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Abstract: Real-time detection of kiwifruits in natural environments is essential for automated kiwifruit harvesting. In this
study, a lightweight convolutional neural network called the YOLOv4-GS algorithm was proposed for kiwifruit detection. The
backbone network CSPDarknet-53 of YOLOv4 was replaced with GhostNet to improve accuracy and reduce network
computation. To improve the detection accuracy of small targets, the upsampling of feature map fusion was performed for
network layers 151 and 154, and the spatial pyramid pooling network was removed to reduce redundant computation. A total of
2766 kiwifruit images from different environments were used as the dataset for training and testing. The experiment results
showed that the F1-score, average accuracy, and Intersection over Union (IoU) of YOLOv4-GS were 98.00%, 99.22%, and
88.92%, respectively. The average time taken to detect a 416416 kiwifruit image was 11.95 ms, and the model’s weight was
28.8 MB. The average detection time of GhostNet was 31.44 ms less than that of CSPDarknet-53. In addition, the model weight
of GhostNet was 227.2 MB less than that of CSPDarknet-53. YOLOv4-GS improved the detection accuracy by 8.39% over
Faster R-CNN and 8.36% over SSD-300. The detection speed of YOLOv4-GS was 11.3 times and 2.6 times higher than Faster
R-CNN and SSD-300, respectively. In the indoor picking experiment and the orchard picking experiment, the average speed of
the YOLOV4-GS processing video was 28.4 fps. The recognition accuracy was above 90%. The average time spent for
recognition and positioning was 6.09 s, accounting for about 29.03% of the total picking time. The overall results showed that
the YOLOV4-GS proposed in this study can be applied for kiwifruit detection in natural environments because it improves the
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detection speed without compromising detection accuracy.
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1 Introduction

Kiwifruit is an important cash crop worldwide, and the
kiwifruit industry drives China’s agricultural economy!". At present,
kiwifruit is mainly picked by hand, which is time-consuming and
labor-intensive™. For kiwifruit picking automation, the machine
vision system is a key component of the picking robot™*. The speed
and accuracy of fruit recognition determine the efficiency and
stability of the picking robot®¢. Therefore, the rapid recognition and
accurate positioning of kiwifruits in the natural environment is of
great significance for intelligent picking robots.

Currently, traditional image processing methods, such as the
Hough transform', K-means clustering algorithm', and Sobel edge
extraction system, have mostly been used for fruit recognition.
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These methods mostly use feature description methods to obtain the
color, texture, shape, and other features of the fruit for complete
recognition. However, kiwifruit images collected in natural
environments are generally obtained under varying lighting
conditions, and these kiwifruits are often occluded by branches and
leaves. This leads to an increase in the false detection of kiwifruits
in the natural environment, which hinders their effective extraction.
Convolutional neural networks can learn feature information
very well, which gives the features better generalization,
classification, and characterization recognition abilities"'?. At
present, convolutional neural networks have been widely applied in
target detection'*', fruit recognition, and hyperspectral analysis"
of intelligent agriculture. The target detection methods based on
convolutional neural networks are mainly 1) the two-stage methods
represented by the Region-based Convolutional Neural Networks (R-
CNN) series!*'” and 2) the single-stage methods represented by the
Single Shot Multibox Detector (SSD)"* and You Only Look Once
(YOLO)™. Xiong et al.”” used the Faster R-CNN model for the
visual detection of green citrus on trees; the average detection
accuracy of their training model on the test set was 85.49%. Song et
al.”" used the Faster R-CNN model based on VGGI16 to detect
kiwifruits; the average detection time of each image was 347 ms,
and the average detection accuracy was 87.61%. The two-stage
detection method had better detection accuracy than the traditional
recognition method, but the detection time was longer. Li et al.™
used an improved SSD model for citrus recognition, and the
improved recognition model achieved an average accuracy of
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87.89%. Liu et al.” proposed a YOLO-Tomato model based on
YOLOV3 for tomato image detection, which improved the detection
speed and ensured better recognition accuracy. Wang et al.
replaced the backbone network of YOLOv4 with MobileNetV3 for
dragon fruit recognition and localization; these changes improved
the speed of fruit detection, and there was minimal loss of
recognition accuracy.

