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Abstract: To obtain higher economic benefits, large eel breeding companies classify live eels by weight. Due to their strong
mobility and smooth body surface, living eels are not suitable for traditional mechanical weight measurement. In this study, a
live eel sorting machine based on machine vision was developed, and a novel method was developed for obtaining live eel
weight measurements through images. First, a backlit workbench was designed to capture static images of eels, and then the
projection area and skeleton length of the images were obtained by image preprocessing. For the eel's body shape, which is
generally cylindrical and gradually transitions to a flat tail, the tail posture changes affect the shape of the images; thus, a
weight measurement model combining the projected area and the skeleton length was proposed. The optimal scale division
coefficient of the weight model was found to be 0.745 by experimentation. Then, select eels of different weight ranges were
used for model error verification and to obtain the correction function of the error. The weight gradient was used to confirm the
corrected eel weight model. Finally, the system calculation results were compared with the actual measurement results. The
root mean square error (RMSE) was 12.94 g, and the mean absolute percentage error (MAPE) was 2.12%. The results show
that the proposed method provided a convenient, fast, and low-cost non-contact weight measurement method for live eels,
reduced the damage rate of live eels, and can meet the technical requirements of actual production.
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1 Introduction

In recent years, with the continuous improvement of people’s
living standards, consumers' requirements for food quality have
become higher and higher. Eel is becoming more and more popular
as a food with rich value in nutrition. Optimization and evaluation
of eel grade are one of the ways to improve its economic efficiency.
The traditional classification of eels is mainly manual and classified
into different grades according to their weight. This method relies
mainly on the experience of workers, in which the weight of eels is
judged by the eyes of workers, and this grading method is labor-
intensive, with low grading efficiency and accuracy, and for large
breeding enterprises, the long manual sorting time and the rate of
dead fish will increase significantly, reducing the economic
efficiency of the product, which is not conducive to the rapid
development of the eel industry. Meanwhile, the traditional
mechanical motion weighing method may damage live eels due to
their strong mobility and smooth surface.

In recent years, with the rapid development of machine vision
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and image processing technologies, various vision-based inspection
methods have been widely used™*. Vision-based yield and weight
estimation and classification have become a popular research
direction in the last decade®. The non-contact, fast, and low-cost
characteristics of computer vision technology make automatic
image-based weight measurement possible!"*'"!, Zhang et al.'” used
machine vision to achieve weight detection of three common
freshwater fish, they divided the fish into three parts: head, body,
and tail, and then based on the proportion of the projected area of
each part to the overall fish body and the weight proportion, the test
showed that the weight of the fish was highly correlated with the
projected area, and the error of this quality detection model was
3.89%. Li et al.'”! applied the computer vision technology in fish
grading and sorting, used crucian carp as the research object, and
found that the correlation between the power function of fish length
and weight was high through image processing and calculation, and
proposed a classification method to calculate weight using body
length to achieve grading of crucian carp. Viazzi et al.'" used 2D
computer vision technology by extracting the length and width of
the jade perch in the image establishing shape and group mass
estimation for this fish. Ma et al."*! used machine vision techniques
to obtain images of narrow-bodied tongue sole individuals,
measured the area of irregular images by digital image processing
techniques, and used linear regression techniques to establish the
correspondence between the image area and body weight, and the
correlation coefficient between projected area and weight was
0.3807 as indicated by data analysis. Wang et al."’ combined depth
images and BP neural networks to establish a broiler body mass
estimation model, and the acquired images were processed to
extract the projection area, eccentricity, perimeter, target volume,
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length value, width value, back width, and other features of the
broiler images to establish a broiler mass model to achieve broiler
mass detection, and the experimental results showed that the
average relative error of broiler mass detected by this method was
0.0010-0.0628 kg range, and the best fit reached 0.9943. De Wet et
al.'" studied the correlation between surface area and perimeter of
broiler images and body mass using image processing techniques,
and the results were obvious. The projected area in the broiler depth
image refers to the area of the largest target in the image, and the
summation of the number of pixels at the boundary points can be
used as the perimeter. Schofiled et al."® built an automatic image
acquisition and analysis system in an actual pig farm, using image
processing techniques to obtain dorsal area and a prediction model
between it and body mass, and successfully recorded the growth
records of three breeds of pigs. Yang et al.'**" used the projected
area of breeding pigs to predict their body mass by digital image
analysis technique, and the relative error of the prediction result was
less than 2.8% compared with manual measurement. Alikhanov et
al.”"! proposed a method for egg weight classification and grading
using machine vision technology, using regression analysis to
establish the relationship between egg weight and egg geometric
parameters perimeter, area, size axis, shape index, and shape factor.
The experimental results showed that the most important parameter
related to egg weight was egg area with a correlation coefficient of
0.989, defining an egg weight area The mathematical model of the
relationship was determined with a coefficient of 0.978 and a total

