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Multi-class detection of cherry tomatoes using improved YOLOv4-Tiny
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Abstract: The rapid and accurate detection of cherry tomatoes is of great significance to realizing automatic picking by robots.
However, so far, cherry tomatoes are detected as only one class for picking. Fruits occluded by branches or leaves are detected
as pickable objects, which may cause damage to the plant or robot end-effector during picking. This study proposed the Feature
Enhancement Network Block (FENB) based on YOLOvV4-Tiny to solve the above problem. Firstly, according to the
distribution characteristics and picking strategies of cherry tomatoes, cherry tomatoes were divided into four classes in the
nighttime, and daytime included not occluded, occluded by branches, occluded by fruits, and occluded by leaves. Secondly, the
CSPNet structure with the hybrid attention mechanism was used to design the FENB, which pays more attention to the effective
features of different classes of cherry tomatoes while retaining the original features. Finally, the Feature Enhancement Network
(FEN) was constructed based on the FENB to enhance the feature extraction ability and improve the detection accuracy of
YOLOvV4-Tiny. The experimental results show that under the confidence of 0.5, average precision (AP) of non-occluded,
branch-occluded, fruit-occluded, and leaf-occluded fruit over the day test images were 95.86%, 92.59%, 89.66%, and 84.99%,
respectively, which were 98.43%, 95.62%, 95.50%, and 89.33% on the night test images, respectively. The mean Average
Precision (mAP) of four classes over the night test set was higher (94.72%) than that of the day (90.78%), which were both
better than YOLOv4 and YOLOvV4-Tiny. It cost 32.22 ms to process a 416x416 image on the GPU. The model size was
39.34 MB. Therefore, the proposed model can provide a practical and feasible method for the multi-class detection of cherry

tomatoes.
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1 Introduction

As the subsystems of agricultural picking robots, the vision
system can identify and locate fruit accurately in a natural growth
environment, and it can guide the robot picking end-effector to
smoothly grasp and separate the fruit from the plant to complete
picking tasks'”. The cherry tomato is a variety of tomatoes that
included higher antioxidants and phytochemical compounds in the
greenhouse!”. With the growth of domestic and foreign market
demand, how to detect quickly and accurately cherry tomatoes in
greenhouse environment is particularly important.

Traditional image processing combined with machine learning
methods has been widely studied in fruit and vegetable recognition*,
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but the detection accuracy is limited by light, complex backgrounds,
and environmental information®'. With the development of smart
agriculture, deep learning has shown significant advantages in fruit
detection>"\. Zhang et al.'” proposed a lightweight YOLOv4 for
cherry tomato detection. Xu et al.'” employed the YOLOv3-Tiny to
detect tomatoes and achieved an F1 score of 91.92%. Zhang et al."¥
used Faster R-CNN to recognize tomatoes in complex environments
and achieved the average correct rate of 95.2%. Considering the
clustering growth habit of cherry tomatoes and improving the
picking efficiency, Xu et al.'"” and Zhang et al.*” developed the
identification algorithm and the picking robotic manipulator related
to the tomato bunch harvest.

Deep learning has achieved accurate and rapid detection of
tomatoes. Although scholars considered the influence of occlusion,
cherry tomatoes are still classified into one class that could be
picked. The end-effector grabs them together if fruits occluded by
branches or leaves are identified as direct picking objects. It poses a
significant risk of end-effector and plant damage during harvesting.
Therefore, fruits under different occluded conditions should be
distinguished at the time of identification. Gao et al.?" classified
apples in the SNAP system into four classes including non-
occluded, leaf-occluded, branch/wire-occluded, and fruit-occluded
fruits, and these four classes of apples were detected based on
Faster Regional Convolutional Neural Network (Faster RCNN).
According to the picking strategy, Suo et al.”? divided kiwi fruit
into five classes and YOLOv4 had the highest mAP of 91.9% by
comparing with YOLOV3.
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This research believed that cherry tomatoes can also be divided
into multiple classes for detection based on the above research
results. Therefore, a deep learning model based on a widely used
model YOLOv4-Tiny was proposed to implement multi-class
detection of cherry tomatoes. The CSPNet with the hybrid attention
mechanism was used to build the Feature Enhancement Network
Block (FENB) to achieve effective feature extraction. The Feature
Enhancement Network (FEN) was constructed based on the feature
enhancement module to improve the performance of YOLOv4-
Tiny.

