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Abstract: The non-destructive recognition of coated seeds is crucial for advancing studies in coating theory. Currently, the
recognition of coated seeds heavily relies on manual visual inspection and machine vision detection. However, these methods
pose challenges such as high misclassification rates, low recognition efficiency, and elevated labor intensity. In response to the
aforementioned challenges, this study leveraged deep learning techniques to develop a coated seed recognition model named
YOLO-Coated Seeds Recognition (YOLO-CSR), aiming to address the challenges posed by coated seed recognition tasks. The
experiment of this study mainly includes the following steps: First, a seed coating machine was set up to coat red clover seeds,
resulting in three types of coated red clover seeds. Subsequently, by collecting images of the three types of coated seeds, a
coated seed image dataset was further constructed. Then, the YOLOvVSs was built, incorporating the Convolutional Block
Attention Module (CBAM) into the model’s backbone to enhance its ability to learn features of coated seeds. Finally, the
training results of YOLO-CSR were compared with those of other classical recognition models. The experimental results
showed that YOLO-CSR achieved the best recognition performance on the self-built coated seed image dataset. The average
precision (AP) for recognizing the three types of coated seeds reached 98.43%, 97.91%, and 97.26%, with a mean average
precision@0.5 (mAP@0.5) of 97.87%. Compared to YOLOvV5, YOLO-CSR showed a 1.18% improvement in mAP@0.5.
Additionally, YOLO-CSR has a model size of only 14.9 MB, with an average recognition time (ART) of 10.1 ms and a frame
per second (FPS) of 99. Experimental results prove that YOLO-CSR can accurately, efficiently, and rapidly recognize coated
red clover seeds. The findings of this study provide technical support for the non-destructive recognition of spherical
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1 Introduction

As the initial stage of crop growth, seeds play a pivotal role in
agricultural production, serving as a crucial means of production,
and the quality of seeds fundamentally influences agricultural
yields!"?.. Seed coating technology emerges as a promising method
to enhance seed quality, involving the application of coating agents
to augment performance, treatment, and overall plant structure**.
The coating process ensures uniform contact between seeds and
coating agents, resulting in the formation of a smooth and durable
coating film". Coated seeds exhibit a spherical shape with uniform
sizes, including round, oval, and oblate varieties™.

In practical coating processes, the choice of coating
formulations and processes significantly impacts the success rate of
coating®". When delving into coating theory, the selection of
qualified coated seeds becomes imperative for evaluating the
coating’s effectiveness. Traditional seed recognition methods, such
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as manual visual inspection and machine vision recognition, are
currently employed. Manual visual inspection heavily relies on
human judgment, leading to challenges like low recognition
efficiency, a high misclassification rate, and increased labor
intensity!"”. Machine vision-based seed recognition methods extract
shallow features such as color and texture to achieve recognition*.
However, these methods demand strict conditions related to
recognition, background color, and brightness, often resulting in
issues like low recognition accuracy and limited robustness!*.
Overall, traditional seed recognition methods face challenges,
prompting the need for a swift and precise coated seed
recognition technique.

With the rapid development of artificial intelligence, scholars
have achieved excellent results in seed recognition tasks by
employing Convolutional Neural Networks (CNNs)"*". In
traditional pattern recognition methods, identification conditions are
manually set. In contrast, CNNs can automatically learn target
features from the dataset through convolution!**\. Therefore, the
features learned by CNNs are more robust. Simultaneously, seed
features exhibit individual differences, and CNNs learn and
summarize these individual differences. They employ multiple
criteria, such as shape and pattern, to accomplish seed recognition
tasks® . Loddo et al.** built a SeedNet network to classify
multiple types of seeds in datasets, with accuracy rates of 95.65%
and 97.47% on two sets of datasets, respectively, achieving
satisfactory results. Wang et al.”) combined CNNs and Long Short-
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Term Memory (LSTM) to build a spectral image of sweet maize
seeds using CNN-LSTM. The CNN-LSTM performed best, with a
classification accuracy of over 95%. Yu et al.* used a CNNs model
to identify spectral images of okra variety seeds. The CNNs model
achieved the highest accuracy and had the strongest robustness,
with a recognition accuracy of 93.79%. Despite the widespread
application of deep learning in seed recognition tasks, there is
currently limited research on coated seed recognition. On the other
hand, existing seed recognition models have not considered
indicators such as model size and recognition speed. Specifically, in
the practical application process, it is necessary to embed the
recognition model into the identification device to complete the
entire recognition workflow. Therefore, there are certain
requirements for the model size and recognition time. To address
the aforementioned issues, it is essential to develop a fast, accurate,
and robust coated seed recognition model.