classification error of 2.5%. Wang et al.”” explored the application
of computer vision technology for mango weight detection, using a
charge-coupled device camera to ingest mango images, and
establishing the correlation between fruit weight and its projected
image by obtaining the horizontal projected area (total number of
pixels) of mangoes in their naturally placed state, and
experimentally demonstrating that computer vision achieved 96%
accuracy in grading the fruit weight detection of Gui Xiang
mangoes and 92% accuracy in grading the fruit weight detection of
purple flower mangoes. Kalantar et al.”! developed a method for
melon weight estimation based on unmanned aerial vehicle images,
first, using RetinaNet to achieve melon target detection from
unmanned aerial vehicle images, then based on contour and
principal component analysis algorithms to achieve melon feature
extraction, and finally, establishing a regression model for single
melon weight estimation to achieve melon yield estimation.

The works mentioned above are summarized in Table 1.
Although vision-based weight inspection methods are widely used,
few have applied vision inspection to live eel weight estimation. In
contrast, the use of machine vision technology for eel grading does
not need to consider the influence of eel motion on grading
accuracy, can achieve non-contacting, and is more adaptable
compared to traditional conventional mechanical motion weighing
methods. Therefore, this study proposed a novel method for
measuring the weight of live eels by images.

Table 1 Overview of studies on machine vision in weight detection

Species Parameters of interest Deliverable Reference
Projected area of fish head, fish body, and fish tail Quality detection model of weight and projected area [12]
Fish Body length Correlation function of body length and weight [13]
Length and width of fish Estimation models for length and width and weight [14]
Area of the image Correspondence between image area and body weight [15]
Chisken Image projected area, eccentricity, pertl;;rl:c;(te‘:;i(tizglget volume, length value, width value, Broiler quality model [16]
Image surface area, perimeter (the number of pixels in the boundary point) Surface area and perimeter as a function of weight [17]
Pig Rear projection area Estimated model between back projected area and mass [18]

Shadow area Body mass prediction model [19,20]

Egg Perimeter, area, size axis, shape index, and shape factor Mathematical model of th:;gl:i(;mhip between egg weight [21]
Mango Horizontal projection area(total pixels) The relationship between fruit weight and its projected image ~ [22]
Melon Contour, principal component Single melon weight estimation regression model [23]

Consistent with previous work, based on the developed live eel
sorting machine, this study presented a method for obtaining the
weight of live eels using images. The method did not require
complex electromechanical weight detection devices, effectively
reduced the damage rate of live eels, and met the practical needs of
factory production. The development of the method includes 1)
Designing a backlit eel image acquisition bench; 2) Obtaining the
projection area and skeleton length of eel images through image
preprocessing; 3) Indicating that the eel body is roughly cylindrical
and gradually transitions to a flat tail, proposing a weight
measurement method combining projection area and skeleton
length, and establishing an eel weight detection model through eel
segmentation experiments; 4) Selecting eels of the different weight
ranges of eels for model error verification to obtain the corrected
mathematical model of eel weight; 5) The system calculation results
were compared with the actual measurement results to verify the
corrected mathematical model of eel weight. This study provided a
convenient, fast, and low-cost method for the non-contact weight

measurement of live eels.

