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Abstract: Although the development of the robot picking vision system is widely applied, it is very challenging for fruit 

detection in orchards with complex light and environment, especially for fruit colors similar to the background.  In recent, 

there are few studies on pecan fruit detection and location based on machine vision.  In this study, an accurate and efficient 

pecan fruit detection method was proposed based on machine vision under natural pecan orchards.  In order to solve the 

illumination problem, a light compensation algorithm was first utilized to process the collected samples, and then an improved 

Faster Region Convolutional Neural Network (Faster RCNN) with the Feature Pyramid Networks (FPN) was established to 

train the samples.  Finally, the pecan number counting method was introduced to count the number of pecan.  A total of 241 

pecan images were tested, and comparison experiments were carried out.  The mean average precision (mAP) of the proposed 

detection method was 95.932%, compared with the result without uneven illumination correction (UIC), which was increased 

by 0.849%, while the mAP of the Single Shot Detector (SSD)+FPN was 92.991%.  In addition, the number of clusters was 

counted using the proposed method with an accuracy rate of 93.539% compared with the actual clusters.  The results 

demonstrate that the proposed network has good robustness for pecan fruit detection in different illumination and various 

unstructured environments, and the experimental achievement has great potential for robot-picking visual systems. 
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1  Introduction

 

Carya illinoensis, also known as American pecan, has rich 

nutrition and a crisp taste.  It is a world nut with high content of 

polyunsaturated fatty acids in its kernel and has healthcare 

functions such as reducing cholesterol.  Therefore, various kinds 

of pecans are widely planted, and it is very necessary to study the 

fruit size, quantity statistics, and picking of automatic pecan in 

trees.  Non-contact automatic detection of single pecan is the 

primary task.  However, it is difficult to segment pecan fruit 

automatically due to the color similarities between fruit and leaves 

in the complex environment. 

Fruits detection system sensors mainly include color cameras[1], 

spectral cameras[2], thermal cameras[3], RGB-Depth (RGB-D) 

cameras[4], and Lidar[5].  Each of these sensors has its strengths 

and weaknesses when used in real-field conditions, with the best 

choice depending on the specific application.  As a fruit-picking 
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system, visual sensors such as color cameras and RGB-D cameras 

are more widely applied in picking robots.  Previous research on 

the task of in-field fruit detection methods detection based on 

machine vision are mainly combining features with machine 

learning to detect fruits.  The appearance features including color 

threshold, shape feature, and texture[1,6,7] were used as fruit 

detection features, and the fruit classifiers were established such as 

Bayesian classifier, K-means clustering[8], K-Nearest Neighbor 

(KNN) clustering[9], Artificial Neural Network (ANN)[10], and 

Support Vector Machine (SVM)[11].  The fruits in the previous 

research are all single-fruit and have obvious color or shape 

features, and the features are easily extracted.  However, the skin 

color of pecan fruits is similar to that of its leaves, and most of its 

fruits are clustered together, the traditional color features and shape 

features are difficult to be extracted. 

With the development of deep learning, convolution neural 

network (CNN) methods have been widely used in object detection, 

since the Region Convolutional Neural Network (RCNN) has been 

proposed in 2014[12], which the Region Propose Network (RPN) 

was introduced to the network, and the RPN proposes the Region 

of Interest (ROI) of foreground class.  Objects detection 

approaches have been evolving, becoming more efficient than 

traditional computer vision methods.  In order to improve the 

detection speed, the Fast RCNN[13] and Faster RCNN[14,15] have 

been successively proposed.  Later, He et al.[14] proposed an 

instance segmentation algorithm known as Mask RCNN.  Sun et 

al.[16] introduced the Faster RCNN using Resnet-50 backbone with 

residual blocks, and a K-means clustering method was used to 

adjust more anchor sizes to improve the detection accuracy.  Kang 
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et al.[17] developed a deep neural network DaSNet-v2 to perform 

