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Abstract: The accurate identification and localization of diseased silkworms is an important task in the research of disease
precision control technology and equipment development in the sericulture industry. However, the existing deep learning-based
methods for this task are mainly based on image classification, which fails to provide the location information of diseased
silkworms. To this end, this study proposed an object detection-based method for identifying and locating healthy and diseased
silkworms. Images of mixed healthy and diseased silkworms were collected using a mobile phone, and the category and
location of each silkworm were labeled using Labellmg as a labeling tool to construct an image dataset for object detection.
Based on the one-step detection model YOLOVSs, the ConvNeXt-Attention-YOLOvVS5 (CA-YOLOVS) model was designed in
which the large kernel with depth-wise separable convolution (7x7 dw-conv) of ConvNeXt was adopted to expand receptive
fields and the channel attention mechanism ECANet was added to enhance the capability of feature extraction. Experiments
showed that the mean average precision (mAP) values of CA-YOLOVS5 for healthy and diseased silkworms reached 96.46%,
which is 1.35% better than that achieved via YOLOvSs. At the same time, the overall performance of CA-YOLOVS5 was
significantly better than state-of-the-art one-step models, such as Single Shot MultiBox Detector (SSD), CenterNet, and
EfficientDet, and even improved YOLOVS5 using image attention mechanism and a lightweight backbone, like SENet-YOLOVS
and MobileNet-YOLOVS. The results of this study can provide an important basis for the accurate positioning of diseased
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silkworms in precision disease control technology and equipment development.
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1 Introduction

The silkworm (Bombyx mori) is an insect with high economic
value, mainly used for silk production and widely reared in China,
India, and Southeast Asia. Due to their small size and the being
density of rearing boxes, silkworms are highly susceptible to
disease infestation, which directly leads to mortality or non-
cocooning. Silkworm diseases are generally difficult to treat
effectively with drugs and are highly contagious, spreading rapidly
in a short period of time and causing widespread infection?.
Therefore, disease prevention and control is an essential task when
raising silkworms. The most common method of disease prevention
comprises strict disinfection and sterilization measures. At the same
time, timely identification and discarding of diseased silkworms is
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also critical to cut off the spread of the pathogen and prevent further
infection. In traditional small-scale sericulture, diseased silkworms
can be screened out by manual identification. However, with the
development of modern agriculture, the mode of sericulture is
gradually shifting to large-scale mechanized and intelligent
farming®, in which manual identification and screening cannot
satisfy the demand. Thus, there is an urgent need for an efficient
and accurate method for locating diseased silkworms to support the
research and equipment development for accurate disease control
technology.

With the recent rapid development of artificial intelligence in
agriculture, deep learning, and vision technology have become
widespread in silkworm breeding. Shi et al.”! proposed a recognition
method for silkworm species using MobileNet. Deep learning was
applied to the identification of male and female silkworm pupae by
Yu et al.’. Li et al.! conducted a study on the quality sorting
mechanism of silkworm cocoons based on computer vision. He et
al.” and Wen et al.® proposed a method for silkworm individual
detection using object detection and semantic segmentation for
precision feeding. In terms of diseased silkworm identification, Shi
et al.”’ introduced an improved ResNet-based recognition model to
achieve the identification of five types of diseased silkworms. Xia et
al.'" proposed a DenseNet-based silkworm disease identification
model. Ding and Cheng!"" presented a method for image recognition
of diseased silkworms based on the feature maps slicing and
AlexNet architecture. However, the above studies on diseased
silkworm identification are mainly based on image classification
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methods, which means that only one diseased or healthy silkworm
can be present in each image, and thus fail to achieve localization of
diseased silkworms under the condition of mixing healthy and
diseased silkworms.