2 Materials and methods

This study was based on the live eel sorting machine developed
by a school-enterprise cooperation project. The sorting machine
aimed to separate eels by weight through a mechanical method
instead of a manual method to meet the requirements of export. The
sorting machine was manually loaded, and then the weight of the
eel was estimated by machine vision, and then the eel was dropped
into different grades of barrels by weight through the mechanical
sorting door. The sorting machine can be divided into 5 levels
according to the required weight, and its structure is shown in
Figure 1.

2.1 Experimental design and data acquisition

Preliminary image acquisition experiments showed that the
acquisition box of the eel’s production factory was made of
stainless steel. Under natural or artificial light sources, strong
reflections will appear on the bottom of the acquisition box during
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Figure 1  Structure of living eel sorting machine

the image acquisition process, and the surface of the living eel will
also appear as a reflection, which affects the quality of the captured
image. The image collected by the stainless-steel acquisition box of
the factory is shown in Figure 2a.

oz

b. Backlit

a. Stainless steel

Figure 2 Comparison of two types of data acquisition box

At the same time, due to the long-term inspection needs of the
eel production line in the factory, the changes in the external light
source will cause interference problems in the collected images.
Choosing more cumbersome image processing methods will slow
down the calculation speed and affect the real-time performance of
the entire inspection process. Therefore, a live eel image acquisition
device based on back-lighting was designed. Backlight transmission
was used to collect two-dimensional (2D) projection images of eels
to solve the problems of the instability of external light sources and
reflection interference. An image of the designed acquisition box is
shown in Figure 2b.

The size of the backlit acquisition workbench was 600x
800 mm?, and the type of lights was YR-52T. The experimental data
were collected by a USB industrial camera with 2 million pixels, a
lens with a fixed focal length of 6 mm was used, the exposure was
set to automatic, and the resolution of the collected image was
1280%960 pixels. The industrial camera was placed 800 mm above
the workbench (Figure 3). To collect images as close to the real
production environment as possible, live eels (dnguilla japonica)
were randomly selected as experimental objects. Each live eel was
randomly placed on the workbench, and images of different poses
of the same live eel were collected multiple times. After the image
acquisition was complete, an electronic scale was used to manually
measure the weight of each eel.

To obtain the size relationship between the image and the real

Backlit Q
workbench ~

Figure 3 Data acquisition system.

space, a certain size reference object (76x76 mm?) was placed
beside the eels during the image acquisition process. By comparing
the size of the reference object between the image and the real
world, the size of the eels in the real world could be determined.

2.2 Image data processing pipeline

2.2.1 Image preprocessing

To realize the image-based eel weight measurement, the eel’s
image was first segmented. The main methods of identifying fish in
images are shape-based analysis and color-based analysis.
Considering that the backlight method was used to collect the
image, the eel area had significant characteristics in the image;
therefore, the color-based analysis method was used in this
study™**1,

First, the color image of the eel was converted into a gray
image, and then the adaptive threshold method was used for
segmentation®!. The grayscale image was converted into a binary
image through the adaptive threshold. After image segmentation,
some noise could still be found in the image, and, to eliminate this
noise, a morphological operation was performed to obtain an
accurate eel image pixel set. Figure 4a is the original image, and
Figure 4b is the processed binarized image.

b. Proccessed binarized image

a. Original image

Figure 4 Eel projection image and binarized image

2.2.2  Acquisition of projected area

For the obtained binary images of eels, the pixel area with a
gray value of one represents the target area of the eel. Therefore, the
pixel area of the eel in the image can be obtained by calculating the
number of pixels with a gray value of one in the image. Figure 5a
shows the eel area. To calculate the projected area of irregular
objects, the calibration method is typically used®. First, the
experimental object and a fixed-size reference object were placed
on the background board. Then the image area of the experimental
object and the reference object were calculated, and the reference
object was used to calculate the relationship between a single pixel
and the actual area. The actual area of the test object was obtained
by the product of its own image area and this relationship. Figure 5b
is the image area of the reference object. The calculation equation
for the real-world area of the eel is

St = koS (1) (1)
where, S,.¢ represents the real-world area, mm?; S’ represents the

image-world area, pixel’; k=S,./S"s represents the area scale factor
between the real-world and the image-world, mm/pixel.