detection and segmentation on fruits and branches in apple orchard 

environments and gave the performance evaluation parameters of 

different backbones for apples and branches.  Redmon et al. [18,19] 

combined the RPN branch and classification branch into a single 

network, leading to more concise architecture and better 

computational efficiency, the network is the You Only Look Once 

(YOLO), which achieves state-of-the-art performance in object 

detection with high computation speed.  Due to their strong 

feature extraction ability and autonomous learning ability[20], the 

YOLO network is widely applied in fruit detection[21,22].  Tian et 

al.[23] applied a customized YOLO-V3 network to apple detection.  

Koirala et al.[24] adopted the YOLO architecture in the yield 

estimation of mango fruit, and accurate detection performance was 

reported from their work.  The above research mainly focused on 

single-fruit detection, and there are few researchers on clustered 

fruit detection, such as pecan fruits.  Yang et al.[21] developed an 

FPN-strengthened Mask-RCNN in strawberry detection under a 

non-structured environment, the good results in both detection and 

instance segmentation tasks are shown in their work.  They gave 

the fruit detection results of 100 test images with an average 

detection precision rate of 95.78%, a recall rate of 95.41%, and a 

mean intersection over union (MIoU) rate of 89.85%.   

Though all the above studies, which utilize color or shape 

features and machine learning, have made some progress toward 

automatic fruit detection and localization.  However, there are few 

researchers on the detection and location of pecan fruit based on 

machine vision.  Now, there are still some problems in fruit 

detection in a natural unstructured environment, especially in fruits 

with high overlap state 1) some color-threshold-based methods 

cannot recognize fruit with similar background color; 2) some 

shape-feature-based methods cannot detect the clustered fruit; 3) 

some methods cannot solve the problem of uneven illumination; 4) 

some methods cannot detect the fruits with different sizes.   

Aiming at the current shortcomings of fruit detection, the main 

objectives of this study were as follows 1) different kinds of 

cameras were employed to collect sample data at different times 

and in different orchards; 2) all the pictures were preprocessed 

using the illumination equalization method; 3) different scale 

samples were labeled; 4) all the labeled samples were trained using 

Faster RCNN+FPN; 5) the area of the overlapping area and the 

number of overlapping fruits were calculated; 6) a large number of 

experiments were carried out to verify the performance of the 

algorithm. 

2  Methods and materials 

2.1  Framework of the proposed method  

In this study, an automatic pecan detection method was 

proposed based on Faster RCNN with FPN.  To improve the 

robustness of the method, two different cameras were used to 

acquire training samples with different image sizes and introduce a 

light equalization process to solve the illumination non-uniformity 

problem.  Subsequently, labelImg was employed to label the 

training samples of different sizes and construct the training 

network.  In order to provide better picking information for the 

picking robots, an overlapping region calculation method was 

proposed to calculate the number of overlapping pecans.  Finally, 

the comparison experiments were carried and the performance of 

the proposed method was analyzed.  The framework of the 

method is shown in Figure 1. 

 
Figure 1  Framework of the proposed method 

 

2.2  Data acquisition  

To verify the effectiveness and feasibility of the proposed 

model algorithm, the photos of pecans taken in the experimental 

base of Nanjing Forestry University, Zhangmiao Village, Houbai 

Town, Jurong City, Zhenjiang, Jiangsu Province, China (119°9'6''E, 

31°52'45''N).  It belongs to the central monsoon climate zone of 

the subtropical region, the average annual temperature is 15.6°C, 

and the average annual sunshine is 2157 h.  The annual average 

precipitation is 1018.6 mm. 

Pawnee was selected as this research subject.  These pictures 

are taken from 9:00 a.m.  to 5:00 p.m., August to September 2021.  

