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Abstract: Land  use  and  land  cover  (LULC)  has  undergone  drastic  changes  with  the  rapid  growth  of  the  global  population,
economic development, and the expansion of agricultural activities. However, the uncertainty of classification algorithms and
image resolution based on satellite data for land cover mapping, particularly cropland cover mapping, needs to be investigated
sufficiently.  In  this  study,  the  influence  of  different  spatial-resolution  images  on  classification  results  was  explored  by
comparing  the  differences  between  four  machine  learning  algorithms  for  LULC  mapping.  The  classification  results  of  this
model were also compared with existing global land cover datasets to determine whether the model was capable of producing
reliable  results.  According  to  the  results  of  this  study,  the  random  forest  (RF)  classifier  outperformed  the  support  vector
machine (SVM), decision tree (DT), and artificial neural network (ANN) with an overall accuracy (OA) and kappa coefficient
of 81.99% and 0.78, respectively. However, SVM and ANN showed greater accuracy on the water class and unused land class,
respectively. With increasing spatial resolution, RF’s accuracy increased initially and then decreased when classifying images
with  five  different  spatial  resolutions  (30  m,  16  m,  10  m,  8  m,  and  2  m).  In  particular,  with  an  OA of  82.54% and a  kappa
coefficient  of  0.78,  RF  performed  the  best  on  images  with  8  m  resolution.  Additionally,  the  RF-based  image  with  8  m
resolution  produced  a  higher  OA  of  0.88  for  cropland.  Topography  is  the  main  factor  that  determines  the  classification
performance of different-resolution images. The classification accuracies of RF10 m and RF30 m (10 m and 30 m resolution
images,  respectively,  using  RF)  were  higher  (OAs of  93.59% and  94.59%,  respectively)  than  those  of  the  global  land  cover
dataset (LC10 m and LC30 m, land cover images with 10 m and 30 m resolution, respectively), whose high-resolution images
showed more details of the land cover. The results of this study highlight that classification algorithms and image resolution are
the  sources  of  uncertainty  for  land  mapping.  Obtaining  reliable  land  cover  mapping  requires  the  use  of  appropriate
classification  algorithms  and  spatial  resolution.  With  these  results,  it  will  be  possible  to  develop  a  national  land  monitoring
system and basic ecological climate models using LULC.
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1    Introduction
Land  use  and  land  cover  (LULC)  has  changed  dramatically

worldwide with the rapid growth of the global population, economic
development,  and  the  expansion  of  agricultural  activities[1].  The
effects  of  climate  warming  on  the  phenology  of  terrestrial  plants
change LULC[2,3]. These changes in LULC are also one of the main

drivers of global environmental change[4].  Cropland is an important
part of LULC and an important source of greenhouse gas emissions
and carbon (e.g., rice paddy-released methane). The distribution and
area  of  cropland  directly  affect  grain  production,  economic
fluctuations,  and  international  trade,  especially  in  agricultural
countries.  Moreover,  cropland  maps  are  usually  crucial  input  data
for semi-empirical and mechanism models that incorporate ecology,
the  environment,  geography,  and  hydrology[5,6].  Cropland  maps  are
further processed into multiple types of maps, such as specific crop
maps[7],  planting  intensity  maps[8],  and  agricultural  zone  maps[9].
Therefore,  the  cropland  area  and  distribution  can  provide  support
for  decision-making  concerning  food  imports  and  exports
nationwide. Detailed mapping can help guide agricultural practices
to improve yield on the local scale.

Cropland  has  become  fragmented  due  to  human  activities,
socioeconomic  levels,  and  topography,  especially  in  Africa  and
Asia.  It  is  rare  for  low-medium  resolution  satellites,  such  as
Moderate-resolution  Imaging  Spectroradiometer  (MODIS),  to
capture fine plots, resulting in the increasing uncertainty of cropland
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mapping.  With  the  rapid  development  of  satellite  sensors,  many
available  satellite  images  with  high  resolution  bring  new
opportunities  for  the  fine-scale  mapping  of  cropland.  Compared
with  remote  sensing  datasets  with  lower  spatial  resolution,  those
with  high  spatial  resolution  can  maximize  the  reduction  in  mixed
pixels  and  provide  clearer  geomorphic  features[10].  Additionally,
high-resolution images can capture more information about  human
activities.  At  present,  multiscale  agricultural  cover  with  high
resolution  (less  than  30  m)  has  been  mapped  to  meet  production
needs[11,12].  For  example,  do  Nascimento  Bendini  et  al.[13]  classified
cropland  with  30  m  resolution  in  Brazil  by  using  multitemporal
Landsat  images.  Preidl  et  al.[14]  produced  20  m-resolution
agricultural  maps  containing  19  crop  types  in  Germany  by  using
Sentinel-2A images; the authors achieved an 88% overall accuracy.
However,  the  uncertainty  of  mapping with  high-resolution satellite
images has rarely been discussed. In particular, this uncertainty may
be  further  amplified  in  ecological  modeling[15,16].  Hence,  a  major
effort is required to investigate the reason for this uncertainty and to
reduce it.

The  feature  combinations  play  various  roles  in  classifying
different  satellite  images[17,18].  Hu  et  al.[19]  introduced  a  variety  of
vegetation  indices  to  successfully  classify  Landsat  8  images  and
obtained  an  overall  accuracy  of  81.04%  and  more  land-surface
details.  Sharma  et  al.[20]  indicated  that  using  texture  features  can
effectively  improve  the  classification  accuracy  for  land  cover
mapping.  However,  due  to  the  uneven  spectral  characteristics  of
land  cover  and  a  large  amount  of  data,  it  is  difficult  to  effectively
and  accurately  classify  cropland  by  using  traditional  classification
methods[21]. Compared with traditional algorithms, machine learning
(ML)  techniques,  such  as  artificial  neural  networks  (ANNs)[22],
support  vector  machines  (SVMs)[23],  and  random  forests  (RFs)[24],
provide  a  more  accurate  and  efficient  alternative  for  land  cover
classification  based  on  big  data  and  complex  landscapes.
Classification  results  calculated  by  ML  models  will  be  more
accurate  with  sufficient  training  data[25,26].  Many  scholars  have
classified  research  on  cropland  by  using  machine  learning
algorithms[25,26].  However,  the  performance  of  different  algorithm-
based  machine-learning  techniques  varies  depending  on  the
cropland.  For  example,  Hackman et  al.[27]  found that  the  maximum
likelihood classifier outperformed the SVM and decision tree (DT)
classifiers.  Maxwell  et  al.[28]  reviewed  the  application  of  machine
learning classification in remote sensing mapping and indicated that
the  overall  accuracies  of  support  vector  machines,  decision  trees,
and random forests are higher than those of other machine learning
classifiers.  Consequently,  it  is  necessary to obtain prior knowledge
by  comparing  multiple  models  to  explore  the  uncertainty  of  the
classification.

