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Abstract: Air environmental information plays an important role during plant growth and reproduction, and prompt and
accurate prediction of atmospheric environmental data is helpful for agricultural robots to make timely decisions. In the interest
of efficiency, an online learning method for predicting air environmental information was presented in this work. This method
combines the advantages of convolutional neural network (CNN) and experience replay technique: CNN is used to extract
features from raw data and predict atmospheric environmental information, while experience replay technique can store
environmental data over some time and update the hyperparameters of CNN. To validate the effects of this method, this online
method was compared with three different predictive methods (including random forest, multi-layer perceptron, and support
vector regression) using a public dataset (Jena). According to the results, a suitable sample sequence size (e.g., 16) has a smaller
number of training sessions and stable results; a larger replay memory size (e.g., 200) can provide enough samples to capture
useful features; and 6 d of historical information is the best setting for training predictor. Compared with traditional methods,

the method proposed in this study is the only method that can be applied for various conditions.
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1 Introduction

Prompt and accurate prediction of air environmental
information helps agricultural robots to make timely decisions~.
However, the most common prediction paradigm (i.e., offloading
learning) has poor timeliness, and it requires large memory to store
samples for training. The online learning method is another learning
paradigm, which has been widely studied in several research
fields™. The goal of online learning is to make a sequence of
accurate predictions given knowledge of correct answers to
previous prediction tasks and possibly additional available
information®®. Online learning applications of air environmental
information prediction are few, partly because it is difficult to
capture suitable features and predict for continuously changing data,
and partly due to lack of timely feedback to update the predictive
model.

As for feature extraction and prediction, many well-established

Received date: 2022-10-16  Accepted date: 2023-06-04

Biographies: Yueting Wang, PhD, research interest: agricultural Information,
smart agriculture, Email: wyt study@163.com; Minzan Li, PhD, Professor,
research interest: agricultural information, smart agriculture, Email:
limz@cau.edu.cn; Ronghua Ji, PhD, Associate Professor, research interest:
agricultural information, Email: jessic1212@cau.edu.cn; Minjuan Wang, PhD,
Associate Professor, research interest: image processing, Email: minjuan@
cau.edu.cn; Yao Zhang, PhD, Associate Professor, research interest: agricultural
information, Email: zhangyao@cau.edu.cn.

*Corresponding author: Lihua Zheng, PhD, Professor, research interest:
agricultural information. College of Information and Electrical Engineering,
China Agricultural University, Beijing 100083, China. Email: zhenglh@cau.

edu.cn.

methods can be used for predicting air environmental information.
These methods can be roughly divided into two categories:
conventional models and deep-learning models. Conventional
models include random forest (RF)™, support vector regression
(SVR)¥, etc., in which fitting ability is limited by the base model
(e.g., decision tree (DT)) or kernel function (e.g., radial basis
function kernel (RBF)). As for deep-learning models, multi-layer
perception (MLP) can be seen as the basic deep-learning model,
which can freely fit different parameters by linear combinations™.
Recurrent neural networks (RNNss, a typical deep-learning method)
constitute a class of neural networks that exhibit state-of-the-art
performances for modeling sequential data''”. However, they require
more storage for data and require more computing resources to
process!'. Convolutional neural network (CNN) is another classical
deep-learning method!"”. CNN is able to process ambient data faster
than RNN because CNN is better at parallel computing than
RNN™L As for timely feedback for updating the predictive model,
the existing strategy used in the online learning method is difficult
to apply to air environmental information prediction. This is
because the randomness of air environmental data cannot be
anticipated. For these questions, experience replay technique
provides a pathway!*'"*l. At each time step, air environmental data is
stored in experience replay memory, and samples are split and
sampled from replay memory in each training cycle to drive
learning and update the weights of the predictor. Although replay
memory size is limited, access is quite fast, which can be used for
the online learning method.

Based on the above description, an online learning method for
predicting air environmental data was developed, which can be used
for agricultural robots to make timely decisions. The main
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contributions of this work are as follows: 1) The framework of this
online learning method was introduced and more details were given
about the key component (i.e., predictor). 2) The optimal working
conditions were investigated and many experiments were carried
out. Finally, the other methods (including RF, MLP, and SVR) were
compared with the proposed method’s results, indicating that this
online learning method can adapt to different air environmental data
in different collected conditions.