In order to improve the detection ability of the network for
kiwifruit in the natural environment, this study proposed a
lightweight convolutional neural network YOLOv4-GS algorithm
for kiwifruit detection based on YOLOv4. By replacing the
backbone network CSPDarknet-53 with GhostNet, the backbone
network of YOLOv4 was used to detect kiwifruit. It improved the
detection accuracy of the network for small target kiwifruit. At the
same time, the upsampling feature map fusion was performed on the
151st and 154th layers of the network, and the Spatial Pyramid
Pooling (SPP) network was removed to reduce the amount of
network calculation and improve the detection speed of kiwi-fruit.
Finally, the network is deployed to the edge device. Experiments
show that the YOLOvV4-GS algorithm has a good effect on
improving the detection accuracy and speed of kiwifruit. It lays a
theoretical foundation for automatic kiwifruit picking in complex
environments.

2 Materials and methods

2.1 Image acquisition

Based on the growth characteristics and cultivation patterns of
kiwifruits, images of kiwifruits were obtained from a vertical
upward view, as shown in Figure 1. The images were collected from
September to October 2021 at the Lile agricultural plantation in
Nanjing. The kiwifruit variety was Hongyang. To ensure the
diversity of kiwifruit images, the images were collected at different
times of the day and under different weather conditions. Finally,
1500 kiwifruit images were obtained with a resolution of 640x
480 pixels; these images were saved in JPEG format. Because of the
growth habit of kiwifruit, several kiwifruit are often crowded
together. In addition, the leaf size of kiwifruit is equivalent to that
of kiwifruit, so there are more than half of the images with different
degrees of occlusion and overlap.

c. Night lighting image

d. Occlusion image

Figure 1 Kiwifruit image examples in natural environments

2.2 Image data expansion
After randomly flipping, randomly rotating, adjusting image

brightness and contrast, and motion blurring the original images
using OpenCV, 2766 kiwifruit images were obtained after manually
eliminating the invalid images. The abovementioned steps are
discussed below:

1) Flip: Random flip (horizontal or vertical);

2) Rotate: Random rotation between —180° and +180°;

3) Brightness: Random brightness adjustment from —20% to
+20%;

4) Contrast: Reduce contrast by 30%;

5) Noise: The salt and pepper noise is added to 5% of the image
pixel;

6) Motion blurring: Motion blur the original image.
2.3 Data set annotation and partitioning

In this study, the Labellmg tool was used to label the kiwifruit
images. Kiwifruits in each image were labeled and saved in the
XML file format. The kiwifruit images were divided into a training
set, a test set, and a validation set in the 7:2:1 ratio. The exact
number of datasets is listed in Table 1. In the process of image
annotation, considering that the color of kiwifruit leaves is similar
to that of kiwifruit, it is more likely to cause false detection when
the occlusion is serious. The kiwifruits with serious occlusion are
reserved for visual recognition and picking when the robot moves to
the next angle. Therefore, the kiwifruits with serious occlusion are
not marked in the process of image annotation.

Table 1 Number of images in the datasets

Dataset Training set ~ Test set Validation set Total

Sunny image 771 220 111 1102

Cloudy image 743 212 107 1062

Night fill light image 422 121 59 602
24 YOLOv4

YOLOvV4 integrates multiple optimization strategies to achieve
a perfect balance of detection speed and accuracy™!. The YOLOv4
model mainly consists of the backbone network CSPDarknet-53, the
SPP module, the PANet (Path Aggregation Network) feature map
fusion module, and the YOLO head classifier. The complete
structure is shown in Figure 2.