Object detection is an important branch of deep learning that
allows a single image to contain multiple classes of objects at the
same time, and possesses the ability to not only identify the class of
each object in the image but also to predict the location of each
object. The study of object detection-based diseased silkworm
localization models can ensure the ability of this technique to be
applied in real-world environments. Based on the detection process,
object detection models can be divided into one-step and two-steps
detection networks, with the former being more efficient and the
latter being more accurate. In recent years, with the great potential
shown by the field of Transformer, researchers have also proposed
Vision Transformer-based object detection algorithms!'?. However,
the exponential computational burden makes it highly challenging
to train from scratch. Among the common one-step detection
models, the YOLO series!” is a highly representative model that has
long been favored by researchers for its ability to maintain a high
detection efficiency while having detection accuracy comparable to
that of two-steps models. YOLOvS5", the 5th generation version
released in 2020, uses CSPNet!" as the backbone for the feature
extraction network and employs techniques such as Focus, SPP, and
PANet to improve detection performance; therefore, it has received
widespread attention since its release. Scholars have applied
YOLOVS5 to a variety of vision tasks, with promising results. For
example, Qi et al."” proposed a tomato leaf disease detection model
by adding SENet to YOLOvVS. Ning et al.'”’ proposed a face
recognition method for dairy goats by adding SimAM to the feature
extraction layer of YOLOVS. Yang et al.'¥ derived a pig-counting
algorithm based on SENet and YOLOVS. Xue et al." developed an
estrus detection method for parturient sows based on model
compression and YOLOvS5. Ma et al™ proposed a locust
recognition in Ningxia grassland, Guyuan, Ningxia, China, by using
Bi-FPN to enhance the capability of feature fusion and interaction
of YOLOVS. Wang et al.?" achieved the detection of the invasive

weed Solanum rostratum Dunal seedlings by adding Convolutional
Block Attention Module (CBAM) to YOLOVS. Li et al.”™ built a
wheat ear detection algorithm based on YOLOvS5 and image
attention mechanism.

The above-mentioned studies illustrated that YOLOvS has
excellent detection performance in various vision tasks. Hence, a
YOLOvS5-based network was proposed for accurate and efficient
detection of healthy and diseased silkworms. To this end, images of
mixed healthy and diseased silkworms were collected from real
environments, and the category and location of each silkworm were
labeled to construct a detection image dataset. Then, a ConvNeXt-
Attention-YOLOvVS (CA-YOLOVS) model was proposed based on
the original YOLOVSs, in which the large kernel with depth-wise
separable convolution (7x7 dw-conv) of ConvNeXt™! was adopted
to expand receptive fields, and the channel attention mechanism
ECANet® was added to enhance the capability of feature
extraction. Experiments showed that CA-YOLOvVS outperforms
original YOLOV5, one-step algorithms such as CenterNet,
EfficentDet, and Single Shot MultiBox Detector (SSD), as well as
other improved YOLOvV5 networks based on image attention
mechanism and a lightweight backbone, like SENet-YOLOVS and
MobileNet-YOLOvS. This research can be a cornerstone for the
research of disease precision control technology and equipment
development, especially in silkworm breeding.

2 Materials and methods

2.1 Experimental data
2.1.1 Image acquisition

Among the many types of silkworm diseases, this study took
diseased silkworms infected by nuclear polyhedrosis virus (NPV) as
detection objects, as well as healthy silkworms. This disease has the
greatest frequency and is highly infectious among silkworms,
accounting for more than half of all silkworm diseases in China®,
The appearance of healthy and NPV-infected silkworms is shown in
Figure 1. It can be seen that the appearance of healthy silkworms is
white and greenish, while silkworms infected with NPV show a
dark yellow coloration, with pus flowing around the body.

a. Healthy silkworm

Figure 1

In order to obtain a dataset for model training and evaluation, in
this study, all silkworm images were collected in a real
environment. This was performed in May 2020 and May 2021 at the
Institute of Sericulture, Sichuan Academy of Agricultural Sciences,
Nanchong City, Sichuan Province, China, under natural indoor
lighting, using a smartphone (iPhone 6S) with a resolution of 12
megapixels. When acquiring the image, the acquisition equipment
was directed vertically downward, mulberry leaves were used as the
image background, and several healthy silkworms and diseased
silkworms were simultaneously placed on the background to
simulate the coexistence of healthy and diseased silkworms in a real
scenario when diseased silkworms need to be located and removed
in time. A total of 4023 original images were collected, which

b. Diseased silkworms

Image examples of healthy and diseased silkworms

included 5459 diseased silkworms and 4931 healthy silkworms.
Some of the collected images are shown in Figure 2.
2.1.2 Image annotation and dataset