2 Materials and methods

2.1 Data set
2.1.1 Image data collection

The image acquisition location of cherry tomatoes in this study
was in a greenhouse in Mengjin district, Luoyang city, Henan
province, China. The acquisition times were 9:00-11:00 a.m., 2:00-
4:00 p.m., and 7:00-11:00 p.m. on November 27, 2021. The Canon
camera (Canon EOS 750D, Japan), a camera mount, two artificial
strip Light Emitting Diodes (LEDs), and a light source digital-
analog controller were used to collect cherry tomatoes images, as
shown in Figure 1.

Cloth

Light source

\ Camera

—Camera stand

a. Day and double row b. Night and single row

Figure 1 ~Cherry tomatoes images collection

The camera was 30-50 cm from the tomato plants, which was
beneficial to reduce background complexity to manage the growth
environment under artificial intervention. The experimenter placed
a white cloth between the cherry tomato plants and the adjacent row
of plants (Figure 1a) to improve the visibility of the fruit. No cloth
was placed for single-row plants (Figure 1b). The two LEDs created
lighting conditions at the night. A total of 1103 RGB images (596 of
the day and 507 of the night) were obtained with a resolution of
4000 pixelsx4000 pixels. All images were saved in ‘.jpg’ format.
2.1.2 Image data set

Classification of cherry tomatoes can be divided into four
classes under different occlusion conditions as shown in Figure 2.
The first class of cherry tomatoes is not occluded (NO), which can
be picked directly by the robot end-effector. The second class is
occluded by branch (OB) which is defined as being unable to be
picked. The third class is occluded by other fruits (OF), which can
be picked in order from the outside one to the inside. The fourth
class is occluded by leaves (OL), where the robot end-effector

a. NO b. OB c. OF d. OL

Note: NO: Cherry tomato is not occluded; OB: Cherry tomato is occluded by
branch; OF: Cherry tomato is occluded by other fruits; OL: Cherry tomato is
occluded by leaves. Same below.
Figure 2 Classification of cherry tomatoes under different
occlusion conditions

pokes leaves to grab. Therefore, the vision system of the picking
robot can identify and detect the above-mentioned four classes of
cherry tomatoes in the greenhouse, which can allow the robot to
choose correspondingly picking strategies.

The image data set flowchart of Multi-class cherry tomatoes
was shown in Figure 3. The obtained 4000x4000 images were
scaled to 416x416 images in order to train the model more quickly.
Then, the Labellmg software was used to manually annotate cherry
tomatoes into the above four classes. To enhance the generalization
ability of the model and to avoid overfitting, the images were
preprocessed in terms of rotation, mirroring, color balance, blurring,
brightness, and adding noise to enrich the samples. After data
augmentation, the images in daytime were enlarged from 596 to
9536, and the images in nighttime were enlarged from 507 to 8112.
It is worth noting that the ‘.xml’ files corresponding to each image
would also be augmented accordingly. The daytime and night data
sets were established and randomly divided into the training set,
validation set, and test set according to the ratio of 6:2:2,
respectively. The operations run under Windows 10 and python 3.7.
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Figure 3 Image data set flowchart of multi-class cherry tomatoes

2.2 Algorithm

Compared with two-stage detection models™, the YOLO (You
Only Look Once) series show the characteristics of high efficiency
and flexibility performance. Among them, YOLOv4-Tiny™ is a
lightweight object detection model, which is more suitable for the
deployment of mobile terminals or embedded devices to meet the
requirements of the agricultural robot visual systems.