The device was a Nikon D7000 with an image size of 2464×1632 

pixels and a resolution of 300 dpi, and the other images were 

captured by the Hunan Academy of Forestry using Realsense with 

an image size of 1280×720 pixels.  The distance between the 

camera and the pecan is about 0.5-2.5 m.  The difference in image 

sizes output from different shooting equipment can improve the 

robustness of the experiment. 

In order to prevent the poor performance of the model caused 

by insufficient diversity of training samples, not only using 

different shooting devices but also the following measures were 

taken during the process of image acquisition.  Considering the 

difference in imaging results caused by different light conditions, 

images were collected in sunny and cloudy, and the images were 

also captured along with light and backlight.  Respectively, in the 

process of sampling, different forms and occlusions of pecan 

organs were taken into account, and fruits with different maturity 

were photographed from multiple angles to increase the diversity of 

samples.  Figure 2 gives the partial samples taken in different 

situations. 
 

   
a. Normal light b. Cloudy c. Overexposure 

   
d. Underexposure e. Leaf occlusion f. Fruit occlusion 

 

Figure 2  Examples of photos of pecans in various situations 

2.3  Uneven illumination correcting 

Due to rapid changes in sunlight and metering errors in the 

camera at the time of the shooting, it is possible to take photos that 

are overexposed, seeing the example in Figure 2c.  In such photos, 

highlight details are lost due to over-exposed areas, resulting in 
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insufficient detail levels in the image.  Therefore, it is easy to 

cause insufficient feature learning of pecan in the network.  In this 

study, the dark channel image defogging algorithm (DCID)[25] was 

used to detect white dots in images using dynamic thresholds, 

including two steps, one is white spot detection and the other is 

white spot adjustment to suppress the exposure of backlight or 

overexposed photos in the data set.  So that the details in the 

images were clearer and conducive to feature extraction.  The 

picture after illumination compensation is shown in Figure 3a. 

On account of the rapid uneven change of sunlight and the 

errors caused by the automatic metering of the camera during the 

shooting, the photos taken may be overexposed (Figure 2c) and 

underexposed (Figure 2d).  In order to reduce the interference of 

the subsequent detection of pecans, the photos with problematic 

exposure should be corrected.  Some photos may be underexposed 

due to a lack of light and changes in shooting angles.  Such 

images have relatively low contrast and dull colors due to the lack 

of detail in the underexposed areas.  Therefore, it is easy to 

interfere with the detection and recognition of pecan.  In this study, 

Zero-Reference Deep Curve Estimation (Z-RDCE)[26] was 

employed to enhance the low-light image by formulating the 

low-light image and to realize exposure compensation for 

under-exposed pictures in the data set.  Figure 3b shows the 

compensation result of the underexposed picture (Figure 2d).  The 

number of photos including overexposure and underexposure in the 

data set and the methods of processing with uneven illumination 

correcting are listed in Table 1.  All the underexposed and 

overexposed images are corrected by uneven illumination and then 

input into the network structure. 
 

  
a. Overexposure corrected b. Underexposure corrected 

 

Figure 3  Comparison before and after uneven illumination 

correcting 
 

Table 1  Number of photos and the methods of processing 

with uneven illumination correcting 

State Number Method 

Overexposure 46 DCID 

Underexposure 53 Z-RDCE 

Note: Z-RDCE: zero-reference deep curve estimation; DCID: dark channel 

image defogging algorithm. 
 

2.4  Data construction and annotation 

In this study, labelImg software was used to label the pecan in 

the dataset.  After each image was annotated, a corresponding 

XML file containing the category and location information of the 

target, similar to the dataset format of the PASCAL visual object 

classes challenge 2007[27], was generated.  A Python script was 

used to augment a small number of sample maps, including random 

flip (horizontal, vertical), transform angle (0°-180°), random 

scaling of the original image scaling factor, etc.  And then the 

expanded set was randomly divided into 4:1 ratios between the 

training set and the test set.  The expanded training set was used to 

train the model. 