The acquired image size was 3224%3224 pixels, which is far
beyond the input image size of YOLOVS. Bilinear interpolation was
used to rescale all image sizes to 640x640 pixels. To train the object
detection model of supervised learning, all images needed to be
labeled first. The labeling tool Labellmg?” was used to label the
category and location of each silkworm. The labeling interface is
shown in Figure 3, where each silkworm is represented by an
external rectangular box with coordinates representing its location
in the image, the label “H” represents a healthy silkworm, and “NP”
represents a diseased silkworm infected by nuclear polyhedrosis.
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Figure 2 Examples of original images of silkworms

Figure 3 Labeling interface

After labeling, all images were divided into a training set and a
test set in the ratio of 8:2. When model training, 20% of the images
from the training set were randomly selected for the validation set.
The number of images and detection objects in the training set,
validation set, and test set are shown in Figure 4.

Validation: Training;: o
644 2574 Validation:

—

Test: Test:
805 949

a. Number of total images

V

b. Number of healthy silkworms

2.2 CA-YOLOvVS for detection of healthy and diseased
silkworms
2.2.1 ConvNeXt-Attention
extraction

The feature extraction capability of the object detection model
determines the detection performance. YOLOVS uses CSPNet as the
backbone network to extract image features, and its basic structure

block (CA-block) for feature

is shown in Figure Sa, which mainly uses 3x3 convolutional layers
to extract image features. The input image size for object detection
is 640x640%3, which is far larger than the input size of 224x224x3
for general classification tasks. The detection model using CSPNet
as the backbone network has limited receptive fields, which would
result in insufficient feature extraction. Therefore, a ConvNeXt-
Attention block (CA-block) was designed without changing the
gradient transmission path of the original architecture. In the CA-
block, the large kernel and depth-separable convolution from
ConvNeXt were introduced to expand the receptive fields and
reduce the number of parameters, and the image attention
mechanism ECANet was further added to enhance the feature
extraction capability. The structure of the CA-block is shown in
Figure 5b.

Training:| = Validation: Training:
3118 964 3413
Test:
1082

¢. Number of diseased silkworms

Figure 4 Details of constructed dataset

In Figure 5, 3x3 Conv represents convolutional operation using
kernel size of 3x3, C refers to the number of channels, s means
stride, and p is padding. The CA-block first pads 5 pixels for the
width and height of the input feature map to keep the feature
dimension, and extract image features by using a 7x7 depth-
separable convolutional (7x7 dw-conv) and a 1x1 convolutional
(conv) layer. Next, the feature map is compressed into 2 sub-feature
maps using two 1x1 conv layers, and the number of channels in the
sub-feature map is 1/2 of the original one. The subsequent feature
extraction will be performed on one of the sub-feature maps with
1x1 conv, 7x7 dw-conv, and residual connection, respectively, with
a number of loops executed in N. ECANet is embedded between the
7x7 dw-conv and 1x1 conv layers in the last loop. Another sub-
feature map is connected as a residual block across to the features in
the backward layer. Finally, the feature map is output after
performing a 1x1 conv operation.

Compared to the original block, the main advantage of the CA

block is that it has larger receptive fields. Meanwhile, the image
attention mechanism further enhances the feature extraction effect,
thus ensuring the feature extraction capability of the model when
detecting healthy and diseased silkworms.

2.2.2 ECANet

The image attention mechanism can enhance the extraction
capability of key information and suppress interference information
to ensure better detection results®™. It mainly includes spatial
attention mechanism and channel attention mechanism. Given that
7%x7 dw-conv has been utilized to expand receptive fields in CA-
block, which plays a role similar to that of spatial attention
mechanism, channel attention mechanism ECANet is chosen to
enhance the capability of feature extraction.