A  variety  of  global  cropland  maps  have  been  produced,
including the Global Map of Rainfed Cropland Areas[29], the Global
Irrigated  Area  Map[30],  and  the  Agricultural  Map[31].  Low  spatial
resolution and limited accuracy impeded their business applications
at  the  provincial  and  county  levels[32].  The  quality  of  these  maps
remains uncertain and questionable in the specific scenario[33]. Pérez-
Hoyos et  al.[34]  compared nine  global  land cover  datasets,  and only
2.5% of the farmland was the same. Therefore, this study aimed to
compare its  results  with the global  cropland map to provide useful
advice  on  the  resolution  of  the  map  for  small-scale  (county-level)
areas.  China  has  implemented  a  large-scale  “Gain-for-Green”
(GFG) program since 1999. Human activities profoundly influenced
LULC changes in the Loess Plateau. The ecologically fragile areas
of the Loess Plateau are an important application target of the plan.

Overall, Dali County on the Loess Plateau was selected as the study’s
case  study,  which  comprises  considerable  cropland  and  is  an
important  grain  and  cash  crop-producing  region.  The  objective  of
this  study  is  to  introduce  multiple  vegetation  indices,  texture
features,  and  topographic  factors  based  on  prior  knowledge
combined with machine learning methods to classify cropland. The
purpose of this study is to explore the effects of spatial resolution on
cropland classification by using the best machine learning methods.
This  study addresses  three  key questions:  1)  the  effect  of  different
classifiers on the accuracy of cropland classification; 2) the impact
of  remote  sensing  images  with  varying  spatial  resolutions  on
cropland  classification  accuracy;  and  3)  the  effectiveness  and
reliability  of  the  optimal  classification  method,  evaluated  through
comparison with existing global land cover datasets. 

2    Materials and methods
 

2.1    Study area
The Loess Plateau, located in the northern part of central China,

experiences  the  most  serious  soil  erosion  in  the  world  and  has  a
fragile  ecological  environment[35].  The  LULC  of  this  region  has
changed  greatly  with  rapid  regional  development  and  population
growth.  With  a  total  area  of  1776  km2,  Dali  County  in  Shaanxi
Province was the site of this study and is located in the south of the
Loess  Plateau  (Figure  1).  Regional  features  include  the  Yellow
River in the east, the Wei River in the south, and mountainous hills
in  the  northwest.  The  mean  annual  temperature  (MAT)  of  Dali
County  is  13.6°C,  and  the  mean  annual  precipitation  (MAP)  is
514  mm.  The  research  area  was  divided  into  six  categories:
cultivated  land  (CL1),  forestland  (FL),  grassland  (GL),  water  (W),
impervious  (I),  and  unused  land  (UL)  according  to  the
characteristics of land use.
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Note:  The  Google  Earth  image  shows  the  entire  study  area  of  this  study.  The
region with a yellow boundary, as the typical area, is used to further analyze the
influence of the spatial resolution of images on land classification accuracy. CL1,
FL,  GL,  W,  I,  and  UL  represent  cultivated  land,  forestland,  grassland,  water,
impervious,  and  unused  land  according  to  the  characteristics  of  land  use,
respectively.

Figure 1    Location of the study area
  

2.2    Data source and image preprocessing
The purpose of this study was to explore the effects of different

spatial  resolution  images  on  the  classification  results,  especially  in
the  case  of  high  resolution.  Five  remote  sensing  images  were
selected  from  the  following  satellites  (Table  1):  Landsat  8
Operational  Land Imager (OLI),  GaoFen-1 (GF-1),  and Sentinel-2.
The  range  of  the  spatial  resolution  of  these  images  is  from  2  to
30 m. Although Google Earth provided more accurate images, this
study  did  not  consider  using  it  as  a  part  of  the  data  classification
study,  because  it  is  hard  to  compare  Google  Earth  images,  which
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contain three bands (red, green, and blue bands), with other images.
The remote sensing images were selected according to the following
rules  to  display  the  six  ground object  types  more  clearly:  1)  cloud
cover  of  the  remote  sensing  image  is  less  than  5%;  2)  remote
sensing  image  features  have  obvious  spectral  and  shape
characteristics.  Therefore,  this  study  focused  on  the  images  from
July  to  September  2015.  The  vegetation  grew  luxuriously  during
this  period;  consequently,  farmland  and  forestland  can  be
effectively  distinguished  from  unused  land  and  grassland,
respectively,  by texture and terrain.  The difference was considered
between  the  selected  image  year  and  month  (changes  in  farmland
vegetation  planting),  which  will  have  different  degrees  of  bias  on
the classification results,  so this study paid special attention to this
problem when selecting the validation data.
 
 

Table 1    Characteristics of satellite images used in this study
Satellite Spatial-resolution/m Image time Cloud cover/%

GF-1-PMS 2 2015.06.04 0
GF-1-PMS 8 2015.06.04 0
Sentinel-2 10 2015.07-09 -
GF-1-WFV 16 2015.10.01 0
Landsat OLI 30 2015.07.26 3.17

Note: GF-1-PMS, GF-1-WFV, and Landsat OLI are the Gaofen-1 panchromatic/
multispectral camera, the Gaofen-1 wide field-of-view (WFV) camera, and the
Landsat Operational Land Imager camera, respectively.
 

Chen et al.[33] published the global 30 m land cover datasets in
2000  and  2010  by  using  pixel-based  and  object-based  methods;
these datasets  described the global  surface features with an overall
accuracy  of  up  to  80%.  Furthermore,  Gong  et  al.[36]  published  the
global  10  m  land  cover  datasets  by  using  machine  learning  in  the
Google  Earth  Engine  platform  for  the  first  time,  thereby  showing
more  spatial  distribution  details.  However,  the  classification
performance  of  these  products  is  still  unclear  in  small-scale  (city-
scale or  county-scale)  regions.  The 30 m global  land cover dataset
was used for 2010 (LC30 m) and the 10 m global land cover dataset
was  used  for  2015  (LC10  m)  to  analyze  differences  with  the
classification results of the small-scale region (i.e., Dali County). 