76793

a. Test object b. Fixed size reference object

Figure 5 Area calculation of the eel projection image

2.2.3 Acquisition of skeleton length
For the eel image, because the shape is non-linear, it is difficult
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to calculate its length directly from the image. Therefore, this study
first extracted the eel skeleton and then used the measured length of
the skeleton as the eel’s body length. The specific method involved
first calculating the contour map of the eel. For the binarized eel
image, the number of neighborhood points of its contour pixels was
less than eight; thus, the number of neighborhoods of the image was
traversed at the same time to realize the calculation of the contour
map as shown in Figure 6a. On this basis, the sequential iterative
algorithm was used to obtain the morphological skeleton through
the contour map of the eel image as shown in Figure 6b.

a. Contour map of the eel image  b. Morphological skeleton from the

contour map

Figure 6 Extraction of the eel skeleton

For the obtained eel skeleton, the Manhattan distance was
calculated as the length. The calculation formula for the real-world
size of the eel length is:

L=kL = \/kL )

where, L represents the real length of the eel, cm; L' represents the
image world distance of the ell, pixel; k= L, /L’ s represents the
length scale factor between the real world and the image world,
cm/pixel.
2.3 Establishment of eel weight model
2.3.1 Eel weight analysis

The eel has a slender body, a flattened and tapered head, a
nearly cylindrical body, and a high content of muscle and fat. When
stimulated from the outside, the body of the fish shrinks most
obviously close to the tail, the body gradually shrinks from both
sides to the middle, the thickness of the fish body decreases, the
content of muscle and fat becomes less apparent, and the tail
becomes slightly flat. Figure 7 shows the different forms of the
same eel, where Figure 7b is the state of the fish body when it

[

a. Eel body b. state of the eel body
when it contracts

contracts.

Figure 7 Physical image of live eels

At the same time, affected by the changes in the movement of
the living eel, the posture of its tail causes the area of the projected
image to change. Figure 8a shows the eel tail posture when
perpendicular (vertical) to the camera, and Figure 8b shows the eel
tail posture when parallel (flat) to the camera. The projected area of
the tail of the middle eel is smaller than that of Figure 8b, and the
projected area of the front of the eel is almost unchanged.

F I k|

a. Tail posture when perpendicular
(vertical) to the camera

b. Tail posture when parallel (flat) to
the camera

Figure 8 Comparison of the different postures of eel tails

In summary, the area of the projected image of the same eel
will change significantly under different conditions. Therefore, it is
unreliable to establish the relationship between the weight and the
image through simple regression analysis. At the same time,
inspired by the changes in eel morphology, an eel weight model
based on a combination of the projected area and skeleton length
was proposed. The eel was divided into front and rear parts. For the
first half, this paper used the projected area to build a weight model,
and, for the second half, this paper used the body length to build a
weight model. Then, the front and back models were combined to
realize the weight measurement of the whole eel. The weighing
model equation is as follows:

G:ffmm (S) = aleronl + bl

G hux (L) = @y Loy + by (3)
G = Gsifmm (S) + Glfback (L)

where, G g is the measured weight of the first half of the eel, g;
ay, by are coefficients; G o is the measured weight of the second
half of the eel, g; a, and b, are coefficients; G is the overall
measured weight of the eel, g.

2.3.2 Analysis of the relationship between division ratio and
weight

For the division ratio of the front part and the back part of the
eel, the appropriate division position was first selected. From the
head of the eel to the division position is the first half. For this part,
this paper used the projected area to build a mathematical model of
the eel weight. From the division position to the tail of the eel is the
second half, and for this part, this paper used the length of the
skeleton to establish a mathematical model of the eel weight. By
dividing the eel, the influence of the eel’s tail posture on the weight
calculation is avoided. Assuming that the length of the eel sample is
L, cm, and the length of the eel from the head to the division point
i8 Jgon> €M, then the eel division ratio coefficient p=Ig, /L.

