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Detection of wheat seedling lines in the complex environment
via deep learning

Haibo Lin*%", Yuandong Lu?, Rongcheng Ding'?, Yufeng Xiu'?, Fazhan Yang'?
2. School of Mechanical & Automotive Engineering, Qingdao University of Technology, Qingdao 266520, Shandong, China)

Abstract: Wheat seedling line detection is critical for precision agriculture and automatic guidance in early wheat field
operation. Aiming at the complex wheat field environment, a method of detecting wheat seedling lines based on deep learning
was proposed in this study. Firstly, a rotated bounding box was created to improve the YOLOvV3 model to predict the
approximate position of the wheat seedling line; Then, according to the rotated bounding region obtained by the model, the
wheat seedling line was detected by fitting the extracted center points. Finally, a comprehensive evaluation method combining
angle error and distance error was proposed to evaluate the accuracy of the extracted crop line. By testing images of wheat
seedlings in different environments, the results showed that the mean angle error and distance error respectively reached 0.75°
and 10.84 pixels while the mean running time was 63.83 ms for a 1920x1080 pixels image. And compared to the original
model the improved algorithm model improved the mAP value by 13.2%. The angle error and the distance error of the
improved algorithm model were reduced by 51.4% and 39.7%, respectively. The method proposed in this study can accurately
detect the wheat seedling lines at different stages and it is also suitable for the environments with weeds, shadow, bright light,
and dark light. At the same time, it has a certain adaptability to wheat seedling images with a yaw angle in the shooting process.
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The research results could provide a reference for the automatic guidance of early wheat field machinery.
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1 Introduction

Wheat is one of the main food crops in the world, and the
stability and increase of its output are of great significance to world
food security!"!. Researches have shown that measures such as root
cutting®, fertilization®, and weeding” in early seedling rows can
improve the yield of wheat®. However, field operations were
mainly completed by manual labor or machines with low
automation levels in the past, which suffered high labor intensity,
low efficiency, and high cost'. As an important part of precision
agriculture, the visual navigation technology of agricultural robots
has attracted more and more attention”*. It has been widely used in
crop sowing”, weeding"”, harvesting"', and other links. The
accurate and stable extraction of lines of wheat seedling rows can
provide a reference for autonomous navigation and operation of
wheat field agricultural machinery, which can effectively promote
the intelligent development of agricultural machinery.

At present, many experts and scholars have carried out a lot of
research on the extraction of lines of crops seedling rows, such as
maize, wheat, rice, vegetables, etc. The traditional method was to

Received date: 2022-08-02  Accepted date: 2023-03-24

Biographies: Yuandong Lu, MS candidate, research interest: agricultural
mechanization, Email: 1214398056(@qq.com; Rongcheng Ding, MS candidate,
research interest: agricultural mechanization, Email: 1763501421@qq.com;
Yufeng Xiu, Professor, research interest: agricultural mechanization, Email:
siu263@126.com; Fazhan Yang, Professor, research interest: agricultural
mechanization and automation, Email: fazhany@163.com.

*Corresponding author: Haibo Lin, PhD, Lecturer, research interest: intelligent
agricultural machinery. School of Mechanical & Automotive Engineering,
Qingdao University of Technology, Qingdao, Shandong, China. Tel: +86-
13730929283, Email: linhaibo@qut.edu.cn.

separate crop rows from the background by image processing, and
then fit the navigation line through features such as edge, parallax,
brightness, and projection”'”. The main task was to identify the
characteristics of crops and extract navigation lines using the Hough
transform"**!, The Region of Interest (ROI) method was used to
cluster the feature points”' ¥, and the least square method was used
to fit the navigation line for the clustering parameters. Our team™’
had done some research in this area. Through image segmentation,
affine transformation, and vertical projection, the wheat seedling
line was detected and extracted. Generally, the traditional image
processing method has high requirements on the applicability of the
environment, which is a challenge to improve the stability and real-
time performance of the algorithm in complex farmland
environments.

In recent years, with the increase in data volume, the innovation
of algorithms, and the improvement of computing performance,
deep learning has been applied to the agricultural machinery field.
In the process of learning samples by combining neural networks,
deep learning forms an abstract high-level to discover distributed
features and attributes of data by combining low-level features.
Therefore, the deep learning method is characterized by high
detection accuracy and strong adaptability®*. Target detection
algorithms in deep learning have been widely used in crop
recognition. Liu et al.” used the Faster R-CNN model and SSD
model to identify rice seedlings. Pang et al.”” adopted MaxArea
Mask scoring RCNN model to detect maize seedling rows, which
could ignore the direction, shape, and intersection angle. Khan et
al.P" developed a deep learning system for weed and crop
identification in farmland, the overall average identification
accuracy of crop and weed was 94.73%. Liu et al.”” adopted the
YOLOV3 model to detect tomatoes, it was found that the model has
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certain robustness to different light and shelter conditions in the
environment.