2.2.1    Image preprocessing
All original images from different satellites were preprocessed

for  radiation  calibration,  atmospheric  correction,  mosaicking,  and
extracting  the  region  of  interest  (ROI)  to  generate  images  of  2  m,
8  m,  10  m,  16  m,  and  30  m  spatial  resolutions.  More  details  of
different satellite image preprocessing are provided below.

1)  The  Landsat  OLI  images  (level-1)  that  were  downloaded
from  an  online  website  at  https://earthexplorer.usgs.gov/  have  a
spatial  resolution  of  30  m[37].  The  image  contained  3.17%  cloud
cover and 126/36 path/row numbers on 26 July 2015. First, Landsat
images  were  subjected  to  radiometric  calibration  and  atmospheric
correction  by  employing  the  Fast  Line-of-Sight  Atmospheric
Analysis of Spectral Hypercubes (FLAASH) model by using ENVI
5.1  software.  The  radiometric  calibration  module  was  used  to
convert  the DN value of the original  image into radiance based on
the  radiation  calibration  parameters  that  came  with  the  Landsat
satellite. The formula is

Lλ =G×DN+O (1)

where,  Lλ  represents  radiance;  G  and  O  represent  the  gain  and
offset, respectively, from the image metafile; DN value is from the
pixel  value  of  the  raw  images.  The  FLAASH  atmospheric
correction module was used to convert radiance values into surface
reflectance. More information on FLAASH atmospheric corrections

is available in Reference [38].
2)  Sentinel-2  A/B  is  based  on  a  constellation  of  two  identical

satellites  in  the  same  orbit[39].  Sentinel-2  A/B  has  higher  spatial
resolution  surface  reflectance  data  (10  m)  and  a  shorter  revisit
period (5 d) and can thus supplement missing data in the time since
the  satellites  became  fully  operational  in  2017.  Sentinel-2  A/B
contains  three  red-edged  spectral  bands  (20  m)  specifically  for
monitoring  vegetation[40].  The  Level-1C  (L1C)  top-of-atmosphere
(TOA)  reflectance  of  Sentinel-2  images  was  obtained  from  the
European  Space  Agency  (https://scihub.copernicus.eu/dhus/#/
home/). Furthermore, the Sen2cor module was employed within the
Sentinel-2  toolbox  for  the  L1C  TOA  reflectance  of  Sentinel-2
images  to  conduct  atmospheric  correction;  L1C  TOA  reflectance
was converted into Level-2A top-of-canopy (TOC) reflectance. The
four  spectral  bands,  i.e.,  the  red,  green,  blue,  and NIR bands,  with
10  m  spatial  resolution  were  used  in  this  study.  Detailed  band
configuration  can  be  found  on  the  European  Space  Agency’s
website  at  https://earth.esa.int/web/sentinel/user-guides/sentinel-2-
msi/resolutions/spatial. Given the absence of remote sensing images
in  a  single  month  over  the  study  area,  all  images  from  July  to
September 2015 were selected, and each optimal band of all images
in  this  period  was  restructured  as  a  new  image  to  achieve
classification.

3)  Launched  at  the  Jiuquan  Satellite  Launch  Centre  of
China  in  April  2013,  the  Gaofen-1  satellite  carried  two
panchromatic/multispectral  (PMS)  and  four  wide  field-of-view
(WFV)  cameras.  GF-1-WFV  has  four  spectral  channels  (blue,
green,  red,  and near-infrared bands) and a spectral  range from 450
to  892  nm[41].  In  this  study,  the  GF-1-WFV image  from  the  China
Center  for  Resources  Satellite  Data  and  Application
(http://www.cresda.com/) has a spatial resolution of 16 m and a four-
day revisit period. The image was selected with 0% cloud cover and
9/97  path/row  numbers  on  1  October  2015.  Then,  the  GF-1-WFV
image  was  subjected  to  radiometric  calibration  and  atmospheric
correction  by  employing  the  Fast  Line-of-Sight  Atmospheric
Analysis of Spectral Hypercubes (FLAASH) model by using ENVI
5.1 software. The specific implementation steps are in Equation (1)
and Reference [38].

4) The Gaofen-1 panchromatic/multispectral (GF-1-PMS) has a
spatial resolution of 2/8 m and a 41 d revisit period (Table S1). Two
images were used with 0% cloud cover and 9/97 and 9/98 path/row
numbers  on  4  June  2015  from  the  China  Center  for  Resources
Satellite Data and Application (http://www.cresda.com/). The GF-1-
PMS was processed in the same way as GF-1-WFV. Since only one
water band was obtained from the 2 m panchromatic images of GF-
1-PMS,  the  vegetation  index  cannot  be  calculated  directly.
Therefore, the 8 m multispectral and 2 m panchromatic images were
used  to  generate  a  2  m  multispectral  image  by  using  the  Gram-
Schmidt  (GS)  pansharpening  method  in  ENVI  software[42].  The
algorithm  was  based  on  vector  orthogonalization  to  increase  the
spatial  resolution  and  provide  better  visualization  of  a  multiband
image using the higher-resolution panchromatic bands[42].

5)  LC30  m  was  generated  by  an  approach  based  on  the
integration  of  pixel-  and  object-based  methods  with  knowledge
(POK-based).  The  classification  of  10  land  cover  types  adopted  a
split-and-merge strategy. The authors developed a knowledge-based
interactive  verification  process  to  improve  the  quality  of
classification results. The overall classification accuracy of LC30 m
was above 80%[33].  In this study, the LC30 m in 2010 was used for
further analysis.

6)  LC10  m  was  generated  using  stable  classification  with
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limited  samples  and  a  random forest  algorithm.  Tens  of  thousands
of  remote  sensing  images  from  Sentinel-2  data  were  classified  on
the  Google  Earth  Engine.  The  overall  accuracy  of  LC10  m  was
72.76%[36].

7)  The  ASTER  GDEM  V2  global  DEM  dataset  with  30  m
resolution was used from the Earth Remote Sensing Data Analysis
Center  (http://www.ersdac.gdem.aster.or.jp/).  The  ASTER  GDEM
dataset  was  jointly  released  by  METI  (Japan)  and  NASA  (the
United  States)  and  is  available  free  to  the  public.  The  ASTER
GDEM  V2  dataset  was  developed  from  the  V1  version  of  the
GDEM  image  by  using  an  advanced  algorithm  to  improve  the
spatial resolution and elevation accuracy of the data. 