The body shape of an eel is similar to a cylindrical shape, the
content of the muscle and fat of each part of the fish is different, and
the weight is related to the volume and density. To accurately obtain
the eel weight distribution model, it was necessary to obtain the
corresponding relationship between the density, volume, and mass
of each part of the eel. Assuming that the length of the eel sample is
L, the density is p, the weight is G, and the volume is 7, then,

G=pV=p[ Adr.xe©.1) )

where, A(x) is the cross-sectional area, cm?’.
For the eel divided by the division ratio p, its weight G is,

G = prrom +pVback (5)

where, Vi, is the volume of the front part of the eel, cm?; Vi, is
the volume of the back part of the eel, cm?.

In the 2D image, the weight of the eel is directly related to the
projected area and body length. At the same time, the shape of the
eel is similar to a cylinder, and its weight model can be simplified to
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calculate the mass of a cylinder. In this paper, the weight of the eel
unit projected area was calculated from the first half of the projected
area and the corresponding weight of the part, and defined as the
area density p,. The weight of the eel per unit body length was
calculated from the body length of the latter half and the
corresponding weight of this part, which was defined as the body
length density p,. For an eel with radius 7, it has:

T
Gfrom = pvfmm =~ ErpS front = psS front (6)

Grack = PVouek = X szback = 01 Lk @)

2.3.3 Eel division experiments

Affected by the changes in the movement of living eels, the
posture of the tail position causes the area of the projected image to
change. Therefore, experiments were carried out on the two
postures of the eel tail, both vertical and flat. First, the head of the
eel projection image was used as the starting direction, and the
division experiment was performed with a fixed step length. The
width of 20 pixels was set as the step size and performed division in
sequence to obtain a total of 62 groups of images. Figure 9 shows
the 10th, 20th, 35th, and 50th divided images.

N10 — —
N20 — .
N35 ] —_—
N50  ———ms— e
Vertical Flat

Figure 9 Division of eel projection images.

For the divided images in the two postures, the difference in the
projected area was calculated. After calculation, before the 45th
group, the difference in the projection area of the two poses was
small and can be ignored. Figure 10 shows the changes in the
projected area of groups 45 to 62.

From Figure 10, the area difference in the 45th to 50th groups
was relatively small, and the area difference change rate was less
than 2. After the 50th group, the area difference increased, and the
change rate of the area difference increased significantly. Therefore,
the sudden change in the projection area caused by the posture of
the eel’s tail occurred between the 45th and 50th groups of
positions. Observation showed that, in the 48th group, the change
rate of the area difference changed from 0.55 to 1.75, and the
change was significant; thus, the 48th group was selected as the
reference position of the division ratio coefficient. The calculation
shows that the division ratio coefficient at this position was p=0.77.

To determine the area density p, and body length density p, of
the eel object in this paper, different division scale factors were
designed to carry out the division experiment of the eel entity. The
division experiment of the eel projection image showed that when
the division ratio was about 0.77, the eel’s projected area had a
significant shape mutation. Therefore, the division ratio was set to
0.70, 0.75, 0.80, and 0.85 for entity division experiments, and
obtained the optimal division ratio coefficient through data analysis.

A randomly selected eel was used as the experimental subject.
After measurement, the actual weight of the selected eel was 362 g,
and the actual body length of the eel was 635 mm. The body of the
selected eel was generally cylindrical and gradually transitioned to a
flat body shape at the tail. The eel was divided according to the
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Figure 10 Change graph of the difference in projected area

proportions set by the body length. Figure 11 shows the division
results of different division scale factors.

Figure 11 Division results of different division scale factors of

eel segmentation

By weighing the divided eel, the weight of the front and back
parts of the eel corresponding to each division ratio coefficient were
obtained. At the same time, the eel image was divided according to
the set division ratio coefficient, and the eel projection area and
body length corresponding to each division ratio coefficient were
calculated. From Equations (6) and (7), the weight of an eel is
related to the projected area and length of an eel. At the same time,
for the same species of eel, the area density and length density
should vary within a certain range, and the weight can be measured
by a general area density and general length density calculation.
Thereby, an equation was developed to calculate the weight of an
eel.