2 Materials and methods

2.1 Dataset description

A weather dataset recorded at the Weather Station at the Max
Planck Institute for Biogeochemistry in Jena, Germany was
selected. With this dataset, 14 different ambient variables (e.g., air
temperature, atmospheric pressure, humidity, etc.) were recorded
every 10 min. You can obtain more information at www.bgc-
jena.mpg.de/wetter. This study only used three types of air
environmental data (including air temperature, humidity, and
atmospheric pressure), which were recorded from 2009-2016, and
more details are listed in Table 1.
2.2 Structure of the online method for predicting air
environmental data

The structure of the online method for predicting air
environmental data is shown in Figure 1. The input (i.e., air
environmental data collected at different times) is constructed into
different sample sequences (i.e., sample sequence,, the length is Lj).
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The predictor (shown in Figure 2) is the most important
component of this method. The input is raw air environmental data
(in light blue), target output is predicted data (in red), and
intermediate output is reconstructed data (in light orange). Different
layers and pooling/up-sampling
layers are distinguished by different colors. Feature reconstruction
is used to provide more features for predicting, and a fully

convolutional/un-convolutional

connected layer is a linear regression model. In order to extract the
right features, a CNN-based auto-encoder is introduced as a
predictor that can take into account air environmental information
between adjacent periods'®. The CNN-based auto-encoder includes
two parts: encoder and decoder. In the encoding phase, raw data is
expressed according to multi-layer convolutional and pooling
operations, and each neuron in the output of the encoder covers a
receptive field of many original data. In the decoding phase, un-
convolutional and up-sampling operations were carried out to
recover air environmental data by encoded features. The quality of

The last record of each sample sequence is selected as a predictive
variable (V,) and others are selected as training variables (¥;). On
the one hand, a sample sequence can be used to predict air
environmental data at time ¢ (output is O,) by predictor (at time 7).
On the other hand, every sample sequence is stored in replay
memory. Replay memory size (M) is set manually, and old data
will be removed when storage capacity is full. The sample
acquisition period (P) in replay memory can be computed by
Equation (1).

P=S, M, L, (1)

where, S; is the sampling interval of raw ambient data. When the
training interval is reached, samples in replay memory are divided
into training samples and testing samples (the ratio is 8:2 in this
work) which are used for hyperparameters updating and evaluation,
respectively. Then, a new state of predictor (at time 7+1) is obtained
and it is used to substitute the old predictor. Note that, 7 and ¢ are
two different parameters.

Table 1 Description of ambient dataset

Air temperature/ Humidity/
°C (% RH)

Min Max Mean Min Max Mean Min Max Mean
420451 10min —23.01 37.28 9.45 1295 100 76.01 95 6377 1356

Note: The statistical properties of ambient data are calculated including minimum
values (Min), maximum values (Max), and mean values (Mean).
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Structure of this online learning method to predict air environmental data

encoded features was evaluated by the mean squared error (MSE,
Equation (2)) of raw data and recovered data.

Z (yi - )_’i)z

MSE@,y) = ————— - 2

where, y; and y;, are measured values and reconstructed values,
respectively; 7 is the number of samples in the training set; 7 is the
ith sample.

For better performance, feature reconstruction is carried out to
obtain more features for predicting air environmental data’"”. In this
work, the convolutional operation was used as a specific operation
of feature reconstruction. The fully connected layer is a 2-layer
artificial neural network to predict air environmental data based on
features outputted by the flattened layer. Adam optimizer is used to
All
hyperparameters are listed in Table 2. Kernel/pooling size are the

search the local minimum of the objective function.
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values of different convolutional and pooling layers in part of auto-
encoder, and operations of convolution/un-convolution use the same
hyperparameters. Kernel size R is used in feature reconstruction.
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Figure 2 Schematic of predictor used in this online learning method

Table 2 Hyperparameter settings in predictor

Hyperparameter Kernel Kernel Kernel Hidden Hidden Learning
YPerp size 1 size2 sizeR  layer1 layer2 rate
Value 5 3 3 12 8 0.01

2.3 Design of experiments

To validate the performance of this online learning method,
three predictive models (including random forest (RF) regression,
support vector regression (SVR), and multi-layer perception (MLP))
are selected to compare performance. RF consists of a set of many
un-pruned ensembles of regression trees, which are composed of
root nodes, branch nodes, and leaf nodes. Regression trees are
generated based on bootstrap sampling from original training data,
and bootstrap resampling of data for training each tree increases
diversity between trees'”. Random forest regression is widely used
in prediction with the characteristics described above™?". SVR is
the application of a support vector in a regression function. SVR
derives a function on the basis of training data to predict numerical
values. SVR can be seen as an intrinsically non-linear prediction
method because it projects datasets characterized by the presence of
non-linear structure-property relationships in original feature spaces
into higher-dimensional space representations where a linear
regression function can be fitted®. MLP is an artificial neural
network that models complex functions, which consist of three or
more layers of nodes™. Compared with traditional methods, MLP
does not require any prior assumptions regarding the distribution of
training data, avoiding the influence of data distribution on
performance.