2.2.1 YOLOv4-Tiny

YOLOv4-Tiny consists of three parts, backbone network, neck
network, and head network®. The backbone network
CSPDarknet53 tiny consists of two stacked CBL modules, three
Resblocks, and a CBL module. Leaky-ReLU was used as the
activation function to improve computational speed””. The neck
network is the feature fusion network using Feature Pyramid
Networks (FPN), where the model strengthens the target features
with different scales to further detect the target. The head network™
utilizes the two feature layers obtained by FPN for object
prediction.

2.2.2 Feature Enhancement Network Block

CSPDarknet53 tiny of YOLOv4-Tiny gets faster speed with
fewer parameters reducing model detection accuracy. This study
proposed CSPNet® with the hybrid attention mechanism to
construct Feature Enhancement Network Block (FENB) for
improving recognition accuracy. The structure of the FENB is
shown in Figure 4.

FENB employs the CBL with the first convolution kernel size
of 3x3 to extract global features, then divides the channel into two
parts evenly, where the second part is taken to reduce memory
traffic. The second part flows into Path A and Path B, respectively
to increase the gradient path. Next, the second convolution kernel
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Note: Conv: Convlution; BN: Batch Normalization; LeakyReLU: Leaky Rectified
Linear Unit; CBAM: Convolutional Block Attention Module.
Figure 4 Diagram schematic of Feature Enhancement Network
Block structure

size of 3x3 CBL is used to integrate features further to enrich
feature-level information. Then, the Convolutional Block Attention
Module®” (CBAM) extracts the effective information in the feature
map of the inflow path C, which makes FENB pay more attention to
identifying the target object. Finally, the feature map integrated by
the convolution kernel size of 1x1 CBL is combined with the
feature map of Path D through the cascade operation. The feature
maps of combination and Path B are merged. After the merge
operation, the channel shuffle is used as the output of FENB.

As shown in Figure 5a, the extracted features by convolution
are very limited because of existing boundary effects. The channel
shuffle operation (Figure 5b) readjusts feature map channel
locations to enable information communication between the two
Paths.

I Channel | [ Channel >
Input Input
Conv
Output Output

a. No channel shuffle b. Channel shuffle

Figure 5 Comparison with or without channel shuffle mechanism

Figure 6 shows the feature map width, height, and channel
number of the FENB.

(c2@W-H)

Note: H and W are the height and width of the feature map; @ is the split symbol.
Figure 6 Changes of width, height, and channel number of FENB
feature map

FENB will be used to enhance the feature extraction ability of

CSPDarknet53_tiny and improve the model accuracy. In FENB,
when the feature maps are processed by convolution, the Memory
Access Cost (MAC) is

MAC= HW ((c, +¢,)+cic (1)

B=HWcc, @)

where, H and W are the height and the width of the feature map; ¢,
and ¢, are the numbers of input and output feature map channels.
The mean value inequality can be inferred as

B
MAC2 VHWB + e (3)

If and only if ¢;=c,, the MAC obtains the minimum value.
Therefore, this study reduced the number of channels from c to ¢/2
through channel split instead of using convolution, so that the
Memory Access Cost was minimum and the computing speed
became faster.

2.2.3  Proposed algorithm

Figure 7 shows the model structure of the improved multi-class
cherry tomatoes detection. The proposed model still applies
CSPDarknet53 tiny as the model backbone network that is
supplemented by Feature Enhancement Network (FEN). The FEN
consists of three FENBs and two Down _samp modules. The
Down_samp module consists of CBL with 1x1 convolution and
Maxpool, which adjusts the number of channels and the size of
feature maps.

The input images of 416x416x3 (height and width are 416, the
number of channels is 3) are extracted by two CBL modules to
extract the shallow information. The dimension is transformed to
104x104x64.

The shallow feature level of 52x52x128 is acquired from the
feature map 104x104x64 by the first Resblock body, which is
extracted effective features by the first FENB obtaining the
enhanced feature level of 52x52x128.

