects of
potato image in visible light environment. 2017 10th International
Conference on Intelligent Computation Technology and Automation
(ICICTA), 2017; pp.118-122.

Clark C J, McGlone V A, Jordan R B. Detection of brownheart in
‘braeburn’ apple by transmission NIR spectroscopy. Postharvest Biology
and Technology, 2003; 28(1): 87-96.


https://doi.org/10.1016/j.compag.2020.105727
https://doi.org/10.1016/j.inpa.2017.06.002
https://doi.org/10.1016/j.jfoodeng.2008.05.035
https://doi.org/10.1016/j.postharvbio.2021.111600
https://doi.org/10.1016/j.jfca.2018.03.004
https://doi.org/10.1016/j.foodcont.2016.06.001
https://doi.org/10.1016/j.postharvbio.2015.09.003
https://doi.org/10.1016/j.chemolab.2018.04.002
https://doi.org/10.1016/j.compag.2012.03.008
https://doi.org/10.1016/S0925-5214(00)00145-9
https://doi.org/10.1016/j.saa.2021.120074
https://doi.org/10.1016/j.saa.2021.120074
https://doi.org/10.1016/j.biosystemseng.2017.10.009
https://doi.org/10.1016/j.jfoodeng.2012.11.007
https://doi.org/10.1002/jsfa.10832
https://doi.org/10.1016/j.saa.2021.119522
https://doi.org/10.1016/j.saa.2021.119522
https://doi.org/10.1007/s11676-018-00874-w
https://doi.org/10.1007/s11676-018-00874-w
https://doi.org/10.1039/C5AY03005F
https://doi.org/10.1007/s11694-020-00627-6
https://doi.org/10.1007/s11694-020-00627-6
https://doi.org/10.1016/j.crfs.2021.10.003
https://doi.org/10.1016/j.crfs.2021.10.003
https://doi.org/10.1016/j.compag.2020.105553
https://doi.org/10.1016/j.compag.2020.105553
https://doi.org/10.1016/S0925-5214(02)00122-9
https://doi.org/10.1016/S0925-5214(02)00122-9
https://www.ijabe.org

	1 Introduction
	2 Materials and methods
	2.1 Experimental samples
	2.1.1 Defective samples
	2.1.2 Samples collection platform
	2.1.3 Potatoes data collection

	2.2 Relative algorithms
	2.2.1 External detection algorithm
	2.2.2 Internal detection algorithm

	2.3 Hardware and software design
	2.3.1 Hardware system
	2.3.2 Software system

	2.4 Experimental setup
	2.4.1 Implementation details
	2.4.2 Model evaluation metrics


	3 Results and discussion
	3.1 External detection
	3.1.1 Overview of image
	3.1.2 Comparison of external detection models

	3.2 Internal detection
	3.2.1 Overview of Spectra
	3.2.2 Comparison of internal detection models

	3.3 System realization
	3.3.1 Hardware System
	3.3.2 Software system


	4 Conclusions
	Acknowledgement
	References