Results of the different prediction models were evaluated by
the coefficient of determination (R?), root mean squared error of
prediction (RMSEP), and the residual prediction deviation (RPD).

Their calculations are shown in Equations (3)-(6).

> -5y
R(y9)=1-———

> -y

©)

4)

)

(6)

where, s, is the standard deviation of the observed values, which is
calculated using Equation (6). In which, y is the arithmetic mean of
;5 N is the number of samples in the test set.

3 Results and discussion

3.1 Performance of this online learning method with different

settings

3.1.1

method
Sample sequence size is one of the most important factors for

Impact of different sequence sizes on this online learning

performance. To analyze the effect of sample sequence size, this
experiment was carried out to compare performance with different
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sample sequence sizes (as shown in Table 3). There were 7
experimental groups with different sample sequence sizes selected

to predict air temperature with 9600 samples. Memory size was
100, training interval was 100, and number of epochs was 100.

Table 3 Performance of this online learning method with different sample sequence sizes

Number of training sessions

Sequence size Indicators
1 2 3 4 5 6 7 8 9 10 11
R 0.66 0.97 0.98 0.95 0.97 0.99 0.97 0.99 0.98 0.99 0.99
8 RMSEP 1.95 0.22 0.25 0.11 0.54 0.45 0.37 0.27 0.21 0.36 0.25
RPD 1.73 5.92 7.75 4.59 5.62 10.59 5.43 15.42 7.15 8.65 17.92
R 0.89 0.96 0.99 0.99 0.99 0.98 0.99 0.99 - - -
10 RMSEP 1.40 0.52 0.06 0.18 0.10 0.20 0.08 0.30 -- - -
RPD 3.07 5.14 10.03 20.04 21.94 7.38 17.28 10.69 - - -
R 0.95 0.96 0.96 0.81 0.98 0.96 0.98 -- -- - -
12 RMSEP 0.42 0.42 0.65 0.86 0.45 0.18 0.61 -- -- - -
RPD 4.64 5.21 4.88 2.32 8.19 5.19 6.61 -- -- - -
R 0.97 0.99 0.98 0.99 0.99 -- - -- - - -
16 RMSEP 0.29 0.36 0.38 0.13 0.37 - - - - - -
RPD 6.29 8.92 6.52 14.81 13.69 - - - - - -
R 0.99 0.99 0.99 -- -- - - - - - -
20 RMSEP 0.10 0.74 0.11 - - - - - - - —
RPD 12.91 8.28 16.65 - -- - - - - - -
R 0.98 0.99 0.99 -- -- - - - - - -
24 RMSEP 0.39 0.32 0.49 - - - - - - - —
RPD 6.84 10.82 10.65 - - - - - - - -
R 0.98 0.98 -- - -- -- - - - - -
30 RMSEP 1.07 0.77 - - -- - - - - - -
RPD 6.54 6.38 - - -- - - - - - -

Small sequence sizes (e.g., 8, 10, 12) could capture more
features because they had a larger number of sample sequences
(e.g., 1200, 960, 800). However, this case could not extract stable
features, and it was relatively easy for performance to obtain a
greater fluctuation (e.g., the first training session when the sample
sequence size was 8 and 10, and the 4th training session when the
sample sequence size was 12). As sample sequence size increased,
performance became more stable (e.g., 24 and 30), but more details
were lost (i.e., larger values of RMSEP). This is attributed to too
large of a sample sequence to capture instantaneous changes in
raw data.

3.1.2 Impact of different replay memory sizes on this online
learning method

Replay memory size is another important factor for the
performance of this online learning method, which directly controls
the size of training and testing samples. This experiment was carried
out to analyze the effect of replay memory size. Five groups of
different memory sizes were selected to predict air temperature with
20 000 samples. The sample sequence size was 20, the training
interval was 150, and the number of epochs was 100.