Then the results of the first Resblock_body and the first FENB
are added as an input to the second Resblock body. The first FENB
output feature map is downsampled, dimensionally transformed to
26%26x256, and summed with the output 26x26x256 feature map
of the second Resblock body. Then, the 26x26x256 enhanced
feature map is obtained through the second FENB and added to the
output of the second Resblock body, where the result feature map is
served as the input to the neck network. By analogy, the third FENB
and the second Down samp are used to complete the feature
enhancement of the third Resblock body. Then the 13x13x512
feature map is obtained by CBL, which is used as the input feature
map of the neck network. Considering the actual situation of
picking a robot vision system to acquire images, the dimensions of
13x13x512 and 26%x26x256 obtained by the Backbone Network,
which complete feature fusion in the neck network to detect large
and medium cherry tomatoes to simplify the model.

3 Experiments and discussion

3.1 Environment and parameters

The proposed model in this study was built and modified using
the PyTorch framework. The training platform included a computer
with Intel(R) Xeon(R) Silver 4210R CPU, a GPU of NVIDIA
Quadro RTX 5000, and 16 GB of memory, running on a Windows
10 64-bit system. The software tools included CUDA10.1, CUDNN
7.6.4, Python 3.7, and Pycharm 2021.1.1.

In the experimental environment, the batch size was 8 and the
number of threads was 4. This study trained 300 epochs to analyze
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Note: FENB: Feature Enhancement Network Block.
Figure 7 Proposed model structure of multi-class cherry tomatoes detection algorithm.
the training process. Each epoch was trained using all the samples F1 score:ﬂ (8)
P+R

of the training set, where eight samples of one batch size were taken
for one iteration. So, the proposed model was trained for 357 600
and 304 200 iterations on the training set of nighttime and daytime,
respectively. The Adam optimizer was used to update and compute
network. The momentum was 0.9. The decay weight was 0.0005.
The learning rate was set to 0.001 for the first 50 epochs and 0.0001
for the last 250 epochs.

3.2 Evaluation of model performance

To accurately evaluate the performance of the detection model,
Precision, Recall, Average Precision, mean Average Precision
(mAP), and F1 score were used to examine the performance of the
target detection algorithm.

According to the difference between the true classes and the
predicted classes, all samples were divided into True Positive (TP),
False Positive (FP), True Negative (TN), and False Negative (FN).
The definitions of Precision (P) and Recall (R) are as follows:

TP

P=Tpirp )
TP

R=TprEN ®)

where, P is the proportion of all positive predictions that are correct;
TP represents the prediction is positive, and the ground truth is
positive; FP represents the prediction is positive, and the round truth
is negative; R is the proportion of all real positive observations that
are correct; FN represents the prediction is negative, and the round
truth is positive.

Average Precision (AP), mean Average Precision (mAP), and
F1 score were used to evaluate the performance of model
classification. They are defined as follows:

1
APclass=j0P ctassRetass AR ctass (6)

l n
mAP=—% "AP,.. (7)
1

where, n=4 is the number of categories of the class; AP, is the AP
value of different tomatoes; classes are NO, OF, OB, and OL; the
mAP is the mean of AP of the four classes of cherry tomatoes; F1
score is the harmonic mean of P and R. This study mainly discussed
AP and F1
performance.
3.3 Training evaluation and performance of the network

The training and validation loss curves of the proposed model
are shown in Figure 8. The orange and blue curves are the loss
curves of the training set and the validation set of the day,
respectively. The red and green curves are the loss curves of the
training set and the validation set of the night, respectively.

score as the measurement standard for model

16
—— Training loss (Day)
14 — Validation loss (Day)
Training loss (Night)
—— Validation loss (Night)

—_— =
[T ]

Loss function value
[oe]

0 50 100 150 200 250 300
Epochs/times

Figure 8 Loss curves of the improved models

As the number of epochs increases, all curve loss values
generally decrease. In the first 50 epochs, values of all curves
continued to fluctuate by the same amount after a rapid drop. The
downward trend of the four curves was relatively stable after the
50th epoch. The four-curve loss values tended to stabilize at around
the 280th epoch. The results show that the proposed model has no
overfitting and good generalization ability. The parameters are
appropriately selected.
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The results of the P-R curve on the test set achieved by the
improved multi-class detection model of cherry tomatoes are shown
in Figure 9. The confidence was 0.5 in this study, where the results
of P, R, AP, and F1 score are shown in Figure 10 under this
level.