2.5  Pecan fruit detection model structure 

Faster RCNN is the most classic object detection algorithm in 

two-stage.  It is divided into two steps, the first stage finds the 

anchor rectangle of the object to be detected in the picture (two 

classifications of the background and the object to be detected), and 

the second stage classifies the object to be detected in the anchor 

frame.  In Fast RCNN, VGG16 is chosen as the backbone.  

However, it requires a lot of parameters, and the training time is too 

long, many people choose RestNet 50 instead of VGG16 gradually.  

Compared with the VGG network, ResNet has lower complexity 

and fewer parameters and solves the problem of decreasing 

correlation between gradients by using residual structure.  

However, Fast RCNN uses the last layer extracted from Backbone 

for prediction, and the detection effect of small targets is not ideal.  

Therefore, the FPN module was added in the original Faster RCNN 

in this study to combine shallow details with high-level semantics 

to improve the success rate of small object detection. 

2.5.1  An improved feature extraction network 

As the number of network layers deepens, the convolutional 

layer can learn deeper abstract features, which may bring higher 

accuracy.  It is proved that the accuracy of recognition increases 

with the increase of network depth.  However, the simple stacked 

convolutional layer cannot train the network smoothly due to the 

gradient explosion when propagating backward.  He et al.[28,29] 

proposed a deep residual ResNet model based on the concept of 

identity mapping in order to break through the problems of reduced 

accuracy and limited depth of the deep network.  This method 

solves the degradation problem by fitting the residual graphs with 

the multi-layer network.  Since the residual structure does not 

increase model parameters, the difficulties of gradient 

disappearance and training degradation are effectively alleviated, 

and the convergence performance of the model is improved.  The 

residual learning module is shown in Figure 4.  ResNet 50 which 

achieves a good result in the feature extraction performance was 

used as the backbone network for feature extraction in this study.  

Therefore, the ResNet model using 101 layers and 152 layers did 

not be considered in this study. 

 
Note:  x is the input variable; F(x) is the residual function; 

ReLU: Rectified Linear Unit. 

Figure 4  Residual learning module 
 

Image feature extraction is based on shared convolution layers.  

Low-level features such as edges and angles were extracted by the 

underlying network.  High-level features that describe target 

categories were extracted at the higher level.  In order to better 

represent the target on multiple scales, the feature pyramid network 

(FPN)[30] was introduced to extend the backbone network as shown 

in Figure 4, which is especially effective for the detection of small 

targets.  Since direct mapping is difficult to learn, the basic mapping 

relationship from input variable x to residual function F(x) is no 

longer being learned, but the difference between the two is learned, 

which is the residual, and in order to calculate F(x), this residual is 

simply added to the input.  The top-level features of FPN architecture 

were merged with the underlying features by up-sampling, with 

each layer independently predicting feature maps.  Using the 

feature map of the four blocks whose output channels are {256, 512, 

1024, 2048} respectively as the input of FPN.  After FPN 
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processing, the channels are all the same to 256.  Then put it into 

RPN for candidate box generation.  In RPN, candidate boxes of 

different sizes are predicted for different feature layers. 

In addition, the ROI Pooling in traditional Faster RCNN will 

first quantify the coordinate of the candidate box generated by RPN 

into integer pixel coordinate value, and then divide the candidate 

area into 7×7.  The pixel value is rounded during Pooling, which 

causes certain errors.  Therefore, the original ROI Pooling is 

replaced by ROI Align, the coordinates of the floating-point 

candidate box generated by RPN are maintained, the quantization 

process is canceled, and the bilinear interpolation algorithm is used 

to generate the final feature map.  Figure 5 illustrates the 

improved Faster RCNN network.  Figure 6 shows the junction of 

ResNet-50 and FPN. 

 
Note: ResNet-50: Residual networks with 50 layers; RPN: Region Propose Network; FPN: Feature Pyramid Networks; ROI: Regions of Interest; 

cls: Classification; bbox: bounding box. 