Specifically, ECANet was designed based on SENet”). Due to
the advantage of one-dimensional convolution operation instead of
fully connection operation, it is possible to achieve local cross-
channel interaction without dimensionality reduction. Adding
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’ 1x1 Conv, C/2| ’ 1x1 Conv, C/2|

1x1 Conv, C

a. Original block of CSPNet

7x7 dw-conv,
§s=2, p=5

1x1 Conv, C
1x1 Conv, C/2

1x1 Conv, C/2

1x1 Conv, C/2

7x7 dw-conv, N

s=2, p=5

ECANet
1x1 Conv, C/2

@

®
1x1 Conv, C

b. CA-block proposed by CA-YOLOVS

Note: 3x3 Conv represents convolutional operation using kernel size of 3x3; C refers to the number of channels; s means stride; p is padding; dw-conv is depth-separable

convolutional; + represents feature addition; N refers to N times stacked and is set to 1, 3, 3, and 1, respectively, in the backbone. Same below.

Figure 5 Basic block of CSPNet and CA-YOLOVS5

ECANet does not cause a significant increase in the number of
parameters and computational burden. As illustrated in Figure 6, for
given feature maps X€ R""¢, where W, H, and C represent the
width, height, and channel number of the feature map, respectively.
ECA module first aggregates feature maps in spatial dimension
using global average pooling according to the following equation:

Y = GAP(X) (1

where, GAP refers to global average pooling and Y& R,
Then, a one-dimensional convolution and activation operation
is adopted to obtain the attention weights, and the formula is as

EXXXXXIYYX]

1D conv

(00000000

—

follows:
Y’ = §(CID,(Y)) ®)

where, C1D refers to one-dimensional convolutional operation,
subscriptkisthekernelsize.anddmeansactivationfunction,andtheformulais
as follows:

5(x) = 3)

Subsequently, the broadcast operation was used to expand the
shape of Y'ER""“ to Y'€ R, The refined feature map is finally
obtained by multiplying Y’ by input feature map X.

l+e>

— ® =

Output

&) : Element-wise product

Note: W, H, and C represent the length, width, and channel number of the feature map; GAP means the global average pooling. X and Y are feature maps; 1D conv refers

to one-dimensional convolution.

Figure 6 Schematic diagram of ECANet

2.2.3 Structure of CA-YOLOVS

YOLOVS is available in four different models, YOLOvSs, ~I,
~x, and ~m, and the main difference between them is the number of
convolutional layers and convolutional kernels. To ensure the
detection efficiency, YOLOv5s was selected to design CA-
YOLOVS in this study.

The structure of CA-YOLOVS5 is shown in Figure 7, which is
basically the same as YOLOvVS and consists of the backbone,

PANet, and YOLO head. The CA-block is used in the backbone and
PANet to replace the original feature extraction block. In addition to
CA-block, the backbone also includes a Focus layer, 3x3
convolutional layer, and Spatial Pyramid Pooling (SPP) module.
For an input image with a size of 640x640x%3, the Focus layer was
first adopted to obtain tensor with a size of 320%320x12. As shown
in Figure 8, the principle of the Focus layer is to stack the input
image after sampling the pixels at certain intervals, to reduce
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dimensionality and enrich the semantic information of the input
image. After a 3x3 convolution layer, four stages of CA-block were
performed to extract image features. An SPP module is embedded

Input layer
batch_size, 640x640x3

in the last stage of the CA-block to obtain feature maps with
diversified resolutions by using different sizes of pooling kernels.
The principle of the SPP module is shown in Figure 9.

|

backbone

Focus layer
(batch_size, 320x320x12)

A
3%3 conv layer
(batch_size, 320x320x64)

CA-block
(batch_size, 160x160x128)

PANet

YOLO head

1x1 conv, C=21

ﬁ Concat+CSP layer i
T
C,A'bIOCk I Up sampling I
(batch_size, 80x80%256) 0
| 1xlconv, C=256
T
CA-block
(batch_size, 40x40x512) [ . CO“C"‘H?SP layer |
I Up sampling l
CA-block )
SPP module >  Ixlconv, C=512

(batch_size, 20x20%x1024)

o

(batch_size, 80x80%21)