You Only Look Once (YOLO), with its unique architecture and
modules, has demonstrated superior performance across numerous
recognition tasks®. With the evolution of the YOLO series
algorithms, YOLOVS5 has gained increasing attention. In previous
studies, YOLOVS has achieved excellent performance in multiple
recognition tasks. Among the four versions of YOLOvV5, YOLOVS5s
stands out with a compact model size of only 14.0 MB, endowing it
with a significant advantage in both model size and recognition
speed. Given the high demands of coated seed recognition models
for model size and recognition speed, and to fill the gap in coated
seed recognition models, this study establishes a high-precision
coated seed recognition model based on YOLOvVSs, named
YOLO-CSR.

This study proposes a recognition method for coated red clover
seeds, which integrates YOLOvSs with an attention module. The
addition of the attention module enables the recognition model to
focus solely on the relevant parts of image information for the task,
filtering out extraneous details. Additionally, various attention
mechanisms are introduced into the YOLOvVSs backbone in this
study, and the training results are further compared. Experimental
findings highlight that the integration of the convolutional block
attention module (CBAM) into the backbone of YOLOvVSs yields
the most significant enhancement in the model’s ability to recognize
coated seeds. Consequently, CBAM was integrated into the
backbone of YOLOVSs, contributing to improving the model’s
ability to learn target features. This method facilitates real-time and
precise recognition of coated red clover seeds, thereby offering
technical support for tasks related to recognizing spherical coated
seeds. The main contributions of this study are as follows:

1) To address the gap in coated seed recognition research, the
recognition model YOLO-CSR was developed.

2) The attention module CBAM was embedded in the backbone
of the recognition model to enhance the model’s recognition
performance.

3) YOLO-CSR has a model size of only 14.9MB and an ART
of 10.1ms, demonstrating its significant advantages in both model
size and recognition speed.

2 Materials and methods

2.1 Related work

The rotating seed coating machine used in this study was
designed and manufactured by the School of Mechanical and
Electrical Engineering at Inner Mongolia Agricultural University in
China. The device includes three main parts: the coating pot, the
control desk, and the electric control table, as shown in Figure 1.

Through the seed coating machine, efficient coating operations can
be conducted on red clover seeds, thereby completing the related
coating works.

1. Electric control table 2. Coating pot 3. Control desk
Figure 1 The rotating seed coating machine

This study used Badong red clover seeds obtained from
farmland in Wuhan, China for the coating process. The details of
the coating procedure are as follows: Soybean powder with a
particle size of 200 ym and diatomaceous earth with a fineness of
100 mesh were mixed in a 5:5 ratio as the coating powder. The seed
powder ratio and liquid seed ratio were 1:3 and supplied in 5
batches. The interval between supply batches was 3 min, and the
total coating time was 30 min. The coating process was performed
in the School of Mechanical and Electrical Engineering of Inner
Mongolia Agricultural University in March 2021.

The coated red clover seeds were divided into 3 types:
qualified, seedy, and broken seeds. Based on pre-experimental
observations, the qualified coated red clover seeds were spherical
with a diameter ranging between 3 mm and 5 mm. The sample of
qualified coated red clover seed is shown in Figure 2a. During the
coating process, several seeds fused into a single coated seed under
the rotational force of the coating pan, and these coated seeds were
defined as seedy coated seeds. The shapes of seedy coated red
clover seeds were irregular, with the majority having an elliptical
shape, and the major axis of the elliptical surface exceeding 5 mm.
Therefore, the maximum diameter of the coated seed was used as
the threshold to distinguish between qualified coated seeds and
seedy coated seeds. The sample of seedy coated red clover seed is
shown in Figure 2b. Observation of the coated seeds with a
magnifying glass found that some of the coated seeds were not fully
covered, resulting in some seed areas being exposed. These coated
seeds were defined as broken coated seeds. The sample of broken
coated red clover seed is shown in Figure 2c.