However, there are few researches on target detection
algorithms used to identify crop rows. The main reason can be
attributed to that the horizontal bounding box was usually used by
the target detection algorithm to annotate the target, while the crop
rows show a large tilt angle during imaging. If crop rows are
annotated as a whole column, it would result in too many
background areas and other crop rows being included in the box,
which is not conducive to training the model and extracting lines of
crop rows. Aiming to solve the problem, Zhang et al.** adopted
annotating method of crop rows segmentation. Ma et al.?* proposed
a rotatable text detection box, which could detect text in any
direction. Neves et al.’ detected underwater targets with a
predicted rotated bounding box. Koirala et al.* evaluated the
flowering level of trees by measuring panicle number with rotated
bounding boxes. Yu et al.?” annotated strawberries with a predicted
rotated bounding box and determined the picking point of the
strawberry based on rotated bounding boxes. Li et al.” positioned
ships accurately with rotated bounding boxes. Compared with the
horizontal bounding box, the rotated bounding box adds a rotation
angle parameter, thus the position of the target can be more
accurately reflected.

In order to improve the accuracy of wheat seedling line
recognition, a deep learning method based on YOLO was proposed
in this study. YOLOvV3 has achieved a better balance in speed,
accuracy, versatility, and complex scenarios than others. So in this
study, firstly, the YOLOvV3 model was improved to output a series
of rotating recognition regions that vary with wheat seedling lines;
secondly, in the rotating region, the feature points for wheat
seedlings in the bounding box were extracted by the defined gray
threshold value, and the center points for wheat seedling rows were
extracted by moving the circular window; finally, in order to more
accurately judge the accuracy of the navigation line, a
comprehensive evaluation method combining angle error and
distance error was proposed to evaluate the accuracy of the
extracted crop line.

2 Materials

2.1 Image acquisition

The images of wheat seedlings in this research were acquired
from the Base for Intelligent Wheat Root-cutting and Fertilization
Technology Test in Qingdao, Shandong, China. The images were
all taken from February to April 2021 when it is suitable for
machine operations in the field. Figure 1 shows a schematic
drawing of the image acquisition process. Images were captured by
two mobile phones with different models (Play4TPro, HONOR,
China; K30, MI, China). During shooting, the camera is 100-150 cm
high from the ground, and the angle between the camera’s optical
axis and the horizontal line is 30°-60°. The field of view distance of
the image would be too large and the wheat seedling rows in the
image would be too dense when the angle is less than 30°, which is
not conducive to the detection of the lines for the wheat seedling
rows. The field of view distance of the image would be too small
and the length of wheat seedling rows in the image would be too
short when the angle is greater than 60°, which would affect the
extraction accuracy. To fully capture the posture of wheat seedlings,
the two cameras were taken along the different directions of wheat
seedling rows to collect the images, as shown in Figure 1.

Wheat takes about 8§ months from planting to harvest, which
are divided into 12 growing cycles. After going through the

overwintering period, wheat seedlings enter the turning-green stage
and begin to grow. The field operations in this stage are helpful to
the growth and yield of wheat. Therefore, the images of wheat used
in this study were collected in the period. The images were saved in
JPEG format with resolutions of 4624x3472, 4000x3000, and
1920x1080 pixels. To standardize the sample images, the
resolutions of 4624x3472 and 4000x3000 pixels were converted to
1920x1080 pixels. The conversion schematic drawing is shown in
Figure 2. In the conversion process, the width of the image was
taken as the benchmark, the height was calculated at the ratio of
16:9 (1920:1080), and the redundant parts were removed. Finally,
the image was sampled down to 1920%1080 pixels, and the bilinear
interpolation method was used in this process owing to its
simplicity and effectiveness.
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Figure 1 Schematic drawing of the image acquisition process

2.2 Image set expansion

A total of 600 images were collected during the turning-green
stage. To expand the image set, the images were expanded by
changing brightness, rotating, mirroring, and adding noise. Some of
the results are shown in Figure 3.

3 Methods

3.1 Overall approach

In order to achieve accurate extraction of lines for wheat
seedling rows in complex environments, the improved YOLOV3
model was proposed to extract the feature points for wheat
seedlings by changing the original lateral bounding box to a
rotatable bounding box. Meanwhile, the center points for wheat
seedling rows were extracted by a moving circular window. Then,
the center points of each wheat seedling row were fitted based on
the least square method.