I Down sampling l

i 1x1 conv, C=21
(batch_size, 40x40x21)

Concat+CSP layer
I Down sampling l

i 1x1 conv, C=21
(batch_size, 20x20x21)

Concat+CSP layer

Note: CA-block: ConvNeXt-Attention block; SPP: Spatial Pyramid Pooling; CSP layer refers to the loop structure of CA-block.
Figure 7 Structure of CA-YOLOV5

Figure 8 Schematic diagram of the focus layer

J

1x1 conv, C/2

! 1
MaxPooling2D, MaxPooling2D, MaxPooling2D,
5x5 9%9 13x13

l {

Concat layer

1x1 conv, C

|

Figure 9 Principle of SPP module

After the backbone extraction, three effective feature maps with
dimensions of 80x80, 40x40, and 20%20 were input to PANet for a
series of up- or down-sampling for feature fusion, in order to
enhance the feature representation capability of the network. In
PANet, CSP layer refers to the loop structure of CA-block.
Subsequent to PANet fusion, three feature maps were input to
YOLO head directly for obtaining prediction results using a 1 x 1
convolution operation. The number of convolution kernels in the

YOLO head is related to the number of categories of dataset, and its
calculation formula is

K=(N+5)%N, “4)

where, K means the number of filters in the last convolution
operation, N refers to the number of detection object categories; N,
is the number of anchor boxes. This research includes healthy and
diseased silkworms, and the number of anchor boxes in each YOLO
head was 3, it can be concluded that K is 21 by using Equation (4).

In CA-YOLOVS, the Batch Normalization operation and SiLU
function were also used after each convolutional layer to accelerate
model convergence. The specific calculation formula of SiLU is as
follows:

X

SiLU=x-6= %)

1+e

2.3 Experimental environment and evaluation indicators
2.3.1 Experimental environment

All experiments were operated on a Dell Precision 5820
workstation with an Intel® Core i7-9800X processor, and
RTX2080Ti GPUs, with 11 GB memory, and the CUDA-10.0
computing platform. The operating system was Windows 10
Professional (64 bits), the programming language was Python3.7,
the programming environment was Jupyter Notebook, and the deep
learning framework was TensorFlow-GPU 1.14. The toolkits used
include Numpy, Keras, PIL, etc.

When training CA-YOLOv5, YOLOVS, and YOLOv5-based
models, the hyper-parameters of model training included the
number of epochs was 300, and the mini-batch size was 8. The
learning rate was initially 0.001 via cosine decay unless otherwise
stated subsequently, with a momentum of 0.9, and a weight decay
of 0.05". The GIOU loss®" was used as a bounding boxes
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regression loss function and the Adam was used as the optimizer.
The Mosaic data enhancement® was used to improve the
robustness of the model in the first 200 iterations of training. The
IoU value was 0.5, and the confidence threshold of the prediction
result was 0.3. The anchor boxes proposed by YOLOVS were used
for data encoding and prediction result decoding. When training
other compared models, the number of epochs, the mini-batch size,
and the optimizer were the same as that of YOLOv5-based models,
while the initial learning rate and loss function were referenced
from the original paper and its code on Github (Available at
https://github.com/bubbliiiing?tab=repositories).
2.3.2  Evaluation indicators

The precision, recall, Fl-score, average precision (AP), and
mean average precision (mAP) were used for model evaluation. The
specific calculation formulas are as follows, respectively:

TP
Precision = ————— x 1009
recision = ros—p X 00% (6)
TP

Recall = ———— x 1009
ecall = 0 X 00% @)
Fl—score = 2. Prffc.ision -Recall ®)

Precision + Recall
N 1

AP = Z fPrecision(Recall)dR % 100% 9

10

N 1
Z j Precision(Recall)dR

1 0

mAP = x 100% (10)

N

where, True Positives (TP) refers to the object being detected as a
positive sample and the test result is correct, False Positives (FP)
means the object is detected as a positive sample, but the actual
object is a negative sample, False Negatives (FN) represents object
is detected as a negative sample, but the object is a positive sample.
AP is the area enclosed by the precision and recall curve (P-R
curve). The mAP is the average of all APs. In this study, objects are
healthy silkworms and diseased silkworms, respectively, so the
value of N is 2.