1.0
0.9
0.8
0.7
= 0.6
2 NO(Day)
8 —— OB(Day)
& 01 ——OF(Day)
—— OL(Day)
0.3 --- NO(Night)
02 °°° OB(Nﬁght)
--- OF(Night)
0.1 --- OL(Night)

0.0
00 0.1 02 03 04 05 06 0.7 0.8 09 1.0
Recall

Figure 9 P-R curves of the proposed model on the testing data set
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Figure 10 Multi-class cherry tomatoes detection results with the
proposed models

The proposed model has an obvious detection effect on the four
classes of cherry tomatoes. As expected, the non-occluded cherry
tomatoes can be easily detected as compared to the occluded fruits.
Branch-occluded cherry tomatoes got the second-highest detection
results on the day and night test sets. Since the branch was relatively
thin, the degree of occlusion of target cherry tomatoes was
relatively small to achieve higher detection metrics in the occluded
classes. The AP and F1 score were second only to the fruits
occluded by branch. Once the outer non-occluded cherry tomatoes
are picked, the covered cherry tomatoes become unoccluded cherry
tomatoes in subsequent detections. Leaf-occluded cherry tomatoes
achieved the lowest detection results of AP and F1 scores, which
were 84.99% and 82.88% on the day test set and 89.33%, and
85.35% on the night test set, respectively. The consequence of this
class were significantly lower than others because the body of
cherry tomatoes was small and the degree of occlusion of the leaves
was different.

3.4 Comparison with classic target detection models

To verify the superiority of the proposed model, two one-stage
classical models, YOLOv4 and YOLOv4-Tiny, were used to test the
multi-class detection efficiency of cherry tomato images during the
day and night. In this study, the relevant experimental parameters of
the comparative models were strictly controlled, which was
consistent with the proposed model. All models were run on the
same training set, validation set, and test set. The results of the three
models are shown in Figure 11 on the test set.
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Figure 11  Performance indicators of different models on the same

test set during the day and night

In Figure 12, comparison A shows the difference of related
indicators between the proposed model and the YOLOv4 for the
classification of the four cherry tomatoes at day and night, and
comparison B shows the difference of related indicators between the
proposed model and YOLOv4-tiny for the classification of the four
cherry tomatoes at day and night.

20.20
oL -
m
g OF - - 15.82
H
£ 0B -
o
3 - 11.44
NO -
oL -
< - 7.060
£ OF -
2
S 0B - - 2,680
g
O
NO -
1 1 1 1 1 1 1 1 71700

P R AP FIl P R AP FI
Day Night

Figure 12 Comparison of related indicators of different models

As expected, all models achieved the best detection
performance on the non-occluded fruit class. For the detection of
branch-occluded fruit, the advantages of AP and F1 scores of the
proposed model are the most obvious, which were 3.93% and
5.08% higher than YOLOv4 and 8.03% and 7.50% higher than
YOLOv4-Tiny on the day test set, respectively. The proposed
model also achieved a similar improvement in the detection index
of fruit occlusion as the branch occlusion. Leaf-occluded fruit
obtained the worst detection results among the four categories based
on the three models. However, the proposed model had the highest
AP and F1 scores among the three models, which were 10.81% and
11.27% higher for the daytime dataset and 7.20% and 9.14% higher
for the night dataset than YOLOvV4, respectively. The AP and F1
scores of the improved algorithm were obviously improved by
16.88% and 14.17% for the daytime test set and 13.52% and
11.89% for the night test set, respectively. The proposed model
reached the mAP of 90.78% and 94.72% on the day and night test
set, which were 4.22% and 2.42% higher than YOLOv4 and 9.29%
and 5.89% higher than YOLOv4-Tiny, respectively.