Figure 5  Improved framework for the Faster RCNN 

 
Note: Conv: Convolution; MLP Head: Multi-Layer Perceptron Head; Faster RCNN: Faster Region Convolutional Neural Network. 

Figure 6  Structure at the junction of ResNet-50 and FPN 
 

2.5.2  Feature pyramid networks 

In object detection, the low-level feature semantic information 

is less, but the target location is accurate.  High-level feature 

semantic information is rich, but the target location is rough.  

General networks use bottom-up convolution and the feature map 

of the last layer is used for prediction.  However, because 

high-level features are rough for target location, the detection effect 

of small target objects will be sharply reduced.  In addition, due to 

the different focal lengths of cameras, the sizes of objects in the 

images are different.  Therefore, this multi-scale feature fusion 

method is adopted to fuse the shallow features with high resolution 

and the deep features with rich semantic information. 

2.5.3  ROI Align 

Both traditional Faster RCNN and Fast RCNN use ROI 

Pooling, which maps candidate boxes predicted by RPN to the 

original map, and then divides candidate areas into 7×7 sizes.  But 

there may be a small error in these two operations, first, the floating 

point coordinates of the prediction candidate box are mapped to the 

original image; and the entire operation must be taken, which will 

produce a certain error, and second, in the candidate area was 

divided into 7×7 areas, if the image size is not equal to an integer 

because of the image size itself, after the two integer operations, 

the final result may produce a large error.  For this reason, we 

choose ROI Align to replace the original ROI Pooling.  ROI Align 

eliminates the above two round operations and uses bilinear 

interpolation to make the final position more accurate. 

2.6  Overlap samples processing 

In order to provide better picking information for the picking 

robot, we propose an overlapping region calculation method to 

calculate the area of overlapping pecan.  Two pecan detection 

frames are shown in Figure 7.  The coordinates of the left upper 

corner and the right lower corner of the rectangular detection frame 

of one pecan are (x1, y1) and (x2, y2), and the coordinates of the 

upper left corner and the lower right corner of the rectangular 

detection frame of another pecan are (x3, y3) and (x4, y4).  

Assuming that: 

xmin = max(min(x1, x2), min(x3, x4))          (1) 

ymin = max(min(y1, y2), min(y3, t4))          (2) 

xmax = min(min(x1, x2), max(x3, x4))          (3) 

ymin = min(min(y1, y2), max(x3, x4))          (4) 

where, xmin, ymin, xmax, and ymax are the coordinates of the left upper 

corner and the coordinates of the right lower corner of the 
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overlapping area.   

If two pecan test frames have overlapped, the overlap area S is: 

S = (xmax – xmin)×(ymax – ymin)             (5) 
 

 
Note: The coordinates of the left upper corner and the right lower corner of the 

rectangular detection frame of one pecan are (x1, y1) and (x2, y2), and the 

coordinates of the upper left corner and the lower right corner of the rectangular 

detection frame of another pecan are (x3, y3) and (x4, y4).   xmin, ymin, xmax, and 

ymax are the coordinates of the left upper corner and the coordinates of the right 

lower corner of the overlapping area. 

Figure 7  Schematic of overlapping sample processing 
 

Combining the above method of calculating the overlapping 

area S, we have realized the calculation method of calculating the 

clusters of the entire image.  All coordinates of the boxes in the 

same image used established network are marked as P, Pk(x1k, y1k, 

x2k, y2k) (k=1, 2, 3, …, m) the kth coordinate of the box, m is the 

total number of boxes.  D is the matrix of overlap areas between 

each detection box and the remaining boxes; Q is the index of the 

boxes; N is the index matrix of the same cluster boxes, which 

initializes N=0.  The number of rows that are not all zero in N is 

recorded as n, and n is the number of clusters. 
The detailed procedures for calculating clusters are given as 

follows: 

Step 1 Input original image. 