3.2 Prediction model of wheat seedling rows based on
improved YOLOV3
3.2.1 Overview of YOLOvV3 model

YOLOVS3 is one of the most popular target prediction models,
which is a fully convolutional neural network based on regression.
The location information of the target can be predicted accurately
and efficiently by the YOLOv3 model™.

The network structure of the YOLOv3 model is shown in
Figure 4. Firstly, the input image size is converted to 416%
416 pixels, which is then fed into the Darknet-53 basic network for
feature extraction. In Darknet-53, the convolution with a step size of
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Original image Image segmentation Down sam pling
871 pixels
1080 pixels
2601 pixels
1920 pixels
4624 pixels | |
4624 pixels
3000 pixels +
1080 pixels
2250 pixels
[ | 1920 pixels
4000 pixels
4000 pixels
Figure 2 Schematic drawing of image conversion
a. Sample image b. Increase brightness c. Reduce brightness d. 10° Clockwise rotation
e. 20° Clockwise rotation f. 30° Clockwise rotation g. —10° Clockwise rotation h. —20° Clockwise rotation
1. —30° Clockwise rotation j. Horizontal mirror k. Add salt and pepper noise 1. Add gaussian noise
Figure 3 Examples of image set extension
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Figure 4 YOLOV3 network structure used in this study
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2 is used for down-sampling, which can save more information on
the image while reducing the computation. To avoid the case of less
location information in the middle and high levels of the
convolutional neural network, a feature pyramid network is used to
fuse feature maps of different levels in this YOLOv3 model. The
output three-layer feature map is used to predict the targets at
different scales, and the final prediction result is determined by the
non-maximum suppression algorithm.
3.2.2 Annotation of the rotated bounding box

In this research, a rotated bounding box was used to replace the
original horizontal bounding box in YOLOvV3. Figure 5 shows the
schematic drawing of annotating two different types of bounding
boxes. Figure 5a is a horizontal bounding box, and Figure 5b is a
rotated bounding box. Compared with the horizontal bounding box,
the rotated bounding box contains a smaller background area and
fewer other rows of wheat seedlings.

b. Rotating bounding box annotation

a. Horizontal bounding box annotation

Figure 5 Annotation of horizontal bounding box and rotated
bounding box

The annotation parameters of the rotated bounding box are
expressed as (x, y, w, h, @), as shown in Figure 6, where (x, y)
represents the coordinates of the center point of the rotated
bounding box, w, and 4 represent the width and height of the rotated
bounding box, respectively, and a represents the clockwise rotation
angle of the bounding box around the center point (x, y). The unit of
a is radian, and the o value is in the range of [0, ©). In Figure 6a,
0=0. In Figure 6b, @ € (0, %) In Figure 6¢, a € (%,n). According
to the distribution of wheat seedling rows in the captured images
(Figure 6), it can be found that:

1) The a value of the bounding box annotated in the right half

pg
of the image is in the range of (E’ﬂ ) . The closer the bounding box

is to the right edge of the image, the smaller the a value is. The
closer the bounding box is to the center of the image, the larger the
a value is.

2) The a value of the bounding box annotated in the left half of

Fd
the image is in the range of (0, 5) . The closer the bounding box is

to the left edge of the image, the larger the o value is. The closer the
bounding box is to the center of the image, the smaller the a
value is.

| w

=0 b.sz(O,g) c.a E(g,ﬂ:)
Figure 6 Three positions of the rotated bounding boxes

3.2.3 Generation of the rotated bounding box
Before the training, the k-means algorithm was used to cluster

the size and rotation angle of the bounding box respectively.
Considering that there are three feature maps with different scales
output by the YOLOvV3 model and the regression of feature maps of
each scale was equipped with three candidate bounding boxes,
therefore nine bounding boxes with different sizes were required. In
this study, 208x1117, 241x1049, and 350x987 were assigned to the
13x13 feature map to predict large wheat seedling rows. 154x479,
203x559, and 243x511 were assigned to the 26x26 feature map to
predict medium-sized wheat seedling rows. 116x213, 127x299, and
243%242 were assigned to the 52x52 feature map to predict small
wheat seedling rows. According to the statistics of the number of
wheat seedling rows in the image, the number of candidate rotation
angles was set to 6, which were 0.01 rad, 0.18 rad, 0.34 rad, 2.68
rad, 2.86 rad, and 3.05 rad, respectively.
3.2.4 Loss function