a. Qualified

b. Seedy c. Broken

Figure 2 Samples of different types of coated red clover seeds

2.2 Dataset

In this study, a dataset of coated red clover seeds was
constructed for subsequent model training and evaluation. The
specific construction details are as follows: Coated red clover seeds
were randomly selected and placed on the experimental platform for
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image capture. The experimental platform backgrounds included
green, red, and gray colors. The images were collected in April
2021 at the Institute of Lakes and Environmental Engineering in the
School of Mechanical and Electrical Engineering. The images of
coated red clover seed were captured using a Canon EOS 600D
(Canon, Japan). The image resolution was 3000 pixelsx4000 pixels,
and the images were saved in JPG format. The shooting height was
controlled between 30 cm and 50 cm to ensure that every seed on
the experimental platform could be captured, and the shooting
height of each image was randomly set. Calculation standards for
coated seed qualification rates vary among countries. Taking China’
s calculation standards as an example, 600 coated seeds were
randomly selected from the test samples and evenly divided into
three groups. Using a magnifying glass for visual observation, the
number of qualified coated seeds in each group was calculated to
determine the coating qualification rate. Considering that the
number of coated seeds tested in a single batch was 200, the number
of coated seeds in each image of the dataset was controlled to be
within 300. All images were captured under indoor lighting
conditions, with the shooting light conditions set randomly. A total
of 1637 original images were collected to construct the coated seed
dataset. Sample images from the coated seed dataset are shown in
Figure 3.

a. Green background b. Red background c. Gray background

Figure 3 Sample images of the coated seed dataset

This study employed the Make Sense online labeling tool. In
this labeling tool, coated seeds in each image were manually
annotated using bounding boxes, classifying them as Qualified,
Seedy, or Broken. As shown in Figure 4, manually label the coated
red clover seeds with a box tangent to the seed outline. A total of
1637 original images of coated red clover seeds were manually
labeled. The coated red clover seeds within orange, blue, and green
boxes represent qualified, seedy, and broken coated seeds,
respectively.

a. Green background b. Red background

c. Gray background

Figure 4 Sample label images of coated seed dataset

After labeling, TXT-format label files were generated for
subsequent model training. As listed in Table 1, the coated seed
dataset was randomly divided into training, validation, and test sets
at a ratio of 8:1:1. The training set comprises a total of 1309 images
of coated seeds. The training, validation, and test sets are mutually
exclusive to ensure the reliability of subsequent evaluations.

Table1 Summary of the coated seed dataset

Qualified Seedy Broken Image .

Datasets quantity quantity quantity quantity Proportion
Training set 20811 10010 10013 1309 80%
Vahs‘g“"“ 2533 869 840 164 10%
Test set 2701 1222 1110 164 10%
Total 26 045 12 101 11963 1637 100%

In the practical application phase, the recognition model needs
to overcome the impact of complex lighting conditions to accurately
complete the coated seed recognition task. Therefore, to enhance the
robustness of the recognition model, we applied random brightness
transformations to the images in the training set. When the training
model can overcome challenges arising from diverse lighting
conditions, it demonstrates the model’s exceptional performance in
completing the coated seed recognition task. Specifically, assuming
the initial brightness of the image is 100%, this study randomly
adjusted the brightness values of training images within the range of
70%-130%. Simultaneously, when the initial contrast of the image
is 100%, the contrast of some training images is adjusted to 70% or
130%. The primary purpose of adjusting contrast is to make the
model more adaptable, enabling it to robustly recognize coated
seeds under a wider range of lighting conditions.

2.3 Coated red clover seed recognition model
23.1 YOLOVSs

The YOLO framework effectively distinguishes target and
background areas to achieve target recognition®**". The YOLOVS5s
is composed of inputs, backbone, neck, head, and output. The
YOLOv5s model used in this study is v6.1. Compared with the
previous v5.0 version, the network structure of v6.1 is more
streamlined.