Dt pes: ®)

k front
5_test

Gfmm = psﬁ&eslS front —

O es ,
Gruck = P1 esLvack = — \/];Lback (9)

vV kxf(es(

where, G,y is the measured weight of the first half of the eel, g;
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Gy 1s the measured weight of the second half of the eel, g; S}, is
the projected pixel area of the front half of the eel, pixel’; L; , is the
projection skeleton length of the second half of the eel, pixel; p/

ack

is the pixel density per unit area, cm*/pixel; p; . is the pixel density
per unit length, cm/pixel. i

The specific data corresponding to the division ratio
coefficients of each algorithm in the experiment are listed in Table
2.

Table 2 Data of eel division ratio coefficients of each algorithm

Scale Weight Front half Back hglf— deAIIsei}:y (I{:;Sgl;};
factor (front/rear)/g area/pixels length/pixels ol/gpixel” p; /g-pixel”
0.70 310/52 61 697 363 199.02°! 6.98"
0.75 328/34 64 427 303 196.42°! 891"
0.80 341/21 67 049 242 196.62°" 11.52"
0.85 351/11 69 612 181 198.32°" 16.45"

In this study, the scaling method was adopted to calculate the
area ratio between the real world and the image world, and the area
ratio factor was calculated by a block of a certain size placed beside
the experimental eel, namely: k, = S /S . For this experiment, the
actual area of the placed block was S,,~=5776 mm’, and the area on
the map was S, = 28 224 pixels, and thus k; —4.8864"' mm*/pixel.
2.3.4 Model establishment

The eel area density and body length density calculated from
the experiment were substituted into Equations (8) and (9) to obtain
a general eel weight calculation model. Specifically, the weight of
the front part of the eel was obtained from the area density and the
area of the front part of the eel, and the weight of the back part was
obtained from the length density and the length of the back part.
The total weight of the complete eel was obtained by the sum of the
weight of the two parts. The above weight measurement model
equation is as follows:

G.\;fmnl (S ;ronl) = i:::: ‘k»"S ;ront
G/fback (Ll,"mck) = A ' \/I?SL;uck (10)

\/ k.vilesl

G =G, on(8)+ G (L)

where, G, son (S ;mm) is the eel weight measurement model based on
area; G px (L{mk) is the weight measurement model of the second
half of the eel based on body length.

From Table 2, the area density and body length density
corresponding to different division ratio coefficients were different.
To determine the optimal division scale factor, the different forms
of eel images were subjected to image division experiments
according to the ratios of 0.70, 0.75, 0.80, and 0.85. Figure 12
shows the images of the experimental eels in different poses.

The sample images in different poses were segmented
according to the division scale factors of 0.70, 0.75, 0.80, and 0.85.
The area of the front part and the length of the back part were
calculated after the division and substituted into the model Equation
(13). Finally, the difference between the measured weight and the
actual weight corresponding to each division ratio coefficient was
calculated. On this basis, the variance between the measured weight
and the actual weight under different posture images and different
division scale factors was calculated. When the variance was the
smallest, this indicated that the current division scale factor had the
best adaptability.

The calculation showed that when the sum of variance was the

Figure 12 Different posture images of eels

smallest, the algorithm division scale factor value was 0.745, which
was recorded as the general division scale factor. The area density
corresponding to the general division scale factor was 196.54"
g/pixels, and the body length density was 8.72°' g/pixels.
Substituting this into Equation (10), the general weight
measurement model equation of experimental eels was obtained as,

G =40.2227'k,S},, +3.945" /KL, (11)

2.4 Model analysis and calibration

For Equation (14), the general weight measurement model was
based on eels weighing 362 g. Due to the differences in the body
types of eels with different weights, the body types of eels with the
same weight may also be different. Therefore, an experiment was
conducted to apply the current eel weight measurement model to
other eels of different weights for testing. The test results are shown
in Table 3. For the results, the general weight measurement model
based on eels weighing 362 g was used for weight detection of eels
with various weights, and the detection error varied with the weight
of the test sample. To eliminate errors caused by the adaptability of
the model, this study corrected the general weight measurement
model.