2.2.2    Training features
The complexity of the actual ground feature spectrum affected

the classification results. Previous research explored the selection of
classification  features.  Therefore,  the  vegetation  indices  (NDVI,
EVI, and NDWI) and texture features of all images were calculated
that  were  stacked  with  the  DEM  and  four  preprocessed  radiation
bands  (red,  green,  blue,  and  near-infrared  bands)  to  form  a  new
dataset for LULC classification (Table 2).  All the feature variables
in Table 2 are adopted in the classification of satellite images, i.e.,
Landsat  OLI,  Sentinel-2,  and  GF-1-WFV/PMS  images.  The
calculation formulas of the vegetation indices are as follows:

EVI = 2.5× ρNIR −ρRed

ρNIR +6×ρRed −7.5×ρBlue +1
(2)

NDVI =
ρNIR −ρRed

ρNIR +ρRed
(3)

NDWI =
ρGreen −ρNIR

ρGreen +ρNIR
(4)

where, ρRed, ρNIR, ρSWIR, ρGreen,  and ρBlue  are  the  surface  reflectance
values of the red band, near-infrared band, shortwave infrared band,
green band, and blue band, respectively.
 
 

Table 2    Features of all images with different spatial
resolutions

Bands Description References
VIS Red, Green, and Blue bands [43]
NIR Near-Infrared band [44]
DEM 30 m ASTER GDEM V2 [45]
NDVI Equation (3) [46]
EVI Equation (2) [46]
NDWI Equation (4) [47]

texture
mean, variance, homogeneity, contrast, dissimilarity, entropy,
second moment, correlation for each band of different satellite
images

[20]

Note: VIS, NIR, DEM, NDVI, EVI, and NDWI are abbreviations for visible
radiation, near-infrared, digital elevation model, normalized difference vegetation
index, enhanced vegetation index, and normalized difference water index, respectively.
 

The  texture  features  were  calculated  by  using  the  following
three  steps.  1)  First,  all  bands  of  remote  sensing  were  subject  to
principal  component  changes  by  using  ENVI  software.  The  first
principal component contained more than 85% of the information of
remote sensing images. 2) Second, the texture characteristics of the
first  principal  component  extracted  in  ENVI  software  include  the
mean,  variance,  homogeneity,  contrast,  dissimilarity,  entropy,
second  moment,  and  correlation  (Table  2).  3)  Finally,  the  visible
light,  near-infrared,  terrain  factors,  vegetation  indices,  and  texture
features were stacked to form a dataset to be classified. 

2.3    Methods of classifying images
The  datasets  generated  in  Section  2.2  were  classified  using

random  forest  (RF),  support  vector  machine  (SVM),  decision  tree
(DT),  and  artificial  neural  network  (ANN)  models.  The  remote
sensing bands (Table 2) were used as the input variable and the land
use classes were used as the target variable to build the model and
obtain the prediction dataset. The optimal classifier was selected to
identify remote sensing images with different spatial  resolutions to
explore the influence of image resolution on classification accuracy.
Additionally, the classification results were compared with existing
global  land  cover  datasets  to  further  evaluate  the  effectiveness  of
the classification methods and the reliability of the results.

1)  RF  is  an  integrated  classifier  based  on  decision  trees[24,48],
with a very fast generation rate and short training time for hundreds
of  decision  trees,  compared  with  a  single  classifier[49].  The  RF
algorithm requires only a few parameters but has the advantages of
removing  abnormalities  and  optimizing  data[50].  RF  improves
generalization accuracy by increasing the complexity of the training
data to avoid over-classification[24,51]. In this study, the random forest
model  was  built  by  using  the  “randomForest”  package  in  the  R
program  (https://www.r-project.org/).  Random  forest  models  are
usually influenced by two parameters, namely, “ntree” and “mtry”,
which  represent  the  number  of  decision  trees  and  features,
respectively,  selected  at  each  node  of  the  decision  tree.  Based  on
previous research, the value of mtry is set as the square root of the
number of features for the RF model[52]. Hence, this study sets “ntree”
and  “mtry”  as  1500  and  5,  respectively,  to  obtain  the  best
performance.

2)  SVM:  A  support  vector  machine  is  a  machine  learning
algorithm based on the principle of structural risk minimization by
using statistical theory[23]. SVM converts a nonlinear problem into a
linear one by using a kernel function, which can map the problem to
a  high-dimensional  space.  In  this  space,  SVM  finds  the  optimal
segmentation  plane  that  maximizes  the  dispersion  between  each
sample. Hence, SVM can solve small samples and high-dimensional
problems  well  and  has  a  strong  generalization  ability[53,54].  In  this
study, the “e1071” package in the R program was used to establish
an SVM model  of  the  radial  basis  function for  finding a  nonlinear
implicit relationship between the classes and features (Table 2). The
grid-search  method  was  also  used  to  determine  the  best  penalty
coefficient (cost) and kernel parameter (gamma) for reducing model
classification  errors.  Specifically,  the  cost  and  gamma  were  set  as
10  and  0.1  for  30  m  images,  respectively,  while  the  remaining
parameters were set to their default values.

3) DT: Classification and regression trees (CARTs) are a binary
tree  classification  method  that  uses  fully  spatial-auxiliary
information and combines multiple feature variables to achieve the
classification  and  prediction  of  images.  CARTs  determine  the
optimal  segmentation  point  by  comparing  the  Gini  coefficient  of
attributes  in  the  data  preprocessing  stage  and  finally  establish  a
decision tree under different segmentation methods. CARTs prevent
model  overfitting  problems  by  adopting  the  pruning  approach[55].
The DT model is usually divided into two main steps: 1) a spanning
tree;  and  2)  a  pruning  tree[56].  In  most  cases,  pruning  may  be
necessary to avoid inappropriate nodes in the tree. In this study, the
DT model was built using the “rpart” package in the R program, and
the DT model was adjusted to achieve the best performance through
pruning.  Specifically,  for  pruning,  a  10-fold  cross-validation  was
applied to filter the tree with the lowest prediction error. Moreover,
the  complexity  parameter  was  set  to  0.013  to  penalize  tree  size
based on the prune function in the R program. Finally, a pruned tree
was used to predict land cover class.