Specifically, the input section includes image size processing,
mosaic data enhancement, and adaptive anchor box calculation.
Image size processing adds an adaptive minimum black border to
the original image with varying lengths and widths so that the
original image is uniformly resized to the standard size"™. The
mosaic data enhancement method involves randomly cutting and
zooming four pictures, then arranging and splicing them randomly
to form a picture, enriching the dataset, and introducing small
sample targets to enhance the network’s training speed. Adaptive
anchor box calculation utilizes K-means and genetic learning
algorithms to analyze the user-defined dataset and obtain preset
anchor boxes suitable for predicting object boundary boxes in the
dataset.

The backbone network of YOLOvS5s consists of CBS, C3
module, and Spatial Pyramid Pool-Fast (SPPF). The CBS is the
fundamental convolutional unit of YOLOvVSs, consisting of
convolution, normalization, and activation functions. The residual
structure module and CBS module together form the C3 module.
The C3 module incorporates the concept of residual structure and
comprises two branches. The residual structure enhances the
gradient value of back-propagation between layers, preventing
gradient disappearance caused by deepening. Connecting the two
branches through the concat function helps retain characteristic
information from different branches to extract more abundant
feature information. The SPPF module uses three 5x5 maximum
pooling layers to effectively address issues like incomplete image
cropping and shape distortion, obtaining more feature information
by fusing features of different resolutions.

The Feature Pyramid Network (FPN) and Path Aggregation
Network (PAN) structures are employed in the neck network for
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multi-scale feature fusion®**. The FPN structure enhances the
underlying feature map’s semantic information by upsampling from
top to bottom. The PAN structure downsamples from bottom to top,
ensuring that top features contain location information. Finally, the
two features are fused, ensuring that feature maps of different sizes
contain both semantic and feature information, guaranteeing
accurate prediction for images of different sizes.
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The head end comprises three recognition layers with feature
maps of different sizes, used for recognizing target categories”’.
Each recognition layer outputs corresponding vectors, ultimately
generating recognition results and marking the confidence degree,
labeling the bounding boxes and categories of the recognized targets
in the recognition image. The overall structure of the YOLOVSs is
depicted in Figure 5.
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Note: CBS consists of convolution, normalization, and activation functions. & represents the size of the convolution kernel, s represents the stride size, and p represents the

padding size. The residual structure module and CBS module together form the C3 module; SPPF: Spatial Pyramid Pool-Fast; BN: Batch Normalization; SiLU: Sigmoid-

Weighted Linear Unit. Same below.

Figure 5 Overall structure of YOLOVSs

232 CBAM

CBAM comprises both a channel attention module and a spatial
attention module™. The input features initially pass through the
channel attention module, followed by the spatial attention module,
ultimately resulting in weighted outcomes. The structural diagrams
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of the channel attention module and the spatial attention module are
depicted in Figure 6.

The specific process of the channel attention module is as
follows: Initially, the input feature F undergoes Global Max Pooling
and Global Average Pooling operations, yielding two output vectors

Channel attention module
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Note: MLP: Multi-Layer Perceptron.
Figure 6 The structural diagram of CBAM
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through a Multi-Layer Perceptron (MLP)™. The operation of
addition is then applied to these two output vectors, followed by
passing through the Sigmoid activation function, resulting in the
generation of the final channel attention feature. The formulaic

Cx1x1

representation of the weight for each channel M-ER is then
determined. The calculation formula for M. is shown in Equation
(1). The channel attention module is completed by multiplying the
input features F by the channel attention features M (F) to obtain

new features F, expressed as Equation (2).

Mc(F) = o(W(Wo(Fy,)) + Wi(Wo(F7,))) 6]
F' = M(F)®F (@)
where, F,,  and Fg, denote the max-pooled features and the

average-pooled features in channel attention; o represents the
Sigmoid activation function; W, and W, denote the weights of two
layers of MLP perception; ® represents elementwise multiplication.