The loss function needed to be optimized to obtain the ideal
model. The part related to multi-classification prediction in the loss
function was removed as only wheat seedling was taken as targets
in this research. At the same time, the smooth-L1 loss function was
used to represent angle prediction losses®™. The rest of the loss
function was the same as that of the traditional YOLOv3 model.
The loss function is shown as follows:

Loss = Lg + LX‘_\’ + Lw,h + Lconf (l)
Z Z I¥smooth, (@) — &) 2)
=0 j=0
he () 0.5, if [x] <1 3)
smooth,, (x) =
- |x| = 0.5, otherwise

b= C°°'dZZ’°”[(x/-f{>2+(y{ -9 (4)

=0 j=0
s B
bt S (V- V) (- VY] 9
=0 j=0
Lo =—Zzpbj &llog (/) + (1-¢!) log (1-¢/)] -
=0  j=0
52 B
Anoon Z Z 1" [ellog(c)) + (1 - &)log(1 - c) | (6)
=0  j=0

where, S? represents the size of the output feature map (S=13, 26,
52). B represents the number of candidate bounding boxes for each
grid in the feature map (B=3X6). I}
candidate bounding box in the ith grid is responsible for target
detection. If so, ¥ = 1; Otherwise, I} =

ij
bj
I} o/, and &

represents whether the jth

0. I'*™is the opposite to
&; represent the predicted and actual rotation angle of
the jth candidate bounding box in the ith grid, respectively. A oo
and A,,0,; are used to balance the training loss of the bounding box
and confidence, respectively. (x/, ¥/) and (3/ %/, 97) represent the
predicted and actual coordinates of the center point of the jth
candidate bounding box in the ith grid, respectively. w/ and h/
represent the predicted size of the jth candidate bounding box in the
ith grid, respectively. W/ and i/ represent the actual size of the jth
candidate bounding box in the ith grid, respectively. ¢/ and
¢/represent the predicted and actual confidence of the target in the
jth candidate bounding box in the ith grid, respectively.
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3.3 Detection of the lines for wheat seedling rows
3.3.1 Extraction of the feature points

The line of wheat seedling row is extracted based on the
predicted rotating bounding box. In this paper, the center lines of
wheat seedling rows are extracted based on the predicted rotated
bounding box, which can improve extraction efficiency by reducing
background area. However, only a small part of the wheat seedling
row is contained in some bounding box in the image, and the center
lines extracted based on this region cannot accurately represent the
wheat seedling row. This part of the bounding box is usually located
at the edges of both sides of the image, and its height is not higher
than half of the height of images. Therefore, bounding boxes are
excluded when their height is less than half of the height of the
images in this study.

The edge points of wheat leaves were taken as the feature

points for wheat seedlings as the wheat leaves were an important
feature of wheat seedlings. Then, the image was converted to a gray
image through the H channel in HLS color space. The extraction
method of the feature points is shown as follows:

b {1, (erey,,,—T) (grey,,,—T) <0 o

Y 0, Otherwise

where, grey;; represent the gray value of the image at point (i, j). T
represents the gray threshold. If P, =1, it indicates that the point
(i, j) is the feature point for wheat seedling.

The extraction process of feature points is shown in Figure 7.
The red bounding box in Figure 7a is the predicted rotation
bounding box. Figure 7b is the top-down scanning process. The red
points in Figure 7c are the feature points extracted from the image.

fR &

a. The rotating boundingbox predicted

b. The process of scanning

Grey value

1080 1130 1180 12
The column number(pixels)

c. The feature points extracted

Figure 7 Extraction process of feature points

3.3.2 Extraction of the center points

A large number of feature points are extracted and spread
throughout the whole bounding box. In this study, the center points
of wheat seedling rows were extracted to ensure the fitting accuracy
of the lines. The extraction process is shown in Figure 8. A moving
circular window (black circle) is defined, which moves from the
middle point of the upper edge of the bounding box to the middle
point of the lower edge of the bounding box along a straight line.
During the moving process, the average value of the coordinates of
the feature points inside the window is calculated and taken as the
center point of the wheat seedling row (blue point). The specific
process is as follows:

c. End

a. Start b. Process

Figure 8 Extraction process of the feature points

Step 1: Calculate the coordinates of the four vertices of the
rotated bounding box. The position coordinates of the four vertices
of the bounding box before rotation were calculated based on the
center point (x, y), the width w, and the height % of the rotated
bounding box output by the model. The four vertices are the upper

h
left vertex P, (x—g,y—§>, the upper right vertex P, ()H—g,
h . w h
y—i , lower right vertex P; (x+ E,y+ E)’ lower left vertex

h
P, (x— %, v+ E) , respectively. Then, the coordinates of the four

vertices P, P;, P}, P, after rotation are calculated according to the
rotation angle a. The calculation equations are shown as follows:

X, = (x;— x)cosa — (y; — y)sina + x; ®)

¥ = (X = x)sina + (y; — y)cosa +y; ©)
where, (x;, ;) is the vertex coordinate before rotation, and (x],y!) is
the vertex coordinates after rotation, i=1, 2, 3, 4.