4) ANN: An artificial neural network with strong learning and
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collective computing ability can automatically realize the nonlinear
mapping relationship between two groups of variables and requires
few  initial  samples[57].  ANN  does  not  need  to  display  explicit
relationships  and  samples  to  follow  the  independent  or  normal
distribution[58].  Training  a  neural  network  plays  a  critical  role  in
classification  accuracy.  Many algorithms,  such  as  backpropagation
(BP),  have  been  applied  to  train  neural  networks  to  update
weights[59].  BP neural  networks,  as  the classical  algorithms of  deep
learning,  have  been  exploited  in  multiple  agricultural  activities,
such  as  land  use  classification[59],  crop  growth  monitoring[60],
predicting  the  water  consumption  of  vegetation[61],  and  yield
assessment[62].  The  remote  sensing  data  were  standardized  before
classification. Hence, a backpropagation neural network model was
established based on the “nnet” package in the R program. A three-
layer  network  was  conducted  with  an  input,  hidden,  and  output
layer. It was determined that the number of nodes (neurons) for the
input,  hidden,  and  output  layers  would  be  16  (response  variables),
10, and 6 (predicted class), respectively. The decay and max values
in  the  ANN model  were  set  to  0.01  and  1000,  respectively,  while
the remaining parameters were set to their default values. 

2.4    Verifying the accuracy of classification results
The  verification  data  were  obtained  from very-high-resolution

(VHR) Google Earth images to construct a classification model and
to  test  its  accuracy  in  this  study.  The  702  verification  data  points
contained  different  types  of  features  (Figure  1  and  Table  3),  of
which  70%  were  used  to  build  the  classification  model  and  30%
were  used  to  verify  the  accuracy  of  the  classification  results
(Figure  2).  The  verification  points  based  on  stratified  random
sampling  were  used  to  reasonably  cover  the  study  area.  First,  the
study  area  was  divided  into  six  layers  (cultivated  land,  forestland,
grassland,  water,  impervious,  and  unused  land)  according  to  the
2015  China  Land  Use  Dataset  and  MCD12Q1  land  use  data.
Second,  random  points  were  generated  in  each  layer.  Third,
historical  VHR images were used to  check each random point  and
selected  and  marked  points  covered  by  pure  soil  according  to  the
VHR  image;  points  without  clear  land  cover  information  were
excluded[63]. If the 2015 VHR image is missing in this area, images

from  adjacent  years  were  used  to  filter  points.  Specifically,  two
adjacent  years  in  the  target  region  were  selected  for  2015.  If  the
land cover did not change in these two years,  we assumed that the
land  cover  in  2015  would  be  consistent  with  that  of  the  adjacent
years.  The  validation  points  were  reserved;  otherwise,  they  would
be  removed.  This  methodology  maximally  reduces  the  sampling
errors  because  of  the  repeated  change  in  land  cover  during  the
adjacent  years  with  a  small  probability.  Therefore,  the  samples  of
different  land  cover  types  at  the  same  time  were  obtained  as  the
satellite  images  (i.e.,  2015).  The  few  samples  from  adjacent  years
do  not  interfere  with  outcomes  due  to  the  unremarkable  land-use
change in a short time.

The  verification  of  the  results  was  based  on  the  confusion
matrix  generated  by  the  verification  data.  Specifically,  the  overall
accuracy  (OA,  percentage  of  correctly  classified  sites)  and  the
Kappa  coefficient  (OA normalized  by  the  baseline  random chance
for  the  dataset)  were  used  to  represent  the  difference  between
predicted and observed values[64].  Producer  accuracy (PA) and user
accuracy (UA) were used to assess the classification accuracy of a
single feature class[65]. The formulas for OA, the Kappa coefficient,
PA, and UA are as follows:
 
 

Table 3    Number of verification points for six LULC classes
across the study area

Abbreviation Land use and Land
cover classes

Number of samples

Total Training Validation

CL1 Cultivated land 173 119 54

FL Forestland 102 75 27

GL Grassland 101 68 33

W Water 94 65 29

I Impervious 132 94 38

UL Unused land 100 70 30

Note: CL1, FL, GL, W, I, and UL represent cultivated land, forestland, grassland,
water, impervious, and unused land according to the characteristics of land use,
respectively. Same below.
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Figure 2    Flow chart presenting the overall classification procedure
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OA =

q∑
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n
(5)
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PA =
nkk
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where, nk+, n+k,  and nkk are row sum value, column sum value, and
main diagonal value of the matrix. n and q represent the number of
validation samples and the number of classes, respectively. 

3    Results
 

3.1    Classification results of different models
The four  machine  learning models  described above were  used

to classify the processed Landsat 8 OLI (30 m) images. The overall
accuracies of the models were as follows (in the order of highest to
lowest):  81.99% (RF),  80.09% (DT),  77.25% (SVM),  and  68.72%
(ANN). Likewise, the Kappa coefficients of the four models were as
follows  (in  the  order  of  highest  to  lowest):  0.78  (RF),  0.76  (DT),
0.72 (SVM), and 0.62 (ANN) (Figure 3).

The  RF,  SVM,  and  DT  models  had  higher  user  and  producer
accuracies  for  LULC  classifications  CL1,  FL,  W,  and  CL2  and
performed  better  in  distinguishing  the  classes  of  land  features
(Figure 4). None of the four classification models performed well in
distinguishing  GL  (both  the  user  and  producer  accuracies  were

relatively low). Based on confusion matrix, the study found that the
four  algorithms  all  confused  the  grassland  as  cultivated  land  and
forest (Table S3). According to RF, SVM, DT, and ANN, cultivated
land  and  forest  accounted  for  77%,  67%,  80%,  and  70%,
respectively, of the total misclassified (Table S3). RF and SVM had
lower  user  and  producer  accuracies  in  distinguishing  UL  and  thus
did not achieve the best classification. ANN outperformed the other
models  in  terms  of  user  accuracy  in  distinguishing  UL.  However,
the  producer  accuracy  values  of  ANN  for  FL,  GL,  and  UL  were
low, indicating that three classes were misclassified (Figure 4).