As shown in Figure 2, an input image of size 416x416 was
taken as an example. CSPDarknet-53 was the feature extraction
network used to acquire three preliminary effective feature layers.
Compared to Darknet-53, CSPDarknet-53 achieved a richer
combination of gradients, and it reduced the computational effort;
this enhanced the learning capability of the backbone network and
avoided the gradient disappearance problem caused by deeper
networks. In addition, the SPP module used four maximum pooling
methods to integrate the feature maps of different sizes. The three
scales of feature maps obtained after downsampling by the
CSPDarknet-53 network were based on the top-down upsampling
method used by the feature pyramid network (FPN) for feature
fusion; FPN was combined with the PANet network structure to
form a down-up feature pyramid again. The final predictive output
obtained three feature maps 13x13, 26x26, and 52x52 with
different receptive fields to detect large, medium, and small targets,
respectively. The results obtained from this research can be applied
for the real-time detection of kiwifruits; therefore, the model needed
to be lightened and improved to reduce the computational effort as
much as possible and increase the detection speed of the model.

2.5 YOLOV4-GS

To improve the detection speed of the model, the backbone

network of YOLOv4 was adapted to achieve feature extraction
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Figure 2 Structure of YOLOv4, which consists of backbone network (CSPDarknet53), neck (FPN, PANet, and SSP),
and heads (YOLO Heads)

using GhostNet. GhostNet, proposed by Huawei Noah’s Ark Lab,
was designed for mobile devices and could be carried on embedded
devices for real-time detection,
insufficient memory problems and the high latency caused by
overly complex models®™. GhostNet was based on the Ghost
bottleneck, which was built on the Ghost Module. The Ghost
Module was started because of the problem of feature map

redundancy, and it generated multiple feature maps with only a

which effectively avoided

small amount of computation. When compared with the original
convolution operation, the Ghost Module could reduce the amount
of calculation by half. GhostNet followed the advantages of the
basic architecture of MobileNetV3?", Then, the Ghost bottleneck
was used to replace the bottleneck in MobileNetV3. In the
experiment of the ImageNet classification task, the accuracy of
GhostNet was higher than that of the MobileNet series™,
ShuffleNet series®, and FBNett. In terms of hardware inference
speed, only GhostNet required less running time to achieve the
same accuracy as MobileNetV3.

To reduce the computation of the prediction layer of YOLOv4
and improve the detection accuracy of GhostNet for small targets,
YOLOV4-GS retained PANet and FPN and removed the redundant
computation of the SPP network. Taking the 416x416 size image
input as an example, double upsampling was performed for the
output of network layer 151 to fuse the feature map with layer 76.

The fusion was followed by a 1x1 convolution to enhance the
feature map dimension. Double upsampling was performed on layer
154 to fuse the feature map with layer 36, and a 52x52 scale feature
map was obtained after three convolutions for detecting small
targets. The feature maps of layers 158 and 154 were fused after
double upsampling. A 26x26 scale feature map was obtained after
three convolutions for detecting medium-sized targets; the feature
map of layer 165 was fused with the feature map of layer 151 after
double upsampling, and a 13x13 scale feature map was obtained
after three convolutions for detecting large targets. The network
structure is shown in Figure 3.

3 Experiment

3.1 Experiment platform

The environment for model training and testing used in this
paper was Ubuntu 18.04 operating system, Intel core i5 10400F
CPU, 16 GB of memory, NVIDIA Ge Force GTX 1660 Super GPU,
CUDA10.2, and CUDNN?7.6. In addition, we used Darknet as the
deep learning framework for the experiments.
3.2 Experiment parameters

In this study, cluster analysis was performed on the kiwifruit
dataset, and the nine anchor frame sizes obtained were (22, 27),
(24, 35), (30, 38), (32, 46), (36, 47), (39, 45), (35, 53), (40, 51), and
(48, 63). The number of samples per batch was 32, and the
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Figure 3  Structure of YOLOV4-GS

momentum was 0.95. The decay was 0.0005, and the initial learning
rate was 0.001; the number of iterations was 50 000. The learning
rate decreased to 0.0001 after 35 000 iterations and to 0.000 01 after
40 000 iterations. The weights file was updated after every 1000
iterations.
3.3 Model evaluation

To analyze the performance of the target detection algorithm,
the Fl-score, Average Precision (AP), Intersection over Union
(IoU), average detection time, and model weight were used as
evaluation metrics to assess the comprehensive performance of the
kiwifruit recognition model. The Fl-score and AP are defined as

follows:
PR
FI=257% (1)
1
AP = L P(R)AR 2)

where, P denotes the accuracy rate, R denotes the recall rate, F1
denotes the equally weighted summed average of the accuracy and
recall rates, and AP denotes the average accuracy rate.