Step 2 Detect the coordinate Boxes of the box in the image, 

and mark the coordinates as P(rect.min.x, rect.min.y, rect.max.x, 

rect.max.y), record the id of each box as k (k=1, 2, 3, …, m).  

Step 3 Create a two-dimensional matrix D with a size of m×m, 

and use coordinates P to calculate the overlap area between each 

box. Greater than  is True, otherwise False, write the result into 

matrix D. 

Step 4 Create a dictionary, the key of the dictionary is e (e=1, 2, 

3, …, m), which means the number of clusters.  The value 

corresponding to each key is the id of the box in this cluster. 

Step 5 Traverse all keys in the dictionary.  And initialize a 

queue Q.  Check all the boxes.  If the id of the box is out of the 

value of the dictionary, it means that it has formed a cluster.  

Otherwise, put this box into the value of the corresponding cluster, 

and put this value into the queue. 

Step 6 When the queue is not empty, take the first element k of 

the queue and traverse all the values of the kth row in the matrix D.  

If A[k][i] (i=1, 2, 3, …, m) is not in the value in the dictionary, and 

i is not Equal to k and A[k][i] is True, it means that the boxes of k 

and i overlap, add i to the value, and put i into the queue; 

Step 7 Repeat 6 until the queue is empty, repeat 5 until the key 

of the entire dictionary is traversed, and the search ends. 

Step 8 Output the number of non-empty values in the 

dictionary. 

2.7  Performance analyzing 

The data set described in Section 2.2 was used for the 

evaluation of image detection results obtained by the proposed 

network model.  The precision, recall, and accuracy, which these 

indexes can be used to evaluate the proposed algorithm’s detection 

performance[31].  They were used as the evaluation metrics, and 

they were respectively defined as follows, the precision is defined 

as, 

TP
Precision

TP FP



                (6) 

The recall rate is the ratio of relevant targets in the returned 

results to all relevant targets, and it is defined as, 

TP
Recall

TP FN



                  (7) 

Accuracy
T

R
                    (8) 

where TP is the number of cases that are positive and detected 

positive; FP is the number of cases that are negative but detected 

positive; FN is the number of cases that are positive but detected 

negative[32].  

The average precision (AP) is usually used as a metric, and the 

calculation formula is 
1

0
AP ( ) ( )p r d r                    (9) 

where, p represents Precision; r represents Recall; p is a function of 

r.  So, the mAP equals the average of all categories of average 

precision. 

3  Results and discussion 

The performance of the proposed detection method was 

evaluated using the dataset mentioned in Section 2.2.  The 

experiment was performed under the deep learning development 

framework of Pytorch, with NVIDIA 3060 for GPU acceleration, 

Inter (R) Core (TM) i7-8700k CPU, and 16G memory.  Numerous 

comparison experiments were performed to evaluate the 

effectiveness and practicability of the proposed method.  

3.1  Evaluation of the network 

The data set described was used for the evaluation of image 

segmentation results obtained by the proposed network model.  

An experiment of the original Faster RCNN was made which 

without ROI Align structure and FPN, the accuracy of the 

experimental result is 87.9%, while the original Faster RCNN 

which with ROI Align structure, the accuracy of the experimental 

result is 89.9%, which increases by 2%.  The precision, recall, and 

accuracy were used as the evaluation metrics.  To verify the 

efficiency of the proposed network, the original SSD, SSD+FPN, 

RetinaNet, YOLOV5s (without UIC), Faster RCNN+FPN, and the 

proposed network (Faster RCNN+FPN+uneven illumination 

correcting (UIC)) were adopted by illumination to train and test the 

same samples.  The evaluations of mAP were as illustrated in 

Figure 8.  From these results, the proposed network has better 

than the other classical networks' inefficiency and obtains more 

accuracy. 

 
Note: mAP equals the average of all categories of average precision; UIC: 

Uneven illumination correction; SSD: Single Shot Detector. 