3 Results and discussion

3.1 Comparison of the detection effect with YOLOV5S

In this section, CA-YOLOvV5, YOLOvSs, and ~m were
compared by training and testing in the same environment, and loss
values of each iteration and mAP values per 10 iterations of three
models on the validation set were recorded for evaluating their
convergence speed and effects.

Figure 10 shows the loss and mAP curves of three compared
models on the validation set. The loss and mAP values of CA-
YOLOvVS5, YOLOv5s, and YOLOv5Sm can be seen to fluctuate
greatly in the initial stage of training, but they tend to stabilize after
roughly 200 iterations as the training continues. It is worth noting
that the loss values of CA-YOLOVS are significantly lower than that
of the other 2 models during most of the training epochs, and the
corresponding mAP values are higher than 2 original models, which
indicates the best convergence was obtained on the validation set.

Table 1 lists the number of parameters, model size, and
detection speed of three compared models. It can be seen that CA-
YOLOVS5 not only has a significant reduction in the number of
parameters and model size compared with the 2 original models but
also has a significant advantage in detection speed, which is more

favorable to the deployment of the model in mobile applications.
0.22 — CA-YOLO v5

0.20 - YOLO v5s
0.18 --- YOLO v5m
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Note: mAP: mean Average Precision.

Figure 10 Loss and mAP curves of three models

Table 1 Parameters, model size, and detection speed of three
compared models
Model Parameters (Million)  Model size/MB D?gﬁiggg:g?)e d
YOLOVS5s 7.08 274 223
YOLOv5m 21.01 81.1 14.6
CA-YOLOVS 3.95 15.6 23.0

After model training, the model weights that reached the best
mAP value on the validation set were used as the test model, and
the corresponding evaluation metrics of three models were
calculated.

Table 2 lists the detection results of three compared models on
the test set. It can be established that, compared with YOLOvSs, CA-
YOLOVS shows significant advantages in Recall, Precision, and F1-
score, and brings an improvement of 1.35% in mAP value.
Compared with YOLOv5Sm, CA-YOLOVS only lags behind in
Precision of “H”, but has significant advantages in other evaluation
indicators, such as Recall and Fl-score of “H”, and also brings
1.39% improvement in mAP value. Therefore, CA-YOLOVS has
obvious advantages over the original YOLOVS, both in terms of
detection speed and detection accuracy. Moreover, given that the
results of YOLOvSm are comparable to those of YOLOVSs, it can
be concluded that the use of more convolutional layers and
convolutional kernels has a limited effect on improving the
detection accuracy on the dataset of this study.

Table 2 Detection results of three compared models on

the test set
Recall/% Precision/% Fl-socre
Model mAP/%
NP H NP H NP

YOLOvS5s 88.09 88.26 8557 90.87 0.87 0.90 95.11
YOLOv5Sm 83.56 90.11 89.60 83.80 0.86 0.89 95.07
CA-YOLOv5 9094 90.76 89.52 9229 090 0.92 96.46

Note: H means healthy silkworms; NP means diseased silkworms infected by
nuclear polyhedrosis; mAP: mean Average Precision. Same below.
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3.2 Comparison of the detection effect with one-step models

In order to verify the detection effectiveness of CA-YOLOVS,
in this section, several classical one-step networks, including
CenterNet™, EfficientDet™, YOLOv4™, SSD™ and YOLOX",
were trained and tested in the same environment.

Table 3 reports the number of parameters, model size, and
detection speed of several single-step models, from which it can be
concluded that the parameters and model size of CA-YOLOVS5 are
only larger than those of EfficientDet. In terms of detection speed,
CA-YOLOVS outperforms other one-step detection models.