The input of the spatial attention module is the feature F".
Similar to the channel attention module, the input feature F' first

goes through global maximum pooling and global average pooling,
and the two resulting channels are connected through the Concat
function. Then, a 7x7 convolution is used to compress the channel.
The spatial attention feature MyE R""" is generated through the
Sigmoid activation function®'. The calculation formula of spatial
attention is shown in Equation (3). Finally, the final generated
feature F"' is obtained by multiplying the input feature F' and the
spatial attention feature M (F"), as follows:

My(F) = o(f ™ ([Fy,: Fau) 3
F" = My(F)®F )

where, f™7 represents a 7x7 traditional convolution operation; F,,
denotes the average-pooled features in spatial attention; F?3
denotes the max-pooled features in spatial attention.

As shown in Figure 7, the CBAM module has been integrated
into the backbone of YOLOVS5s to accentuate pertinent information
crucial for coated red clover seed recognition.

Backbone

{ CBS I CBS IC3_1 I CBS I C3_2}I>[ CBS IC3_3 }I{ CBS IC3_1 ISPPFJ

Improved ackbone

[ CBS I CBS I C3_1 I CBS IC3_2 }I{ CBS I C3.3 ICBAM}I{ CBS I C3_1 ICBAMI SPPF }

Figure 7 Schematic of the improved backbone network

2.3.3 YOLO-CSR

To achieve effective recognition of coated red clover seeds, this
study constructed the YOLO-CSR recognition model. The overall
architecture of YOLO-CSR is shown in Figure 8. YOLO-CSR

Backbone

comprises the backbone, neck, and head. The training images
undergo feature extraction through the backbone, and the extracted
features are further processed by the neck before the recognition
results are output from the head.

Figure 8 Overall architecture of YOLO-CSR
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In this study, two sets of CBAM modules were integrated into
the backbone of YOLOvVSs. The YOLOVSs backbone employs a
deep convolutional stacking structure, such as the C3 module, for
detailed and robust feature extraction. Therefore, the last two C3
structures in the backbone extract the most abundant and detailed
features of coated seed characteristics. In summary, we integrated
CBAM behind the last two sets of C3 modules in the backbone,
directing the network’s attention to useful features while enhancing
its ability to learn target characteristics.
2.4 Training parameter settings

In this study, the model was trained using the experimental
platform configured with an RTX A5000 24 GB GPU, and the
operating system is Windows 10 64-bit. The hyperparameter
settings for model training are listed in Table 2. Both the training
and test sets, as specified in Table 1, were employed for model
training and evaluation. The software package CUDA 11.1 was
applied to accelerate the training process. The PyTorch version used
was 1.9.0, and the Python version was 3.8. PyCharm 2021.1.1
served as the development environment.

Table 2 Training results of different classic YOLO
recognition models
Model  Precision/% Recall/% Fl-score Class AP/% mAP@0.5/%
Qualified 80.76

Yotli;?v“_ 85.46 82.12 0.838 Seedy  85.53 83.39
Y Broken 83.87
Qualified 91.05

YOLOvV3 92.87 90.30 0.916 Seedy  93.46 91.44

Broken 89.82
Qualified 95.39

YOLOv4 95.96 93.23 0.946 Seedy  96.04 95.03
Broken 93.67
Qualified 97.08

YOLOvS5s 97.84 95.45 0.966 Seedy  96.62 96.69
Broken 96.37
Qualified 98.43

98.87 96.12 0.975 Seedy 9791 97.87
Broken 97.26

YOLO-
CSR

The hyperparameters for model training are as follows: the
training optimizer is Stochastic Gradient Descent, the number of
training epochs is set to 100, the batch size is 16, the initial learning
rate is 0.001, and the weight decay is set to 0.0005.

2.5 Performance evaluation

Precision, Recall, AP, and mAP@0.5 were employed to assess
the performance of the proposed improved model. After predicting
the test samples, four states of Precision and Recall can be defined:
true positive (TP), true negative (TN), false positive (FP), and false
negative (FN).