Figure 8  Comparison of classical network structures of mAP 
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It can be seen from Table 2 that the mAP of the different 

network structures.  The Faster RCNN+FPN+UIC mAP improved 

by 3.723% compared with the original SSD.  The mAP of Faster 

RCNN+FPN+UIC improved by 1.919% over YOLOv5s.  What’s 

more, the Faster RCNN+FPN+UIC mAP improved by 0.849% 

compared with Faster RCNN+FPN without illumination correcting.  

This indicates that the proposed detection method is better than the 

original model for the detection and recognition of pecans.  Table 

2 also lists the speed of different network structures.  Among them, 

YOLOv5s (without UIC) runs at the fastest speed of 0.005 s and 

Faster RCNN+FPN at 0.070 s.  The addition of uneven 

illumination correcting results in an increase in Faster RCNN+UIC 

runtime of 0.084 s, the detection speed is still relatively fast, which 

does not affect the picking speed. 
 

Table 2  mAP and speed of the different network structures 

Network structure mAP/% Speed/s 

Original SSD 92.209 0.009 

SSD+FPN 92.991 0.011 

Retinanet 95.128 0.072 

Faster RCNN+FPN 95.083 0.070 

YOLOv5s (without UIC) 94.013 0.005 

Faster RCNN+UIC 95.932 0.084 

Note: SSD: Single Shot Detector; mAP equals the average of all categories of 

average precision; FPN: Feature Pyramid Networks; Faster RCNN: Faster 

Region Convolutional Neural Network; UIC: Uneven illumination correction.   
 

3.2  Pecan detection results using the proposed network 

To verify the robustness of the proposed network, the image 

under different light and different growth states was chosen to 

detect pecan using the proposed network, and the detection results 

are shown in Figure 9.  From the test results, it can be seen that 

the network not only can detect the part pecans treated with uneven 

light compensation but also one or multiple clusters of pecans can 

be detected.  Among them, due to the change of shooting angle, 

the pictures with occlusion caused by fruits or leaves can also be 

well identified, which reflects the robustness of the network in this 

study. 
 

  

a. Overexposure b. Underexposure 

  
c. Overexposure correcting d. Underexposure correcting 

 

Figure 9  Pecan detection results using the proposed network 
 

The experiments comparing different uneven illumination 

corrections were also carried out.  From Figure 10, the 

RCNN+FPN+UIC has slight improvement over Faster 

RCNN+FPN+overexposure processed by DCID or underexposure 

processed by Z-RDCE. 

It can be seen from Table 3 that the mAP of the Faster RCNN 

after uneven illumination correcting is higher than the others.  The 

Faster RCNN+FPN+UIC mAP improved by 0.849% compared 

with Faster RCNN+FPN.  The Faster RCNN+underexposure 

processed by Z-RDCE has improved by 0.6% over Faster 

RCNN+FPN.  In addition, the Faster RCNN+FPN+overexposure 

processed by DCID is 0.832% higher than Faster RCNN+FPN 

without any illumination correction. 

 
Figure 10  mAP of the Faster RCNN after unevening  

illumination correcting 
 
 

Table 3  mAP of the Faster RCNN after uneven illumination 

correction 

Network structure mAP/% 

Faster RCNN+FPN 95.083 

Faster RCNN+underexposure 95.738 

Faster RCNN+FPN+overexposure 95.906 

Faster RCNN+FPN+UIC 95.932 
 

3.3  Evaluation of the sample numbers counting 

The overlap coefficient (OC) was used to evaluate the accuracy 

of detection results, and the ratio of pixels that belong to the target 

or background truth in target bounding boxes are correctly divided 

into the target or background.  The higher the value is, the better 

the detection performance will be achieved.  Because the pecan is 

clustered and overlapped, to count the accurate quantity and 

provide picking information for the picking robot, this experiment 

mainly makes statistical analysis on the pecan fruit area and single 

fruit area using the algorithm in Section 2.6.  