Table3 Parameters, model size, and detection speed of several
one-step models

Detection speed

Model Parameters (Million) ~ Model size/MB Aimages-s ")
CenterNet 32.71 125.0 14.6
EfficientDet 3.88 16.1 152
YOLO v4 64.01 244.0 11.7
SSD 23.88 91.1 9.7
YOLO X 8.96 34.7 16.4
CA-YOLOvV5 3.95 15.6 23.0

Table 4 lists the detection results of the compared one-step
models on the test set. It can be seen that the performance of CA-
YOLOVS5 is inferior to EfficientDet and SSD only in Recall of
“NP”, lower than CenterNet in Precision value of “H”, and the same
as Efficient and YOLOX in Fl-score. Meanwhile, it shows an
obvious advantage in other evaluation metrics, especially in the AP
and mAP values. It can be concluded that CA-YOLOVS has the best
detection performance compared to selected one-step detection
models.

Table 4 Detection results of compared one-step models on the
test set

Recall/% F1-socre AP/%
NP H NP H NP H

CenterNet  71.87 72.64 91.42 85.06 0.80 0.78 83.61 75.27 79.44
EfficientDet 89.15 92.98 90.48 91.37 0.90 0.92 93.75 95.68 94.71
YOLOv4 86.83 86.23 87.85 88.35 0.87 0.87 93.85 94.59 9422
SSD 89.99 92.98 86.88 89.42 0.88 0.91 9430 96.46 95.38
YOLOX 90.62 9140 90.15 91.66 0.90 0.92 95.75 96.54 96.14
CA-YOLOvV5 90.94 90.76 89.52 92.29 0.90 0.92 96.02 96.90 96.46

Precision/%
Model

mAP/%

3.3 Comparison of the detection effect with other improved
YOLOV5S

In order to verify the improvement of YOLOVS by the method
proposed in this paper, in this section, two types of YOLOv5-based
improvement models were utilized to train and test in the same
environment. One of them is based on image attention mechanism
and the other is based on a lightweight backbone.

Table 5 lists the parameters, model size, and detection speed of
several improved YOLOvVS5 models. The results show that the
number of parameters, model size, and detection speed of CA-
YOLOVS5 are only slightly lower than those of MobileNetv3-
YOLOVSs.

Table 6 lists detection results of several improved YOLOV5
models on the test set, from which it can be obtained that CA-
YOLOVS is only lower than MobileNetv3-YOLOvSs and SENet-
YOLOVS5s in Precision, while it shows significant advantages in
other evaluation metrics. This leads to the conclusion that CA-
YOLOVS has better overall detection performance.

Table 5 Parameters, model size, and detection speed of several

improved YOLOVS
. . Parameters Model Detection
Model Similar studies (Million) size/MB speed
SENet- Qi etal." and
YOLOvS5s Yang et al."¥ 711 27.6 225
ECA-YOLOVS5s Cao et al.b” 7.09 27.5 18.6
CBAM- Wang et al.”" and
YOLOVS5s Lu et al.t¥ 7.13 278 217
GhostNet- )
YOLOVSs Xu et al. 5.61 22.2 20.1
MobileNet v3- 401
YOLOVSs Zhang et al. 3.57 14.1 23.7
CA-YOLOys roposed in this 3.95 15.6 23.0

study

Table 6 Detection results of several improved YOLOVS
models on the test set
Recall/%  Precision/% F1-socre AP/%
H NP H NP H NP H NP
SENet-YOLOvSs 87.67 87.34 89.17 92.47 0.88 0.90 95.27 96.42 95.85
ECA-YOLOvSs 89.25 87.99 88.32 92.43 0.89 0.90 95.09 96.58 95.84
CBAM-YOLOvVS5s 88.20 86.41 86.38 90.95 0.87 0.89 93.83 95.85 94.84

Model

mAP/%

GhostNet-

YOLOVSs 89.36 88.72 87.51 89.72 0.88 0.89 94.47 95.73 95.10
MobileNet v3-

YOLOVSs 77.45 84.75 89.96 87.84 0.83 0.86 92.74 93.91 93.33
CA-YOLOvV5  90.94 90.76 89.52 92.29 0.90 0.92 96.02 96.90 96.46

3.4 Visualization of detection results

In this section, six images on the test set were selected for
visualization, and their labeled results and the detection results of
CA-YOLOVS5 were also visualized, as shown in Figure 11.