IoU represents the accuracy of the target spatial feature
prediction in target detection, with good predictions having high
IoU values. IoU is defined as follows:
S(ANB)

U= 5aus)

A3)
where, 4 denotes the prediction area of the algorithm, B is the real
area of the target, and S is the area of the region.

4 Results and analysis

4.1 Analysis of experiment results

Figure 4 shows the curve of the loss value with the number of
iterations before and after the improvement; 50 000 training
iterations were performed with the same parameters. The loss value
of YOLOV4-GS decreased quickly, and the final loss value was
small. According to the model evaluation metrics, the F1-score, AP,

and IoU of YOLOvV4-GS were 98.00%, 99.22%, and 88.92%,
respectively. The average time taken to detect a 416x416 kiwifruit
image was 11.95 ms. Figure 5 shows the visualization of kiwifruit
recognition by the improved before-and-after models. Both the
improved before-and-after models were effective in recognizing
kiwifruits under strong backlit and shaded environments. The
improved model not only has a better recognition effect on the
occluded kiwi fruit but also reduces false recognitions. Overall, as
shown in Figure 6, the improved model showed significant
advantages in terms of improved recognition, missed detection (see
Figures 6a and 6b), false detection (see Figures 6¢ and 6d), and
small target recognition (see Figures 6e and 6f).
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Figure 4 Curve of loss values with the number of iterations

4.2 Analysis of different backbone networks

To objectively analyze the performance of the YOLOv4-GS
model, training and analyses were performed for different backbone
networks. Darknet-19, Darknet-53, CSPDarknet-53, and GhostNet
were selected for the comparative analysis. The performance of the
GhostNet backbone network was objectively evaluated by ensuring
that the parameters were consistent during training, and the
experiment results are listed in Table 2. Darknet-53 had a more
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Figure 5 Examples of kiwifruit images detected using YOLOv4 and YOLOvV4-GS under different environment situations

Table 2 Detection results of different backbone networks

Parameters Darknet-19  Darknet-53 ~ CSPDarknet-53  GhostNet
Precision 0.96 0.96 0.95 0.97
Recall 0.94 0.99 1.00 0.98
Fl-score/% 95.00 97.00 98.00 98.00
AP/% 96.45 98.39 99.29 99.22
1oU/% 84.52 86.09 87.94 88.92
Average Time/ms 32.95 42.56 43.39 11.95
Model weight/MB 202.0 246.3 256.0 28.8

complex network structure than Darknet-19, which resulted in a
1.94% increase in AP and a 1.57% increase in IoU. However, the
average detection time of a single image was increased by 9.61 ms.
CSPDarknet-53 had higher AP and IoU than Darknet-53, but the
detection speed decreased, and the model weight was 256 MB,
which made it difficult to meet the requirements of high detection
speed on embedded devices. GhostNet had made lightweight
improvements on the backbone network. The AP of GhostNet was
0.07% lower than that of CSPDarknet-53, and the detection speed
was greatly improved. The average detection time of a single image
was 31.44 ms lower than that of CSPDarknet-53. In addition, the
weight of YOLOv4-GS was 28.8 MB, which was 227.2 MB less
than that of CSPDarknet-53; this weight reduction greatly decreased
the operating cost of the embedded devices. By comparing and
analyzing different backbone networks, it was found that GhostNet
had the characteristics of high detection accuracy, fast detection
speed, and low model memory consumption, which could be
applied for the real-time detection of kiwifruits in their natural

environments and were obviously advantageous in embedded
devices.
4.3 Analysis of different network models