The performances of the four machine learning models on land
classification (especially cropland, forest, and grassland) are shown
in Figure  5.  Specifically,  RF,  SVM, and DT can accurately  reflect
the  spatial  characteristics  of  the  main  ground  classes  in  different
subregions,  while  ANN  has  serious  confusion  and  cannot
distinguish CL1, GL, and UL. This research result is consistent with
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Figure 3    Overall accuracies and Kappa coefficients of different
classification models
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Figure  S1,  which  shows  the  spatial  distribution  of  classification
results for the four machine learning models and indicates that RF,
SVM, and DT can accurately  capture  the  spatial  traits  of  the  main
ground  classes.  There  was  also  some  confusion  with  the  SVM
model, which misclassified the middle and south subregions of the

study  area  as  UL  and  the  northwest  subregions  as  FL  and  GL
(Figure S1). These results were likely caused by model overfitting.
DT  misclassified  much  of  the  CL2  near  the  river.  RF  performed
well  in  classification  and  prediction,  and  the  accuracy  of
classification was high for multiple ground classes (Figure S1).
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3.2    Classification of different resolution images
Although  the  RF  classifier  showed  lower  UAs  and  PAs,  this

study  focused  more  on  the  performance  of  cropland.  Comparisons
of the results  from the four machine learning classification models
indicated  that  RF  performed  the  best  by  effectively  distinguishing
cropland  and  avoiding  overfitting  problems.  Therefore,  RF  was
selected  to  classify  remote  sensing  data  with  different  spatial
resolutions  to  determine  the  impact  of  resolution  on  the
classification  results.  To  avoid  the  influence  of  other  factors,  the
same features (Table 1) and model parameters were used for remote
sensing  data  with  different  spatial  resolutions.  The  typical  area,
containing all attribute features, was further selected from the study
area (Figure 1) to improve the calculation speed and efficiency.

The  overall  accuracies  of  different-resolution  images  were  as
follows (in the order of highest to lowest): 82% (8 m), 76% (10 m),
76% (30 m), 77% (16 m), and 68% (2 m). The overall accuracies of
cropland displayed a similar trend of variation; i.e.,  compared with
the performances with other images, the performance with the 8 m
resolution images (88%) reached the peak. Additionally, the Kappa
coefficients  of  the  five  images  were  as  follows  (in  the  order  of
highest  to  lowest):  0.78  (8  m),  0.71  (10  m),  0.71  (30  m),  0.68
(16 m), and 0.61 (2 m) (Figure 6). The classification results for 8 m
resolution images were the best,  while the classification results  for
2 m resolution images were the worst. The classification results for
10 m, 16 m, and 30 m resolutions were relatively close (Figure 6).
The  overall  accuracies  and  Kappa  coefficients  of  the  10  m  and
30 m images were the same. The classification of each class in the
2  m  image  was  unsatisfactory,  with  an  accuracy  of  less  than  70%
for FL, GL, and CL2 and a classification accuracy of less than 80%
for W and CL1 (Figure 6).  Classification of the 8 m image for FL
was  poor,  but  other  feature  classes  had  relatively  higher
classification accuracies  (the  accuracies  of  both CL2 and UL were
more  than  90%).  The  10  m  image  had  the  best  classification
accuracy for CL1, but the classification accuracy values for FL, GL,
and W were relatively low. The classification accuracy of the 16 m
image was better for CL2 (for which the accuracy was greater than

90%) than for GL, W, and UL (for which the accuracy was less than
70%). For the 30 m image, classification accuracies were better for
W and CL2 than for the other four feature classes (Figure 6).
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The  classification  results  of  the  five  spatial-resolution  images
exhibited different spatial distributions (Figure S2). The distribution
of  the  main  classes  could  be  displayed  accurately,  but  there  were
significant  differences  in  a  single  feature  class  due  to  the  different
spatial resolutions of the images (Figure S2). The CL1 areas showed
similar spatial patterns for the different spatial resolutions. The 2 m
and  16  m  images  predicted  more  FL  and  GL  areas,  which  were
distributed  mainly  in  the  northern  region  of  the  study  area
(Figure  S2).  There  were  many  prediction  errors  with  the  16  m
image, especially for W (distributed mainly in the south of the study
area), as the predicted classification was inconsistent with the actual
ground  observations.  Compared  with  the  other  images,  the  8  m
image  classified  more  CL2  areas,  and  these  areas  were  distributed
mainly  in  the  middle  of  the  study  area.  Compared  with  the  30  m
image,  the  2  m,  8  m,  10  m,  and  16  m  images  predicted  more  UL
areas, which were distributed mainly in the south of the study area.
For  cropland,  the  details  of  the  spatial  distribution  were  further
compared  based  on  the  images  with  different  spatial  resolutions
(Figure  7).  The  increased  mixed  pixels  were  observed  with  an
improvement  in  resolution.  More  high-resolution  images  missed
information on cropland;  e.g.,  16 m and 30 m images missed such
information in subregion 1 (Figure 7). Additionally, high-resolution
images  lose  more  details  of  ground  information,  especially  for
cropland,  and  fine  land  ubiquitously  exists  in  practical  production.
Although a 2 m resolution image could capture more ground details,
these  details  misled  classifiers  and  generated  additional  confusion
(e.g.,  mulch  on  cropland  was  misclassified  as  impervious)  (as
shown in Figure 7).

Figure  8  shows  the  importance  of  classification  features  for
different-resolution  images  using  the  RF  model.  Overall,  the
importance  of  classification  features  in  different-resolution  images
has  a  similar  variation  pattern,  which  is  in  descending  order  of
vegetation  index,  spectral  reflectance,  and  texture.  Among  these
indices,  the  DEM,  NIR,  and  Texture  mean  indices  are  highly
important. The importance of the DEM index under the 8 m image
is  higher  than  in  other  resolutions,  the  NIR  index  under  10  m
images  is  more  important  than  in  other  resolutions,  and  the
importance  of  Texture  in  30  m  images  is  higher  than  in  other
resolutions. 

3.3    Comparisons with existing LULC datasets
Although 8 m resolution images proved to be the best for land

use  classification,  there  are  no  land  cover  products  with  the  same
resolution  comparable  to  the  results  of  this  study.  Given  that  the
different-resolution images may introduce additional uncertainty, in
this  study,  popular  global  datasets  with  the  same spatial  resolution
(LC10 m and LC30 m) were used to further verify the effectiveness
of  the  classification  method  and  the  reliability  of  the  results.  For
ease of comparison, the classes of the land cover dataset in the study
area  were  reclassified  to  correspond  with  our  six  classification
categories (Table S2). Then, the longitude and latitude information
for the 702 measured validation points were used to extract classes
of  land  cover  and  generate  confusion  matrices  for  LC10  m,
LC30 m, RF10 m, and RF30 m (Figure 9). The results showed that
the  overall  accuracies  of  the  RF10  m,  LC10  m,  RF30  m,  and
LC30  m  images  were  93.59%,  49.43%,  94.59%,  and  55.98%,
respectively; and the Kappa coefficients were 0.92, 0.36, 0.93, and
0.45, respectively.