Table3 Weight ratio results

No.  Actual weight/g  Test weight/g  Errors/g  Coefficient of deviation
1 184.00 228.51 —44.51 1.242
2 229.00 257.71 —28.71 1.125
3 286.00 299.10 —-13.10 1.046
4 337.00 329.28 7.72 0.977
5 375.00 359.01 15.99 0.957
6 439.00 377.40 61.60 0.860
7 461.00 395.46 65.54 0.858
8 540.00 43091 109.09 0.798
9 654.00 487.86 166.14 0.746

From Table 3, when the weight of the test sample was 184.00
g, the ratio of the average measured weight to the actual weight was
1.242. When the weight of the test sample was 654 g, the ratio of
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the average measured weight to the actual weight was 0.746. As the
detection weight increased, the coefficient of deviation continued to
decrease. Therefore, a functional equation between the measured
weight and the coefficient of deviation was established. The
variation of the deviation coefficient with weight is shown in Figure
13.

0.8

Deviation coefficient

0.7F  y=—155%10"%+5.56x10%x>~5.2x10x+2.15
R?=9.86E—01

0.6 : : : :
210 260 310 360 410 460

Deviation coefficient

Figure 13 Relationship between the deviation coefficient and the
measured weight

A 3-order fitting was performed on the deviation coefficient
and the measured weight. The function equation is,

Y(G)=-155x10°G* +5.56x 10°G* - 0.0052G +2.15  (12)

where, G is the measured weight; Y(G) is the coefficient of
deviation.

Equation (11) general weight measurement model was
corrected, and the corrected weight detection model equation set is,

{G =40.2227'k,S ), +3.945" \/k L}, (13)
G =G/Y(G)

where, G is the overall measured weight of the eel before
calibration; G, is the overall measured weight of the eel after
calibration; Y (G) is the deviation correction fitting equation.

3 Results

To verify the effectiveness of the method proposed in this
paper, nine live eels with different weights and shapes were
randomly selected to collect images at different times for
experiments, and the measured weight of the eels was obtained
through the series of processing procedures proposed in this study.
The computer hardware and software parameters used in the
experiment included an Intel i7-4210U @ 1.70 GHz CPU, 4 GB
memory, and a Windows 7 operating system, and MATLAB
programming language was used for programming.

The measured weight calculated by the system was compared
with the actual measurement results to prove the accuracy of the
system. The root mean square error (RMSE) and mean absolute
percentage error (MAPE) of the system detection results were
calculated as follows:

RMSE = (14)

n
1 Z >
= (X5 = Xui)
n

i=1

‘mi

1N [y = %,
MAPE = - =T % 100% 15
Z . g (15)

where, x,; is the system measurement result, g; x,,; is the manual
measurement result, g.

3.1 Image processing results

To measure the weight of the eel based on the image, the
collected images were first preprocessed to obtain the area and
skeleton length. On this basis, the eel weight was estimated through
the designed weight model. Figure 14 shows the five sets of results
of the image processing steps, including, from left to right, the
original images of eels, the segmentation results, and the skeleton
length results of the segmented images. The results showed the
excellent performance of the image processing method proposed in
this study.

' Bd
' -
N
B B
v

a. Original diagram  b. Binary diagram c. Skeleton diagram

Figure 14 Results of image processing

3.2 Weight measurement results

For the obtained images, the weight of the eels was calculated
according to the designed pipeline. To verify the accuracy of the
designed algorithm, the values obtained by the system were
compared to the results of the manual measurements. Finally, a
regression analysis was performed on the data, and the root mean
square error and the mean absolute percentage error were
calculated.

For the weight (Figure 15), the RMSE was 12.94 g, and the
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Figure 15 Regression analyses comparing the actual weight versus
the estimated weight
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MAPE was 2.12%, and the fitting equation showed that the system
had a strong explicit correlation between the estimated weight and
the actual weight, which demonstrated the accuracy of the system’s
calculation.

To verify the robustness of the system, images of each eel in
different poses were collected separately, and each eel was collected
15 times. The weight of each eel was calculated separately and
calculated the average absolute error and average relative error of
each eel was. The specific results are listed in Table 4.