Step 2: Determine the starting point, end point, and moving
path of the circular window. The starting point and end point of the
moving circular window, respectively, are set to the center points of
the upper and lower edges of the rotated bounding box. The moving
path of the circular window is set to a straight line from the start
point to the endpoint. The start point and end point are dependent on

the rotation angle o. When 0 < < %, the start point is the midpoint
of P and P}, and the endpoint is the midpoint of P} and P,. When

P
) <@ <7, the start point is the midpoint of P, and P}, and the

endpoint is the midpoint of P| and P;. The equation of the moving
path can be derived from the start point and end point. When =0,

the equation of the moving path is X=x. When 0<a<mr, the equation

of the moving path is Y=kX+b, k=tan (g —a) , b=y-

bl
X-tan (5 - a) .
Step 3: Calculate the coordinates of the center points of wheat

w
seedling rows. The circular window was defined with a radius of 5

moves from the start point to the end point along the chosen path.
When the circular window moves to a new position, the average
value of abscissa and ordinate of all points in the circular window
are calculated respectively, which is taken as the center point for the
wheat seedling row.

The feature points and center points extracted from the image
are shown in Figure 9. It can be seen from Figure 9 that the
distributions of center points and center points are consistent with
the actual photos.
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Figure 9 Feature points and center points extracted

3.3.3 Fitting of the lines of wheat seedling rows

Through optimization, the number of wheat seedling row center
points is greatly reduced compared with the number of wheat
seedling feature points. Here, the least square method is used to fit
the center points due to its advantage of fast fitting and good effect.
The best function for the data can be found using the least square
method by minimizing the sum of the squares of error. The
advantage of the least square method is more significant when the
number of points is less.
3.3.4 Evaluation method of extraction effect

The evaluation method combining angle and distance is
adopted to effectively evaluate the error between the extracted lines
and the ideal lines. As shown in Figure 10, Line 1 (red dotted line)
represents the extracted lines. Line 2 (red solid line) represents ideal
lines. O represents the angle between the two lines. 4 and B
represent the intersection of two lines and the upper edge of the
image, respectively. C and D represent the intersection of two lines
and the lower edge of the image, respectively. In addition, d,
represents the vertical distance from point A to Line 2, and d,
represents the vertical distance from point C to Line 1.

Figure 10 Schematic drawing of evaluation method

The angle 4 and distance J represent the errors in position and
distance between the extracted lines of the wheat seedling row and
the ideal lines, respectively. The calculation equations are shown as

_ -1 |kl_k2|>
0= tan (l+k1kz (10)

follows:

koXy —ya+by

VE+1

kyXc —yc +b,
Vik+1

d= # (13)

d, = (ll)

d, = (12)

where, k, represents the slope of Line 1. k, and b,, respectively,
represent the slope and intercept of Line 2. As can be seen from the
formula, the smaller the angle and distance, the more accurate it is.

4 Results and analysis

4.1 Test platform
All processes in this research were run on the same computer,

which was configured with Intel(R) Core(TM) 17-10700F CPU,

2.90 GHz, 16 GB operating memory, and NVIDIA GeForce

RTX 2060 GPU. The algorithm was written with Python 3.7 in

Windows 10.

4.2 Analysis of target prediction performance

There are 7200 wheat seedling images contained in the image
set in this study. The training set accounts for 80% (5760 images)
while the test set accounts for 20% (1440 images). In addition, 80%
of images (4608 images) in the training set are used for the selection
of model parameters, and the other 20% of images (1152 images)
are used for the verification of the model. The number of iterations
of training is set to 5000 to obtain a stable and accurate prediction
model.

Overlap coefficient (OC) was adopted to improve the
prediction accuracy. OC refers to the ratio of intersection and union
between predicted and real bounding boxes, and its calculation
method is shown as follows:

Co ApNA;
ApUA;

(14)

where, 4p and A4, represent the predicted and real bounding box
regions, respectively. The OC value ranges from 0 to 1. The larger
the value is, the closer the predicted bounding box is to the real
bounding box. Through continuous debugging and comparison
results, the prediction precision of wheat seedling rows is better
when the value of OC is higher than 0.85.