To objectively analyze the performance of YOLOv4-GS, it was
compared and analyzed with different network models. This
ensured that the parameters were consistent during the training; the
curve of the loss with the iterations is shown in Figure 7 and the
experiment results are listed in Table 3. The AP of YOLOv4-GS
was 8.39% higher than that of Faster R-CNN and 8.36% higher than
that of SSD-300. The detection speed of YOLOvV4-GS was 11.3
times higher than that of Faster R-CNN and 2.6 times higher than
that of SSD-300. The detection results of the three models are
shown in Figure 8. Faster R-CNN and SSD-300 had numerous
missed detections in identifying kiwifruits in their natural
environments, whereas YOLOv4-GS had very few missed
detections.

Table 3 Detection results of different network models

Network models Precision Recall Fl-score/% AP/% Average time/ms

Faster R-CNN 0.65 0.99 78.00 90.83 135.167
SSD-300 0.61 0.97 75.00 90.86 30.74
YOLOV4-GS 0.97 0.98 98.00 99.22 11.95

Note: AP: Average Precision.

In this study, YOLOv4-GS was compared with the models
proposed in the studies using YOLO-Tomato™!, YOLOv3-dense"",
R-FCNP™| and Im-AlexNet™. The comparison results are listed in
Table 4. The Fl-score of YOLOv4-GS was 4.09%, 16.00%, and
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Note: The label “A” with a red circle indicates missed detection. The label “B” with a yellow circle indicates false detection.

Figure 6 Comparison of missed and false detections between YOLOv4 and YOLOvV4-GS
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Figure 7 Curve of loss values with the number of iterations

8.00% higher than the Fl-scores of YOLO-Tomato, YOLOv3-
dense, and R-FCN, respectively. The AP values of the YOLOv4-GS
were 2.82%, 4.12%, and 3.22% higher than the AP values of YOLO-
Tomato, R-FCN, and Im-AlexNet, respectively. In terms of the
detection speed, the YOLOv4-GS showed excellent performance.
The average detection time of each YOLOvV4-GS image was
42.05 ms faster than YOLO-Tomato, 27.6 times faster than that of
the YOLOv3-dense, 15.6 times faster than that of the R-FCN, and
89.5 times faster than that of the Im-AlexNet. A comparison of the
different network models shows that YOLOv4-GS was superior to
other networks in terms of both detection accuracy and detection
speed.

Table 4 Comparison of different network models

Network models  Fl-score/% AP/% Average time/ms Detection object

YOLO-tomato 93.91 96.40 54.00 Tomato
YOLOv3-dense 82.00 - 330.00 Apple
R-FCN 90.00 95.10 187.00 Apple
Im-AlexNet -- 96.00 1070.00 Kiwifruit
YOLOv4-GS 98.00 99.22 11.95 Kiwifruit

4.4 Kiwifruit picking experiment and analysis

In order to further analyze the real-time recognition effect of
the model proposed in this paper in embedded equipment, indoor
picking experiments and orchard picking experiments were carried
out in the laboratory and the plantation of Nanjing Lile Agricultural
Company in October 2021, as shown in Figure 9. The experimental
equipment includes a ZED binocular stereo camera, Jetson Xavier
NX system, and S6H4D Plus manipulator. The
experimental object was Hongyang kiwifruit. The flow chart of the

six-axis

picking kiwifruits test is shown in Figure 10.

The kiwifruits were arranged in separate, adjacent, and
sheltered conditions for indoor experiments. There were 21
kiwifruits divided into nine groups. The experimental results
showed that the average speed of video processing of YOLOv4-GS
deployed to the embedded system reaches 28.4 fps, and the average
time of picking a single kiwifruit was 11.72 s. The model proposed
in this paper has a good effect on the accuracy and speed of
kiwifruit recognition.
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Note: Label “A” represents the detection of small target kiwifruits. Labels “B” and “C” represent the detection of dense clusters of kiwifruits. Label “D” represents the

detection of obscured kiwifruits.