The F1 score takes into account both Precision and Recall.
Precision and Recall range from 0% to 100%. The F1 score ranges
from 0 to 1, with a higher score indicating a better training effect of
the model. Precision, Recall, and F1 score are defined as follows:

Precision =

TP
1 0,

TParp < 100% )

Recall =

T 0,

2:Precision-Recall
Flscore = ————————— (7
Precision + Recall

The AP for the three categories of coated red clover seeds is

calculated to obtain mAP@0.5, used to evaluate the performance of
the improved model. The mAP@0.5 is defined as in Equation (8).

N
1

mAP@05 = ,Z P(K)AR(K) (8)
where, C is the number of recognition categories; N is the number
of all pictures in the test set; P (k) represents the Precision when k
images can be recognized; AR (k) is the change in the recall value
when the number of recognized images changes from k—1 to k. The
IoU threshold was 0.5.

Additionally, this study employed ART and FPS to evaluate the
model’s recognition speed. For ART calculation, twenty randomly
selected coated seed images were fed into the recognition model.
The total recognition time was measured, and the final ART value
was obtained by dividing the total time by twenty. The unit for ART
is ms-image™'.

In addition to ART, FPS is another commonly used metric for
assessing object recognition speed, representing the number of
images that can be processed per second. It is calculated by dividing
1000 ms by ART.

1000

Model size, measured in megabytes (MB), refers to the amount
of storage required to store the parameters and architecture of a
particular model. This study used model size to evaluate the weight
of the recognition model.

3 Results and discussion

3.1 Training curves

The training curve of the model is shown in Figure 9. During
the training process, the mAP@0.5 value of YOLOv5s-CSR
increases with the growth in the number of training epochs. Due to
the initially high learning rate during the early stages of training, the
mAP@0.5 value of the model experienced a rapid increase. As the
number of training epochs reached 90, it gradually stabilized.
Ultimately, the mAP@0.5 value of YOLOv5s-CSR settles at
97.87%. From the curves, it is evident that YOLOv5s-CSR
outperforms YOLOVSs in terms of training effectiveness. The
training curve validates that YOLO-CSR can efficiently accomplish
the task of coated red clover seed recognition.

100 [
80 f
S
w
=
®
S 40
g
20 f — YOLOVS5s
— YOLOV5s-CSR
0 , , , ,
0 25 50 75 100

Epoch

Figure 9 The training curves of the training models

3.2 Comparison with different YOLO networks

To evaluate the recognition performance of YOLOvSs-CSR,
classic YOLO series recognition models, including YOLOv4-tiny,
YOLOvV3, YOLOv4, and YOLOvSs, were trained on the coated
seed dataset, and the training results were further compared. A
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summary of the comparative experiment results is listed in Table 2.
From the table, it is evident that YOLO-CSR achieved the best
training results on the coated seed dataset. Specifically, YOLOvS5s-
CSR achieved a Precision of 98.87%, a Recall 0of 96.12%, and an F1-
score of 0.975. The Average Precision (AP) values for the three
types of coated red clover seeds were 98.43%, 97.91%, and 97.26%,
resulting in a mAP@0.5 of 97.87%. In comparison to YOLOv4-
tiny, YOLOv3, YOLOv4, and YOLOvSs, YOLOvS5s-CSR’s
mAP@0.5 surpassed them by 14.48%, 6.43%, 2.84%, and 1.18%,
respectively. Moreover, YOLOv5s-CSR achieved the highest F1
score, surpassing the other model groups by 0.137, 0.059, 0.029,
and 0.009, respectively. In conclusion, among various YOLO series
recognition  models, YOLO-CSR superior
performance in handling coated red clover seed recognition tasks,
making it the final coated seed recognition model in this study.

This study conducted specific tests on the recognition
performance of YOLO-CSR. The specific testing procedure is as
follows: randomly select an image from the test set and input it into
YOLO-CSR for recognition. The recognition results of YOLO-CSR
are shown in Figure 10. From Figure 10, it can be observed that
each coated red clover seed in the image is effectively recognized
and outlined. Among them, qualified, seedy, and broken coated red
clover seeds are outlined in red, pink, and orange boxes,
respectively.