To sum up, the proposed model was the most accurate for
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detecting the different classes of cherry tomatoes during the day and
night. The reason is that FENB integrated, extracted, and paid more
attention to the characteristic of the detected cherry tomatoes on the
one hand. On the other hand, the proposed model fused the
enhanced feature maps with the original network features by means
of FEN to strengthen the network object recognition ability. In
addition, the mAP of the day was lower than at night for the three
models, indicating that artificial LEDs provide good and reliable
lighting conditions for the night-time identification of cherry
tomatoes in the picking robot vision system. Table 1 lists the other
test results of the three models.

Table 1 Results of the three models

Model YOLOv4  YOLOvV4-Tiny  Proposed Model
Day 86.56 81.49 90.78
mAP/% .
Night 92.30 88.83 94.72
Averagerun-time/ms 51.77 31.54 3222
Model size/MB 245.53 23.10 39.34
Numberof parameters 6.44x107 0.61x107 1.03x107

The proposed model obviously outperformed YOLOv4 in
terms of time-consuming, model size, and the number of
parameters. Although the model size and the number of parameters

Day sample

Night sample

a. Original b. YOLOv4

¢. YOLOv4-Tiny

of this method were 1.70 times and 1.69 times that of YOLOv4-
Tiny, respectively, the average recognition time of a single image is
only 1.02 ms longer than it. This effect had largely the benefit of the
truncated gradient flow of CSPNet. Apart from this, the P, R, AP,
mAP, and F1 scores were significantly better than YOLOv4 and
YOLOv4-Tiny. Therefore, the proposed model achieved the
expected detection performance, which can be adapted to the
deployment of mobile terminals or embedded devices to meet the
requirements of agricultural robot target detection systems.

The results from the corresponding models are shown in Figure
13. For the day sample, YOLOv4 and YOLOv4-Tiny missed
detection of OL, OF, and OB with severe occlusion at 1, 4, and 6,
which also repeated detection and misclassification at 2 and 5. The
method proposed in this study acquired accurate detection at 2, 3, 4,
5, and 6, but incorrectly identified NO as OB at 1. For the night
sample, neither YOLOv4 nor YOLOv4-Tiny detected OL at 1.
YOLOv4-Tiny repeatedly detected OL into OL and OF at 2.
YOLOvV4 did not detect OB at 3. However, the proposed model
accurately achieved detection at 1, 2, and 3. From these
experiments, one can conclude that the proposed model has a
significant effect on detecting multi-class cherry tomatoes during
the day and night. The FENB efficaciously extracted cherry
tomatoes features of different occlusion classes.

d. Proposed model e. Manual annotations

Note: The rectangles of green, blue, red, and purple colors are referring to the detected non-occluded fruit, leaf-occluded fruit, fruit-occluded fruit, and branch-occluded

fruit, respectively. The yellow rectangles in Figure 13e are manual annotations indicating the difference between the proposed model and YOLOv4 and YOLOv4-Tiny.

Figure 13  Day and night examples comparing the detection effects of the improved model and the other two models

4 Conclusions

In this study, the CSPNet structure with the hybrid attention
mechanism was developed to construct Feature Enhancement
Network Block (FENB) for extracting efficient features. FENB was
used to build Feature Enhancement Network to improve the
detection accuracy of YOLOv4-Tiny. The experimental results
showed that, under the confidence of 0.5, the average precision of
non-occluded, branch-occluded, fruit-occluded, and leaf-occluded
fruit over the day test images were 95.86%, 92.59%, 89.66%, and
84.99%, respectively, which were 98.43%, 95.62%, 95.50%, and
89.33% on the night test images, respectively. The mAP of four
classes over the night test set was higher (94.72%) than that of the
day (90.78%), which were both better than YOLOv4 and YOLOv4-
Tiny. It cost 32.22 ms to process a 416x416 image on the GPU. The
model size was 39.34 MB. Therefore, the proposed model provided
a practical and feasible method for the multi-class detection of
cherry tomatoes.
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