The evaluation indexes of the model include precision (P),
recall rate (R;), mean average precision (mAP), the harmonic
average of P and R, (Fl-score), etc. The calculation equations are
shown as follows:

p= T,,T+PF,, x 100% (15)
T, .
Ry= = X 100% (16)
1 N
mAP = EZP(i)ARO 0 (17)

i=1

R s 100% (18)

F1 2P,
—score =
P+R,

where, T, represents the number of positive samples correctly
classified; Fp represents the number of samples incorrectly
classified as positive; Fy represents the number of samples
incorrectly classified as negative.

The mAP is used to evaluate the performance of the model. The
higher the value, the better the prediction effect of the model.

In this research, 1440 images from the test set were adopted to
evaluate the performance of the model, and the results showed that
the mAP was 81.2%. By analyzing the prediction results of the
images in the test set, it can be found that a better prediction effect
can be obtained when the edge contour of both sides of the wheat
seedling row in the image is more significant. Figure 11 shows the
prediction results for the wheat seedling row. It can be seen from
the figure that the predicted positions of wheat seedling rows are
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identical. However, the prediction results become worse when the
wheat seedlings are so dense that the leaves of two adjacent rows
cross. It is difficult for even people to identify the exact position of
its contours. In addition, the shooting angle and height would also
affect the prediction results. The smaller the angle between the
optical axis of the shooting head and the horizontal plane or the
lower the shooting height, the more likely the wheat contour far
away from the shooting equipment is to be sheltered, which would
result in lower prediction accuracy.

Figure 11 Prediction results of wheat seedling rows

The horizontal bounding box in the original YOLOv3 model
was used as the control group to verify the effectiveness of the
rotated bounding box in predicting wheat seedling rows. There are
two annotation methods for horizontal bounding boxes: 1) annotate
a row of wheat seedlings with one box; 2) annotate a row of wheat
seedlings with multiple boxes. In order to ensure the comparability
of the final prediction results, the training set and test set are the
same as this research except for the difference in annotation
methods. The results show that the mAP of the two methods was
59.2% and 76.8%, respectively. The precision of annotating a row
of wheat seedlings by the horizontal bounding box with one box is
the lowest. This can be explained by that most of the wheat seedling
rows in the image are tilted. Annotating with a horizontal bounding
box would cause the OC value of the bounding box of two adjacent
wheat seedling rows to be too large. The number of prediction
boxes would be smaller than the actual number of wheat seedling
rows if the OC value is reduced. Conversely, the number of
prediction boxes would be larger than the actual number of wheat
seedling rows if the OC value is increased. Therefore, it is difficult
to determine the OC values to obtain good model performance.
Since the number and position of the bounding boxes in a wheat
seedling row are uncertain, the effect of annotating a wheat seedling
row with multiple boxes is not ideal, which is also the main reason
for the high loss value of this method. In contrast, the method
proposed in this study is more suitable for predicting wheat
seedling rows.

4.3 Determination of extraction step sizes of feature points and
center points

The extraction of feature points and center points is very
important for the lines of wheat seedling rows. The detection
precision of the lines of wheat seedling rows is higher and more
stable in the case of all feature points and center points are
extracted. However, this is unnecessary and time-consuming.
Therefore, an appropriate extraction step size was selected to ensure
the detection effect of lines of wheat seedling rows while reducing
the amount of calculation in this study.

There were 50 images randomly selected from the test set to
determine the extraction step sizes of the feature point and center
point, a total of 235 wheat seedling rows were expected to be
extracted. Figures 12-14, respectively, show the mean angle error,
mean distance error, and mean running time of the extracted center

lines of wheat seedling rows with different step sizes during feature
point extraction and center point extraction. The abscissa in
Figures 12-14 is the step size in the vertical direction during the
process of feature point extraction. The step length traversed in the
horizontal direction was set to half of the step length traversed in
the vertical direction owing to the length of most bounding boxes in
the horizontal direction being lower than that in the vertical
direction. In the process of center point extraction, only the step size
in the vertical direction was considered. The curves of different
colors in Figures 12-14 correspond to different step sizes selected
during center point extraction.
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It can be found from Figure 12 that the corresponding mean
angle error is low when the feature extraction step size is 2 to 10.
The mean angle error increases greatly with the increase of feature
extraction step size. The main reason is that the number of extracted
feature points is too small to fit accurate lines when the step size is
large. The same is true of the relationship between the step size of
center point extraction process and the mean angle error.