Figures 1la-1lc and Figures 11g-11i are original images
labeled by the Labellmg. In these figures, the brown boxes
(software default settings) represent healthy silkworms, and the
light green boxes (software default settings) represent diseased
silkworms. Figures 11d-11f and Figures 11j-111 are detection results
using the trained CA-YOLOVS. In these figures, the blue boxes
represent diseased silkworms, and the red boxes represent healthy
silkworms. The number in the upper left corner of the box is the
probability value predicted by the model. The yellow boxes are
labeled manually which represent undetected or misclassification.

As shown in Figures 1le, 11i, and 11j, all silkworms were
correctly detected, which illustrates the performance of CA-
YOLOVS. There is one undetected silkworm in Figures 11d and 11f,
respectively, overlapping. A  silkworm was
misclassification in Figure 11k, due to its body shape being
relatively small.

Through visualization, it was found that whether the postures of
silkworms are horizontal, vertical, diagonal, or even twisted, CA-
YOLOVS can predict the location boundary of silkworms

owing to

accurately, not to mention the category of silkworms. However,
when 2 silkworms are overlapping, detection reliability may
decrease remarkably. Therefore, future studies should mainly
concentrate on the detection of overlapping silkworms in higher
density, and the early stage of disease when there are only minor
differences between healthy silkworms and diseased silkworms.

4 Conclusions

In this study, a detection method for healthy and diseased
silkworms was proposed using object detection technology. An
image dataset for object detection was constructed, and the most of
images in the dataset contain both healthy and diseased silkworms.
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Note: a-c and g-i are original images labeled by the Labellmg. In a-c and g-i, brown boxes represent healthy silkworms, and light green boxes represent diseased

silkworms. d-f and j-1 are detection results using the trained CA-YOLOVS. In d-f and j-1, the blue boxes represent diseased silkworms and the red boxes represent healthy

silkworms.

Figure 11

State-of-the-art deep learning architectures, such as YOLOVS,
ConvNeXt, and ECANet, were architecturally improved to design a
CA-YOLOVS5 network to effectively and accurately detect healthy
and diseased silkworms in mixed conditions. Based on the results,
the following specific conclusions can be drawn:

1) An object detection-based method was proposed for
identifying and locating healthy and diseased silkworms. which can
predict location information of diseased silkworms in mixed

Visualization of detection results of silkworms

conditions, so as to provide reference for accurate disease control
research and equipment development;

2) CA-YOLOVS5 was proposed based on YOLOvSs, in which
the large kernel with 7x7 dw-conv of ConvNeXt was adopted to
expand receptive fields, and ECANet was added to enhance the
capability of feature extraction. Experiments showed that the overall
performance of CA-YOLOVS is not only better than the original
YOLOVS5 but also better than several one-step models (such as
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Single Shot MultiBox Detector (SSD), EfficientDet, CenterNet, and
so on), as well as improved YOLOVS based on image attention
mechanism and lightweight backbone (like SENet-YOLOVS,
MobileNet-YOLOVS and so on).

Nevertheless, this study still has some deficiencies: 1) The
silkworm density of the dataset in this experiment was less than that
in real-rearing environments, and only partial growth stages of a
single silkworm variety were imaged and detected. Hence, the
diversity and richness of the dataset need to be enhanced; 2) An
image-based approach was proposed to detect the diseased
silkworm, which only considered the visual features of healthy and
diseased silkworms. Other characteristics between healthy and
diseased silkworms, such as morphological and behavioral
characteristics, were not considered. Due to the visual features
depending on image acquisition, which can be affected by the
environment, acquisition equipment, and rearing mode, further
research on multi-feature fusion detection is needed to meet the
practical requirements based on this study. -

In future works, we plan to enrich the diversity of the dataset,
for example, by including more silkworm species and growth
stages. We also aim to focus on behavioral differences between
healthy silkworms and diseased silkworms in the early infection
stages and explore the early detection of diseased silkworms by
fusing behavioral and visual characteristics
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