Through cluster detection of box coordinates obtained by 

detection, the accuracy rate of the automatic counting results using 

the algorithm in Section 2.6 is 93.539%.  Multiple detection boxes 

are grouped into a cluster, which has high accuracy recognition.  

However, a single box is grouped into a cluster, which may lead to 

false detection due to the lack of depth information in the images.  

The result is shown in Table 4. 
 

Table 4  Number and error rate of value and tested clusters 

Value item Single box 
Multiple 

boxes 
Clusters 

Accuracy 
rate/% 

Number of actual clusters 50 283 333 
93.539 

Number of clusters tested 73 283 356 
 

3.4  Discussion 

The goal of this study was to develop a new method for 

identifying pecans using different photographic equipment and 

under different lighting conditions.  The contribution of the 

proposed method in this study involves pre-lighting the photos with 

uneven illumination correcting and then importing the corrected 

photos into the network, which is different from many existing 

methods, such as the color of mature fruit differs greatly from the 

background color[21,33-37], which has obvious color characteristics; 

and the fruit shape is almost round, the extracted features are 

analyzed using shape, color, and texture to identify fruits and 

non-fruits[38]; the color and background of the fruit are similar, but 

the shape of the fruit has distinct features (curved, elongated, 
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etc.)[39].  Specifically, Fan et al.[33] combined local image features 

and color information, proposing a pixel patch segmentation 

method based on gray-centered red-green-blue (RGB) color space.  

Kang et al.[34] improved the deep neural network DaSNet-v2, which 

can perform detection and instance segmentation on fruits, and 

semantic segmentation on branches.  Because of the bright color 

and large volume of apples, they can have a high recognition rate 

and detection rate.  Other fruits with smaller sizes can also be 

easily identified due to their distinctive colors, such as citrus[35], 

tomato[36], strawberry[21], and litchi[37].  However, these 

experimental results were either recognized and detected under 

normal light conditions, or the fruits were given a large amount of 

light at night for data collection, without taking into account the 

unstructured experimental situation under natural conditions.  Due 

to the influence of uneven illumination, the difficulty of fruit 

recognition and detection is improved.  Wan et al.[38] chose 

pineapple and Chen et al.[39] chose banana as the object of research, 

which has large fruits and obvious texture and shape characteristics.  

They did not consider the influence of natural light.  Therefore, 

when the natural light changes rapidly or the angle at which the 

photo is taken changes, the photo that has not undergone uneven 

illumination correction may affect the accuracy of fruit recognition 

and detection.  We perform uneven illumination correction on the 

collected photos and then input the corrected images into the 

proposed constructed network, which improves the accuracy of 

recognition and detection of pecans. 

4  Conclusions 

The segmentation of pecan in the natural environment is of 

great significance to the picking robot.  In this study, the images 

of pecans were preprocessed, exposure suppression and exposure 

compensation were performed for the photos with abnormal 

exposure, and the photos with uneven illumination compensation 

were input into the network.  Then the ResNet-50 with residual 

structure was used to replace the VGG 16 network.  Compared 

with the original Faster RCNN model, this model added the FPN 

structure to solve the problem of low accuracy of pecan detection 

under similar fruit and background colors and overlapping 

occlusion to a certain extent.  At the same time, the dilated 

convolution with different expansion rates is used to extract the 

features and perform fusion to achieve high segmentation accuracy.  

According to the experimental results, the following conclusions 

can be drawn: the results show that the mAP of pecans increased 

from 92.209% to 95.932%.  The Faster RCNN+FPN+UIC mAP 

improved by 0.849% compared with Faster RCNN with FPN.  

In future studies, the network will be applied to pecans 

detection and picking under complex light conditions.  It can also 

be used to predict the yield of pecan.  In addition, it will be 

applied to the detection of other kinds of fruits to achieve more 

agricultural applications. 
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