Table 4 Results of the system measurements

No. Mean absolute error/g Mean relative error/%
1 7.69 42
2 5.76 2.6
3 7.71 2.6
4 12.65 3.5
5 2091 5.2
6 13.49 3.1
7 7.92 1.8
8 16.67 32
9 29.40 43

Average 14.26 34

For the measured weight of the system, the average absolute
error between the actual weight and the measured weight was 14.26 g,
the maximum relative error of a single weight was 5.2%, the
minimum was 1.8%, and the average relative error was 3.4%. In
summary, the experimental results demonstrated the accuracy and
robustness of this method.

4 Discussion

In this study, a novel method for image-based weight
measurement of live eels was proposed. The method includes the
steps of image acquisition, image pre-processing, weight model
establishment, model error analysis, and correction. The
experimental results showed that the method had a small error and
met the technical requirements of actual eel production. Compared
with other methods, the method is less costly and more reliable in
terms of portability. At the same time, this method still has some
limitations.

1) During the test, the gills of live eels had low-frequency
opening and closing movements, as shown in Figure 16, which
shows two different states of gills opening (Figure 16a) and closing
(Figure 16b) of the same eel, and the opening and closing of gills
could lead to inaccurate calculation of the projection area of the eel.
In future work, in order to reduce the calculation inaccuracy caused
by the gill motion of eels, consider segmenting the eel by head,
body, and tail to avoid the detection error caused by gills.

a. Opening b. Closing

Figure 16 Gill opening and closing action diagram of live eel

2) This real experiment used a fixed division ratio coefficient,
which was determined as 0.745 based on the eel with a weight of
362 g. Then the division ratio coefficient corresponding to 362 g eel

was applied to other weights of eels. Although this method
protected the operational efficiency of the system, the fixed division
coefficient would cause certain errors for eels with large size
differences, and for other weights of eels There may be more
suitable division ratio coefficients, therefore, in future work, the
dynamic division coefficients will be studied to further improve the
accuracy of the weight measurement model.

3) In the image acquisition process, a backlight real-time eel
image acquisition device was designed in this study to acquire 2D
projection images of eels using backlight transmission technology,
which solves the problems of instability and reflection interference
of external light sources. However, when the backlight was not
strong enough, the double fin projection of the eel generated
disturbance in the image segmentation, as shown in Figure 17.
Therefore, further, more effective image segmentation methods are
needed to improve the segmentation accuracy. Future work can use
eel skeleton and contour maps to analyze the shape and movement
of eels to improve the refinement of eel classification, as well as to
study the identification and separation of fins to reduce the effect of
disturbance caused by fins.

Figure 17 Binary image with double fin disturbance.

4) Extraction of the image skeleton remains a challenge. Due to
the smooth appearance of eels, the skeleton can be extracted
efficiently based on a sequential iterative algorithm. However, this
algorithm may lead to the loss of skeleton endpoints, which results
in the computed skeleton length being smaller than the actual
skeleton length. In recent years, researchers have investigated
different skeleton extraction schemes. However, exploring effective
skeleton extraction techniques is still a topic that needs further
research.

5 Conclusions

To meet the requirements of the industry, this study proposed a
novel method for image-based weight measurement of live eels.
The method effectively reduces the damage rate of live eels by non-
contact detection of live eel weight. At the same time, no
complicated mechanical and electronic weight measurement devices
are required, and weight errors caused by eel movement are
avoided. First, a backlit table was designed to capture eel images,
and then the projected area and skeleton length of eel images were
obtained by image pre-processing. Based on this, an eel weight
measurement model combining the projected area and skeleton
length was proposed based on the body characteristics of the eel.
The general weight measurement model of eels was established by
eel segmentation experiments. Finally, eels of different weight
ranges were selected for model error verification, and the modified
mathematical model of eel weight was obtained. When comparing
the calculated results of this system with the actual measurement
results, the root mean square error was 12.94 g and the average
absolute percentage error was 2.12%. The results show that this
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study provided a convenient, fast, and low-cost method for non-
contact weight measurement of live eels and provided a research
basis for non-contact weight measurement of live eels. At the same
time, the weight prediction model established by combining the
pixel area and skeleton length of eels through segmentation of live
eels in this study also provided a new processing idea for weight
measurement of irregular objects similar to eels.
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