In Figure 13, the relationship between step size and mean
distance error is similar to that in Figure 12. However, when two
lines are at the same angle, the distance between them may vary,
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therefore, the fluctuation of the mean distance error in Figure 13 is
more drastic. This also reflects that it is one-sided to evaluate the
detection precision of lines only using the angle error. As a result,
the detection precision of lines can be more accurately evaluated by
combining angle error and distance error.

Figure 14 shows the relationship between step size and mean
running time. It can be found that the mean running time decreases
with the increase in step size, regardless of feature point extraction
and center point extraction. The tendency is more significant when
the step size is not larger than 6. Then, the mean running time
gradually flattens out with the further increase in step size. The
whole running time contains two parts: the running time of wheat
seedling row prediction and the running time of line extraction. The
increase in step size can only reduce the running time of line
extraction. Therefore, the running time cannot be infinitely reduced
by changing the step size.

The linear weighting method combining angle error, distance
error, and running time is used to select step size. The expression
can be shown as follows:

. " 1

Xgigyzw,ﬁ(x,y) (19)
i=1

where, x and y represent the traversal step in the vertical direction

during the extraction of feature points and center points,

respectively; X={2, 4, 6, 8, 10, 12, 14, 16}; Y={1,2,3,4,5,6,7, 8,

9, 10}; m=3; w; represents the weight of the ith variable; fi(x, »)

2021.02.25 2021.03.11

represents the normalized value of the ith variable when the
traversal step size in the vertical direction during extracting the
feature point is x, the traversal step size in the horizontal direction

X
during extracting the feature point is 5 and the traversal step size

during extracting the center point is y.

Each value of the variable is normalized to eliminate the
influence of different units and value ranges on the results. Finally,
in the process of feature point extraction, the step size in the vertical
direction is set to 8, the step size in the horizontal direction is set to
4, and the step size in the process of central point extraction is set
to 10.

4.4 Analysis of the detection effect of lines

The wheat seedling, wheat field environment, and shooting
angle were discussed to verify the detection effect of center lines in
this paper. As for the wheat seedling itself, the influence of different
morphology of wheat seedlings caused by different growth stages
on the extraction method of the center line was analyzed. As for the
wheat field environment, the influence of weeds, shadows, and
different brightness of light in the process of shooting on the
extraction method of the center line was analyzed. As for the
shooting angle, the influence of the yaw angle during shooting on
the extraction method of the center line was analyzed.

Figure 15 shows the detection effect of center lines of
representative images in four time periods. The four images were
taken on February 25, 2021, March 11, 2021, March 25, 2021, and
April 7, 2021, respectively. It can be found from Figure 15 that the
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Figure 15 Detection effect of lines in different periods


https://www.ijabe.org

October, 2024

Lin HB, etal. Detection of wheat seedling lines in the complex environment via deep learning

Vol. 17No.5 263

contour of the wheat seedlings is clear in the first period when
wheat seedlings begin to grow after winter. The position of wheat
seedling rows can be accurately predicted by the improved
YOLOV3 model. The seedlings’ rows become wider as the wheat
grows, resulting in more leaves of two adjacent wheat seedlings’
rows being crossed. Although the bounding box inevitably contains
other wheat seedling rows, the approximate position of wheat
seedling rows can still be predicted.

It can be found from Figure 15 that the color of wheat seedlings
in different periods is slightly different. Therefore, gray threshold 7
plays an important role in feature point extraction. The number of
feature points would decrease if the value is too large or too small,
and then the precision of the fitted line would decrease. As a result,
T values would vary with different periods. After a large number of
tests, it is found that the 7 value is appropriate to be set as 30 to 35
in the early turning-green stage, 35 to 50 in the middle turning-
green stage, and 50 to 55 in the late turning-green stage. In this
study, the 7 values of the four time periods in Figure 15 are set to
30, 40, 40, and 50, respectively.

‘Wheat seedling rows predicted Feature points extracted

Figure 15d is the extracted center point, which reflects the
central position of the wheat seedling row. Figure 15¢ shows the
center lines of wheat seedling row fitting based on the least square
method. It can be seen from Figure 15 that the precision of the lines
of the wheat seedling row is high, while the precision of the lines on
both sides is low. This is because the scale of the predicted
bounding boxes on both sides of the image is smaller, and the
number of extracted center points is less, leading to a larger error in
the predicted lines of wheat seedling rows.

During the image acquisition, the shooting environment
changes with the change of shooting location and time. The
extraction of lines of wheat seedling rows is also affected by the
complex environment. Figure 16 shows the detection effect of the
center lines in case of the situations of weeds, shadow, strong light,
and dark light. As can be seen from Figure 16, wheat seedling row
prediction and center point extraction are not affected by weeds,
shadow, strong light, and dark light. Therefore, the method
proposed in this research has a certain anti-interference to weeds,
shadow, and light.