As shown in Figure 3, when the replay memory size was small
(e.g., 50, 100, and 150), the predictor could be trained by new air
temperature data. In addition to the first training session, many old
records were used with a large memory size (e.g., 200 and 250).
Small memory size (e.g., 50) was beneficial for fitting new features,
but it could not provide enough samples to obtain a good model
when air temperature data had large variations. With increasing
replay memory size, performance improved significantly. When
replay memory size and training interval were equal (i.e., 150),
every sample sequence was trained. However, because of the overly
large replay memory size, the predictor could not capture suitable
features, which led to poor performance. When memory size was
larger than the training interval (e.g., 200 and 250), some samples

(10 and 50 samples, respectively) were trained repeatedly. Too
many trained samples (e.g., when memory size was 250) improved
the performance of the predictor, but this required more computing
resources and more memory.
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Figure 3 Performance of online learning method with different
replay memory size
3.1.3 Impact of different historical information on this online

learning method

To analyze the effect of historical information on replay
memory, this experiment was carried out to compare the
performance with different historical information (Table 4). For
convenience, the sample sequence size was set to 7, in which 6
samples (i.e., 1 h) were selected as training variables and one
sample was used as a predictive variable. With this operation, each
sample sequence could provide features in the past 1 h (only
considering training variables). Meanwhile, the replay memory size
was set to 72, 96, 120, 144, 168, and 336, respectively. In this way,
6 experimental groups with different historical information
(including 3, 4, 5, 6, 7, and 14 d) were obtained. There were 42 000
samples used for predicting air temperature, and the training
interval was 400.
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Table 4 Performance of this online learning method with
different historical data

Historical r RMSEP/°C
intervalld  Min Max Mean Std Min Max Mean Std

3 081 099 097 0.0486 0.05 0.55 024 0.1384
4 090 099 097 0.0350 0.04 225 046 05515
5 094 099 098 0.0140 0.07 0.67 026 0.1638
6 098 099 099 0.0033 0.06 0.63 023 0.1574
7 096 099 099 0.0088 0.13 128 038 0.2663
14 097 099 099 0.0071 0.14 139 045 03067

Due to insufficient historical information, performance
(especially values of R*) with more days of historical data was better
than those with fewer historical days. But, because of more samples
and data fluctuation, values of RMSEP with more historical days
were higher than those with fewer historical days. Based on a
combination of R* and RMSEP, 6 d of historical information was
suitable for training predictors. What needs special attention is that
there was some abnormal record (i.e., the value of RMSEP was
2.25) with 4 d of historical information. This was caused by an
inappropriate segmentation method, which was not avoidable
because of random variations in air temperature.

Overall, this online learning method can predict air
environmental information in a suitable setting. To avoid the effect
of random variation, longer sample sequences and larger replay
memory size help extract effective and stable features, which can
obtain good prediction performance. Historical information is the
underlying factor, which is affected by sample interval, sample
sequence size, and replay memory size. Sufficient historical data is
beneficial for capturing stable features, but it will lose some
sensitivity.

3.2 Comparison of predictive performance with different
prediction methods

3.2.1 Impact of different training intervals on different prediction
methods

Real-time air environmental information prediction is a major
challenge, and the uncertainty of newly collected data requires the
model to have a strong ability for feature extraction and prediction.
Furthermore, a shorter training interval is another way to help
prediction models for fitting raw data by subdivision of raw data. In
order to analyze the impact of training intervals on different
predictive models, different models (including RF, MLP, SVR, and
this online learning method (labeled as CNN)) were built and
compared with different training intervals. 15 120 samples were
selected to carry out this experiment, the sample sequence size was
7 (6 samples used for feature extraction, and one sample used to
predict), and the replay memory size was 72. Five different
experimental groups were carried out, and training intervals were
144 (i.e., 6 d), 216 (i.e., 9 d), 288 (i.e., 12 d), 360 (i.e., 15 d), and
720 (i.e., 30 d).

During this experiment, some prediction models (including RF
and SVR) could not work in some cases. The predictor presented in
this work was the only one to be applied for all cases, and all values
of RPD were higher than 2.0. Figure 4 shows values of RPD with 4
prediction models when the training interval was 216 (i.e., 9 d).
SVR performed the most stably in this case, but it had a poor
performance (value of RPD is 0.45) at the first training session
when the training interval was 144. Moreover, the introduction of
Grid-search took more time on the hyperparameter setting. RF
performed the worst of these four models, and was not able to work
at 3 periods (the 1st, 3rd, and 6th training sessions) in this case. In

other cases, there were also 5 times where the value of RPD was
lower than 1.5. Due to its lower ability of feature extraction, MLP
showed poorer performance than the CNN-based method, but it
could also obtain a stable model (all the values of RPD were higher
than 1.5).

RPD of different methods RPD
O 4.62 4.42 583 3.91 434 12.87 5.77 11.26 14.53 20
8 029 8.85 7.38 11.5825.77-23.8815.33 25.21
20
MLP %% 3.30 436 3.47 24.00 7.37 9.90 22.41 4.06
10

)23zl 0.60 3.59 1.10 528 9.90 0.64 7.03 5.49 5.