Figure 8 Detection results of the three models

Note: 1. Indoor kiwiftuits scaffolding;
2. S6H4D_Plus six-axis manipulator;
3. Identification interface;
4. ZED binocular stereo camera;
5. Collection box; 6. Jetson Xavier NX system
a. Indoor picking experiment

b. Orchard picking experiment

Figure 9 Experiments of picking kiwifruits

A total of 50 kiwifruits were picked in the orchard picking
experiment. The recognition accuracy, positioning accuracy,
picking success rate, and overall evaluation success rate of the
kiwifruit picking system were about 90.00%, 95.60%, 90.69%, and
78.00%, respectively. The specific error factors in the picking
process are listed in Table 5. The time-consuming process of

Initialize kiwifruits picking system

|

Running YOLOV4-GS

|

Jetson Xavier NX system performs
identification and positioning calculation

|

Sending coordinates to manipulator by serial
communication

|
¥

The end effector reaches the target position

Picking kiwifruits

l

Put kiwifruits into the collection box

Whether picking is
completed

Return the manipulator to the initial position

End

Figure 10  Flow chart of picking kiwifruits test

picking the experiment in the natural environment is listed in Table 6.
The average time-consuming of recognition and positioning was
6.09 s, accounting for about 29.03% of the total time. In conclusion,
the recognition and positioning method based on YOLOv4-GS
satisfied the efficiency and accuracy requirements of the kiwifruit
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picking system. In practical application, kiwifruit with a small
occlusion area can be effectively recognized and successfully
picked, but kiwifruit with serious occlusion is not recognized for the
first time. With the movement of the picking robot, the angle of
view changes, and the occlusion area becomes smaller. After the
kiwifruit is successfully recognized, the picking is completed.

Table 5 Analysis of orchard picking experiment results

Total Error type Errors/Total Cause
errors
Recognition 5/50 Severe shielding, strong backlight, or dark
error environment.
Positioning 2/45 Fruit shaking, strong light, or uneven light.

11 deviation

The end effector width is insufficient. The
4/43  position of the fruit exceeds the working range of
the manipulator.

Picking
error

Table 6 Time of different actions during the orchard picking

experiment
Action Average time/s Proportion/%
Identification and location 6.09 29.03
Manipulator movement 6.36 30.31
Picking 2.01 9.58
Manipulator reset 6.52 31.08
Total 20.98 100

5 Conclusions

This study explored the most efficient method for kiwifruit
detection in natural environments. The YOLOv4-GS proposed in
this study used a GhostNet feature extraction network and
upsampled feature map fusion on the network layers 151 and 154.
The SPP network was removed to improve the model detection
speed while the detection accuracy was maintained. The experiment
results proved that the F1-score, AP, and IoU of YOLOv4-GS were
98.00%, 99.22%, and 88.92%, respectively. The average detection
time of YOLOvV4-GS was 31.44 ms less than that of YOLOv4, and
the model weight was reduced by 227.2 MB, which led to a
significant improvement in the detection speed. In addition,
YOLOvV4-GS had a significantly improved detection accuracy and
speed than Faster R-CNN and SSD-300. In the indoor picking
experiment and the orchard picking experiment, the average speed
of the YOLOV4-GS processing video was 28.4 fps. The recognition
accuracy was above 90%. The average time spent for recognition
and positioning was 6.09 s, accounting for about 29.03% of the total
picking time.

Overall, YOLOv4-GS performs well with good detection
capability and can quickly and accurately identify kiwifruit in
complex environments. However, under the condition of too strong
or too dark light, the kiwifruit will miss recognition. In the future,
when picking outdoors, the influence of natural light on recognition
can be reduced by adding a filter to the camera. In addition, in the
future, it is necessary to re-shoot the data set for model training and
keep the distance between the camera and the camotea tree in the
data set consistent with the actual harvest distance. Some blurred
images should be added to the data set to enrich its diversity so that
the trained model can adapt to the recognition of kiwifruits under
different lighting conditions.
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