o

demonstrated

quolfied, 0.81  qualified 0.83 quolfied 0.81

A
" |

qualified 0.83
broken 0.78 =
auaiied 0810y dualified 0.80

quolified 0.81
qualified 0.79

qualified 0.81

i

auaiified 0.81 roken 0.78

broken 0.69

qualified 0.82

qualified 0.83

qualified 0.81

Figure 10 Example of coated seed recognition by the YOLO-CSR

3.3 Ablation experiment

To further explore the effectiveness of the improvement
module, this study conducted ablation experiments. Specifically,
two models, YOLOvSs and YOLO-CSR, were set up for
comparative experiments. Considering that the core of ablation
experiments is controlling variables, the training parameters for
both models remained consistent. The evaluation of the two sets of
models was conducted using specific performance metrics. The
results of the ablation experiments are presented in Table 3.

Table 3 Results of ablation experiments
ART Model size FPS

- 0,
Model Fl-score mAP@0.5/% /ms-image MB Jframes-s !
YOLOvS5s 0.966 96.69 9.1 14.4 110
YOLO-CSR  0.975 97.87 10.1 14.9 99

As shown in Table 3, YOLO-CSR achieved an Fl-score and
mAP@0.5 of 0.975 and 97.87%, respectively, outperforming

YOLOVS5s by 0.009 and 1.18%. The comparative results indicate
that the introduction of CBAM significantly improved recognition
effectiveness, further enhancing the model’s performance, and
demonstrating the feasibility of the improvement strategy in this
study. In addition, recognition speed and model size were also
compared. Specifically, YOLO-CSR had an ART of 10.1 ms/image,
reaching an FPS of 99, with a model size of only 14.9 MB.
Compared to YOLOvVSs, YOLO-CSR increased ART by
1.0 ms/image, decreased FPS by 10.0%, and increased model size
by 0.5 MB. The results above suggest that the introduction of two
sets of CBAM modules slightly increased the model size and
decreased part of the recognition speed. Although introducing the
CBAM modules slightly increased the model size and decreased
part of the recognition speed, the impact on the actual application
process is not significant. On the contrary, the introduction of
CBAM broke through the recognition limits of the original model,
significantly improving recognition performance. Therefore, YOLO-
CSR was adopted as the final coated seed recognition model in
this study.
3.4 Comparison of different attention mechanism modules

To explore the effects of introducing different attention
mechanism modules, the multiple groups of attention mechanism
modules were introduced into the backbone of YOLOvSs.
Specifically, the integration positions of each set of attention
mechanism modules align with the improvement strategy adopted in
this study. The attention mechanism modules include the ECA
(effective channel attention) module, SE (sequence and exception)
module, CA (coordinate attention) module, and CBAM module.
The experimental results are listed in Table 4.

Table 4 Results of different attention mechanism modules

Group Model F1 score mAP@0.5/%
1 +SE 0.969 96.71
2 +ECA 0.971 97.03
3 +CA 0.973 97.20
4 +CBAM (Ours) 0.975 97.87

Observing Table 4 reveals that several models with attention
mechanism modules achieved performance improvements. Among
them, compared to other attention mechanism modules, the CBAM
module demonstrated higher recognition accuracy. Specifically,
introducing CBAM resulted in an increase in mAP@0.5 by 1.16%,
0.84%, and 0.67% compared to the introduction of other attention
modules. Simultaneously, the F1 score increased by 0.006, 0.004,
and 0.002, respectively. In summary, the introduction of CBAM led
to the improved model achieving the best recognition performance.
Therefore, this study adopted CBAM as the final enhancement
strategy.

4 Conclusions

In this study, we employed deep learning techniques to detect
three types of coated red clover seeds. We established a coated seed
recognition model named YOLO-CSR, and enhanced the model’s
learning capabilities by integrating CBAM modules, further
boosting the robustness of the recognition model. Ultimately,
through the comparison of experimental results from different
models, we demonstrated that the proposed YOLO-CSR can rapidly
and effectively detect various types of coated red clover seeds. In
future research, we aim to build a coated seed recognition system,
deploy the recognition model on embedded devices, and achieve
real-time recognition of coated seeds. Additionally, while
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optimizing seed recognition algorithms in future studies, there is
potential to extend the algorithm for non-destructive recognition of
other seed types.
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