The  confusion  matrix  provided  more  detailed  classification
results (Figure 9). Both RF10 m and RF30 m had high classification
accuracy,  with  the  accuracy  of  most  feature  classes  being  greater
than  90%  and  few  misclassifications.  However,  the  classification
accuracies  of  both  LC10 m and LC30 m were  poor,  with  many of
the  classes  misclassified  (Figure  9).  Figure  10  shows  the
conspicuous  differences  in  spatial  distributions.  Specifically,  the
areas  and  distributions  of  CL2 and  UL were  different  between  the
RF results and the LC results. 

4    Discussion
 

4.1    Effect of machine learning models on classification results
In  this  study,  four  popular  ML  models  were  employed  in

classifying  high-resolution  images.  This  study’s  results
demonstrated  that  the  overall  accuracy  of  the  RF  classifier  was
higher than those of the other three classifiers. However, the results
should  be  treated  with  some  caution  due  to  the  substantial
differences  in  the  accuracies  that  were  calculated  for  different
classes  by  the  four  ML  models.  Specifically,  the  RF  classifier
outperformed  the  other  three  algorithms  on  cropland,  and  the  user
and producer accuracies on cultivated land and forestland were over
80%. This result  was further validated in a past  study[66].  However,
for the water class, the SVM and DT outperformed RF and ANN in
terms of user accuracy. ANN was found to be the best classifier on
unused  land  but  significantly  confounded  cultivated  land  and
forestland. The difference between different algorithms leads to the
difference in the accuracy of specific land cover classification. The
previous studies of model comparison reached a similar conclusion.
For example, Ngo et al.[67] reported that with an OA of 94.81%, the
SVM outperformed the RF classifier for cropland and forest in the
Mekong  Delta.  Additionally,  Prasad  et  al.[68]  found  that  compared
with RF and ANN, the logit  boost  model had higher robustness.  It
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Figure 7    Land cover maps using the optimal model for the
different-resolution images
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should  be  pointed  out,  however,  that  the  four  algorithms  all  show
bad  performance  in  grassland  (Figure  4).  According  to  a  previous
study,  the  grasslands,  cultivated  lands,  and  forests  had  a  similar
spectral  response,  which  is  likely  the  reason  for  the  confusion[69].
Further,  the  classification  performance  will  be  dominated  by
different  spectra with the same features and different  features with
the same spectra[70]. It is difficult to distinguish a similar land cover
solely  based  on  the  vegetation  spectrum.  A  classification  system
that  incorporates  phenological  information  would  increase  the
accuracy of classifying vegetation.

Uncertainties  among  algorithms  are  often  large  and  easy  to
overlook  because  the  more  popular  classifier  based  on  single
evaluations  is  usually  the  preferred  classifier  for  land  mapping.
Therefore,  we highlight  the importance of  an appropriate  classifier
and  workflow  for  developing  land  planning  and  spatial  mapping.
This is the first step to reducing uncertainty. 

4.2    Impact of spatial resolution on classification results
This  study  used  a  random  forest  classification  method  to

determine the effect of spatial resolution on classification accuracy.
The  use  of  the  DEM  in  land  cover  classification  can  improve
classification  accuracy,  especially  when  distinguishing  grassland
from forestland (Figure 8)[71]. Remote sensing images with different
spatial  resolutions  will  affect  classification  accuracy[72,73].  It  found
that  increasing  the  spatial  resolution  of  remote  sensing  images
generally  improved  classification  accuracy,  with  the  best  accuracy
seen with 8 m resolution images. Higher-resolution images reduced
classification accuracy. This result was consistent with the results of
Roth  et  al.[74]  More  detailed  features  in  high-resolution  satellite
images  may  affect  the  judgment  of  the  classifier  during
classification,  thereby  resulting  in  confusion  of  results  at  different
levels.  Due to high landscape heterogeneity and spectral  confusion
among different land classes (especially in cropland, grassland, and
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Figure 8    Importance of random forest-based classification features for different-resolution images

　February, 2025 Shi Y, et al.　Effects of machine learning models and spatial resolution on land cover classification accuracy Vol. 18 No. 1 　 253　



forestland),  it  is  difficult  to  map  high-precision  cropland[75].  An
increase in the resolution of data sources does not seem to solve this
problem.  In  the  future,  the  heterogeneity  of  land  cover  will  be

combined  with  an  appropriate  pixel  size  to  obtain  better  cropland
mapping.

Another  factor  affecting  classification  results  comes  from  the
differences in satellite sensors. Specifically, different satellites have
different sensors for receiving and transmitting information, and the
calculation methods of  these satellites  differ.  This  study controlled
the  number  and  kinds  of  features,  but  it  is  impossible  to
quantitatively estimate the error from satellite differences. 

4.3    Comparison with existing LULC datasets
This paper used global land cover data (LC30 m and LC10 m)

as  comparative  data  to  test  the  RF  classification  model.  The
classification  accuracy  in  this  study  was  much greater  than  that  of
the  global  land  cover  dataset  at  the  same  spatial  resolution.  The
difference  may  be  related  to  the  land  cover  class,  the  object
orientation,  and  the  models.  Firstly,  global  land  cover  types  are
more  complex  than  local  ones,  resulting  in  a  greater  variety  of
training data globally. With the collection of global data, there will
be  more  heterogeneity  within  a  category;  for  example,  different
spectral responses for different types of croplands will be observed.
In addition,  it  should be noted that  global  data  contain fewer  local
representative  samples  than  local  studies,  thus  increasing  their
uncertainty.  It  is  therefore  preferable  for  local  studies  to  use  local
training and validation data.

Moreover,  the  results  indicate  that  the  local-based  model
contains  higher  accuracy  in  a  local  study  than  the  global  model.
Different  training  tasks  are  required  for  global  and  local  models,
depending on the target object. And global and local models can all
achieve high accuracy in their target domains. Due to differences in
outliers or noise generated by different objects,  it  is  imperative for
users when working with specific local tasks to choose appropriate-
scale land cover data. More noise, outliers, and insufficient training
samples will interfere with test results.