1 2 3 4 5 6 7 8 9 10

Note: CNN: Convolutional neural network; SVR: Support vector regression;
MLP: Multi-layer perception; RF: Random forest. Same below.
Figure 4 Credibility of different predictive models

To compare the accuracy of different predictive models with
different training intervals, average values of R* and RMSEP were
computed and are shown in Figure 5. It should be specially
explained that these cases, in which values of RPD were lower than
1.5, were seen as outliers and were removed. The CNN and MLP
models, which both belong to the deep-learning method, performed
better and became more stable with increasing training sessions.
However, because of weaker feature expression ability, MLP had
fluctuations of R* and higher RMSEP. SVR had the optimal
performance, but it took much time to select hyperparameters.
Meanwhile, its performance was limited with the kernel function
(linear or radial basis function kernel), sometimes to the point of
failure. As for RF, it could not infer values outside training values
due to regression trees, and this determined poor performance.
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Figure 5 Predictive results obtained by four different models with
different training intervals

3.2.2 Impact of different types of air environmental data on
different prediction methods

Different types of air environmental data have different
characteristics. Three different types of air environmental data
(including air temperature, humidity, and atmospheric pressure)
were selected to analyze the impact of different environmental
information. Of these, the air temperature had positive and negative
values, humidity was the most discrete (standard deviation is
16.48), and atmospheric pressure was relatively flat. During this
experiment, 15 120 samples (i.e., 90 d) participated, 3 d of historical
data were stored in replay memory (sample sequence size was 7,
and replay memory size was 72), and training interval was 216 (i.e.,
9 d). The predictive results (average of 10 training sessions) are
shown in Figure 6.

Note that the cases in which values of RPD are lower than 1.5
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were seen as outliers and were removed. For air temperature, three
predictive results were removed (1Ist, 3rd, and 6th) in RF. For
humidity, the predictive result obtained by the first training session
was removed in SVR, three results (1st, 5th, and 8th) were removed
in MLP, and two results were removed in RF. As for atmospheric
pressure, MLP (4th, 5th, and 7th) and RF (1st, 3rd, and 6th) each
had three results removed.

R? of different methods R
i 0.99
TEM 0.98
0.97
0.96
0.95
HUM
0.94
0.93
0.92
PRE 091
! 0.90
CNN SVR MLP RF
a. Values of R? with different predictive models
2.50 - wm RMSEP,
w= RMSEP,
200t w= RMSEP ¢
o
2150
=
1.00
0.50

CNN SVR MLP RF
Different predictive models

b. Values of RMSEP with different predictive models

Figure 6 Predictive results obtained by four predictive models
with different types of air environmental data

The CNN-based model, presented in this work, was the only
predictive model suitable for three ambient data types, in which all
values of RPD were higher than 2.0. All other predictive models
(SVR, MLP, and RF) had abnormal cases, which could not be
applied. After removing outliers, SVR obtained the optimal
predictive results, and the performances of MLP and RF were
similar. This further illustrates that the ability of feature extraction
and prediction cannot meet different ambient information requests
with these predictive models, and they have practical limitations in
real applications. Special attention needs to be given to the discrete
distribution of ambient information (e.g., humidity), which greatly
affects the values of RMSEP. This indicates that the characteristics
of raw data directly affect the performance of predictive models™.

4 Conclusions

Air environmental information plays an important role during
crop growth, affecting photosynthesis, respiration, and transpiration.
Predicting air environmental information is crucial in aiding
agricultural robots to make timely decisions. To address this
concern, an online learning method for predicting air environmental
data is presented in this work. The following conclusions are
accordingly achieved.

1) This online learning method has addressed challenges of air
environmental data prediction: accurate feature collection and
timely feedback to update predictive models. The convolutional
neural network is used to extract useful features from continuously

changing air environmental data, and the experience replay
technique can provide timely feedback.

2) Due to the randomness of air environmental data, prior
knowledge-based models (e.g., random forest, support vector
regression) are unsuitable for real-time prediction. The randomness
will lead to assumptions (i.e., base model or kernel function) of
prior knowledge-based models that are no longer satisfied in real
conditions. Of course, poor capability of feature extraction (e.g.,
multi-layer perception) will similarly affect prediction performance.

3) An appropriate amount of historical data helps extract
effective and stable features of air environmental data, and it can
improve the performance of this online learning method. However,
too much historical data will compromise the fitting ability of
prediction models, leading to the loss of more details. Meanwhile,
the characteristics (e.g., discrete distribution) of raw data directly
affect the performance of prediction models.

Online learning is a current hotspot of research, and it has
important implications for the development of smart agriculture. In
this work, we only considered the model structure and
implementation. With the development of hardware and software,
more and more deep-learning algorithms can be applied to
embedded devices, and this will be the focus of our future studies.
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