Center points extracted Final result

light

d. Dark ligbt

Figure 16 Extraction effect of lines in different wheat field environments

In reality, there is inevitably a certain yaw angle in the process
of image acquisition due to the uneven ground, mechanical
vibration, and linear error of the crop line. Therefore, a stable
extraction method of center lines should also be suitable for images
collected when the yaw angle of the camera is not 0. The images
with certain yaw angles are simulated by images rotated at different
angles to verify the influence of the yaw angle on the extraction
accuracy of the method proposed in this research. Figure 17 shows
the detection effect of center lines when the image is rotated at 10°,
20°, and —30°. As can be seen from Figure 17, image rotation has no
significant influence on the extraction of center lines. Therefore, the
extraction method of center lines based on the improved YOLOV3
model is effective and has certain adaptability to wheat seedling

images with yaw angle.

Table 1 lists the detection results of the center lines of wheat
seedling rows according to the specific classification mentioned
above. The images for each specific classification contained 50
images from the test set. It can be seen from Table 1 that the
extraction effect is significantly affected by the shooting time. The
extraction accuracy of the center lines decreases as well as the
running time increases slightly with the growth of wheat seedlings.
However, the proposed method shows certain stability for images
with weeds, shadows, bright light, dark light, and yaw angles.
Finally, the mean angle error of the extraction results is 0.75°, the
mean distance error is 10.84 pixels, and the mean running time is
63.83 ms.
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a. 10° clockwise rotation
b. 20° clockwise rotation
c. —30° clockwise rotation
Figure 17 Extraction effect of lines at different yaw angles
seedling rows was proposed. The following conclusions were
Table 1 Extraction results of lines for wheat seedling rows obtained by testing the wheat seedling images:
_ Thespecific classification  Mean /0.0 Mean running 1) A rotated bounding box was created to improve the
Classification (date style: angle X . . .. . .
YearMonth.Day)  error/(®) CTOv/pixels  time/ms YOLOv3 model to predict the position of the wheat seedling line.
2021.02.25-2021.02.27 050 6.34 62.42 The test results showed that the method proposed in this research
Shooting 2021.03.11-2021.03.12 058 6.19 63.16 could accurately detect the center lines of wheat seedling rows at
time 2021.03.25-2021.03.26 0.92 12.39 67.59 the turning-green stage. The mAP of the improved model was
2021.04.09-2021.04.12 1.32 21.48 73.82 improved by 13.2%. The method was also suitable for wheat
Weeds 0.81 13.63 64.73 seedling rows detection in the presence of weeds, shadow, bright
Shooting Shadow 0.65 10.26 65.91 light, and dark light. The method had certain adaptability to wheat
environment Bright light 0.57 6.81 63.29 seedling images with yaw angle in the shooting process.
Dark light 0.77 9.46 64.51 2) An evaluation approach of row lines based on angle and
The yaw Rotated 10° 0.61 8.24 58.19 distance was proposed. The results showed that the mean angle
angle Rotated 20° 0.69 9.69 57.94 error was 0.75°, the mean distance error was 10.84 pixels, and the
simulated Rotated 30° 0.85 14.75 60.67 mean running time was 63.83 ms for a 1920x1080 pixels image.

Table 2 lists the evaluation statistics of 50 wheat seedling
images in different periods of the turning-green stage. From Table 2,
the extraction accuracy of the proposed algorithm is better than that
of the previous algorithm, especially in the late greening period,
where the distance error and angle error of the previous algorithm
are twice as much as that of the proposed algorithm.

Table 2 Evaluation of wheat seedling lines at different times

under two models
Model Category Distance error/pixel ~ Angle error/(°)
Early greening 10.52 1.06
Mid-greening 9.36 0.89
Improved model .
Late greening 13.61 1.15
Mean value 11.16 1.03
Early greening 22.67 1.79
L Mid-greening 16.34 1.53
Original model .
Late greening 31.64 3.06
Mean value 18.50 2.12

5 Conclusions

Aiming at the complex wheat field environment, a stable and
accurate detection method for the center lines extraction of wheat

The angle error and distance error of the improved model were
reduced by 51.4% and 39.7%, respectively.

At present, there are still some problems that need to be solved,
such as whether the accuracy of wheat seedling row center line
extraction detection method can be improved for crop rows with
crop defects. In the future, we should further optimize the model
and conduct in-depth research on crop rows with crop defects to
improve the accuracy of detection.
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