However,  readers  should  note  that  LC30  m is  a  dataset  based
on 2010 remote sensing images,  and the random forest  model  was
not  used  as  the  classification  method.  In  contrast,  LC10  m  used
random forest  classification[34],  but  samples  were  from all  over  the
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Figure 9    Land use confusion matrix for different datasets (upper
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different classification models (lower panel) in Dali County,
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Figure 10    Spatial distribution of land use and land cover classes obtained from different datasets in Dali County,
Shaanxi Province, China
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world.  Hence,  the  classification  results  of  a  local  area  cannot
provide more accurate and clearer information. 

4.4    Limitations and perspectives
This  study  used  validation  data  to  build  classification  models

and  to  verify  the  accuracy  of  the  results.  The  validation  data  were
from  Google  Earth  high-resolution  images.  The  ground-truth  data
used  in  this  study  were  available  mainly  for  farmland.  However,
ground-truth data for other features were less available, and we thus
had to rely on Google Earth images. This study was relatively weak
regarding ground-truth  points.  In  future  studies,  more  ground-truth
data will be added to improve the accuracy of verification.

The  selection  of  features  in  this  study  was  based  on  previous
studies.  The number  of  attribute  features  has  a  complex impact  on
classification  accuracy,  including  reducing  the  correlation  between
any  two  classification  trees  in  a  random  forest  and  increasing  the
error  rate  of  the  random  forest[76].  In  future  research,  the  band
combination method will  be used to optimize the attribute features
to reduce the errors from the original features.

It was noted that salt-and-pepper noise appeared in the different
results for each image. However, this is an inevitable problem when
using  grid-based  LULC  classification.  To  reduce  this  noise  in  the
future,  the  object-oriented  methods  will  be  used  to  segment  the
image  into  objects  and  classify  the  features  of  the  objects  to
gradually reduce such problems.

With the future increase in remote sensing mapping, additional
attention  should  be  given  to  the  problem  of  matching  data  with
algorithms  and  data  with  classifiers.  Human  activities  and
meteorological conditions may affect the correlation between terrain
and  land  cover  category  in  large-scale  land  cover  mapping[77].  The
introduction  of  crop  phenology  can  improve  the  precision  of
classification[78] when attempting to more accurately classify a single
category,  such  as  cultivated  land.  LULC  classification  of
multitemporal  images  of  appropriate  resolution  combined  with
machine and deep learning algorithms can provide a reference and
basis for local decision-making regarding food security policies. 

5    Conclusions
This  study  used  multiple  machine  learning  models  to  classify

remote-sensing  images  with  different  spatial  resolutions.  The
impact  of  classification  algorithms  and  spatial  resolutions  on  land
use  classification  results  was  tested  to  explore  the  potential
uncertainty  of  land  mapping.  The  results  show  that  the  RF  model
outperformed other  machine learning classifiers  in  agriculture land
mapping  and  could  better  distinguish  cropland,  forest,  and
grassland.  SVM and ANN showed a  higher  accuracy on the  water
and  unused  land  classes  for  the  local  region,  respectively.
Additionally,  the  accuracy and reliability  of  land use  classification
results  were  affected  by  spatial  resolution.  A  potential  trend  was
observed  between  the  classification  accuracy  and  the  spatial
resolution,  which  initially  increased  together,  followed  by  a
decrease  in  classification  accuracy  as  the  spatial  resolution
continued  to  increase.  Images  with  a  suitable  resolution  level
provided  the  optimal  classification  results.  Finally,  classifications
from  the  random  forest  model  were  more  reliable  than  the
classifications from the existing large-scale land use datasets for the
local regions. The results of this study highlight that the classifier is
one  of  the  sources  of  uncertainty  for  land  mapping.  Classification
errors  caused  by  the  insufficient  or  excessive  spatial  resolution  of
remote  sensing  images  cannot  be  ignored  in  land  use  monitoring.
Selecting images by using the appropriate classification model and
spatial  resolution  is  very  essential  for  obtaining  reliable  land  use

classification results. 
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Appendix
 

Table S1    Parameters of GF-1 satellite
Payloads Bands Spectral range/μm Spatial resolution/m Swath width/km Repetition cycle/d

WFV

Band 1 0.45–0.52 16

800 4
Band 2 0.52–0.59 16
Band 3 0.63–0.69 16
Band 4 0.77–0.89 16

PMS

Pan 1 0.45-0.90 2

60 41
Band 1 0.45–0.52 8
Band 2 0.52–0.59 8
Band 3 0.63–0.69 8
Band 4 0.77–0.89 8

Note: WFV and PMS represent wide field of view and panchromatic/multi-spectral sensors, respectively.

 

Table S2    Reclassification of global land cover datasets
Datasets Before classification After classification

LC10m/LC30m

Cropland Cultivated land
Forest Forest land

Grassland Grassland
Shrub land Grassland
Wetland Unused land
Water Water

Impervious area Construction land
Snow and Ice Unused land

 

Table S3    Confusion matrix of different machine learning models
Algorithm CL FL GL W I UL Total

RF

CL 50 1 0 1 1 1 54

FL 0 24 3 0 0 0 27

GL 5 5 20 0 1 2 33

W 1 0 0 26 0 2 29

I 0 0 0 0 35 3 38

UL 4 0 3 3 2 18 30

Total 60 30 26 30 39 26 211

SVM

CL 45 4 0 2 0 3 54

FL 0 23 4 0 0 0 27

GL 5 5 18 0 2 3 33

W 0 0 0 28 1 0 29

I 1 0 0 3 33 1 38

UL 4 1 3 4 2 16 30

Total 55 33 25 37 38 23 211

DT

CL 48 1 0 3 1 1 54

FL 1 23 3 0 0 0 27

GL 8 4 18 0 2 1 33

W 1 0 0 27 1 0 29

I 2 1 0 0 33 2 38

UL 3 0 3 3 1 20 30

Total 63 29 24 33 38 24 211

ANN

CL 42 5 1 2 1 3 54

FL 4 23 0 0 0 0 27

GL 8 8 10 1 2 4 33

W 4 1 0 23 0 1 29

I 1 0 7 0 25 5 38

UL 1 1 3 2 1 22 30

Total 60 38 21 28 29 35 211

Note: The column labels and row labels represent the observed and predicted values, respectively.
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Figure S1    Spatial distribution of land use and land cover from Landsat OLI using different machine learning classification models in Dali
County, Shaanxi Province, China
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Figure S2    Spatial distribution of land use and land cover obtained from different-resolution images in a portion of Dali County,
Shaanxi Province, China
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