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forecasting of maize crop coverage using CNN-LSTM

Xin Wang'?, Yu Yang?, Xin Zhao', Min Huang®, Qibing Zhu'*
(1. Key Laboratory of Advanced Process Control for Light Industry, Ministry of Education, Jiangnan University,
Wuxi 214122, Jiangsu, China;
2. School of Physics and Electronic Electrical Engineering, Huaiyin Normal University, Huai’an, 223300, Jiangsu, China)

Abstract: Crop coverage (CC) is an important parameter to represent crop growth characteristics, and the ahead forecasting of
CC is helpful to track crop growth trends and guide agricultural management decisions. In this study, a novel CNN-LSTM
model that combined the advantages of convolutional neural network (CNN) in feature extraction and long short-term memory
(LSTM) in time series processing was proposed for multi-day ahead forecasting of maize CC. Considering the influence of
climate change on maize growth, five microclimatic factors were combined with historical maize CC estimated from field
images as the input variables of the forecasting model. The field experimental data of four observation points for more than
three years were used to evaluate the performance of CNN-LSTM at the forecasting horizon of three to seven days ahead and
compared the forecasting results to CNN and LSTM. The results demonstrated that CNN-LSTM obtained the lowest RMSE
and the highest R* at all forecasting horizons. Subsequently, the performance of CNN-LSTM under univariate (historical maize
CC) and multivariate (historical maize CC+microclimatic factors) input was compared, and the results indicated that additional
microclimatic factors were effective in improving the forecasting performance. Furthermore, the 3-day ahead forecasting results
of CNN-LSTM in different growth stages of maize were also analyzed, and the results showed that the highest forecasting
accuracy was obtained in the seven leaves stage. Therefore, CNN-LSTM can be considered a useful tool to forecast maize CC.
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1 Introduction

Precision agriculture (PA) is the new trend of agricultural
development in the world and the rudiment of agricultural
development in the future!. The key goal of PA is to improve crop
yield and quality while optimizing inputs, improving efficiency, and
reducing environmental pollution®. Real-time observation of the
changes in soil nutrient factors, climatic conditions, and crop status
during the crop growth stages is the prerequisite of PA!".. Therefore,
accurately tracking and even forecasting the changes in these
variables is the key to realizing PA.

Crop coverage (CC) is usually defined as the vertical projection
of green parts of the crop (including leaves, stems, and branches) to
the ground surface, and expressed as a percentage of the reference
area™’. CC is not only an important trait to represent crop growth
and development but also has shown sufficient correlations with
other crop parameters that are difficult to measure, such as leaf area
index (LAD)™ and canopy light interception”’. In different growth
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stages of crops, CC can directly or indirectly provide the basis for
agricultural managers to carry out corresponding agricultural
activities. In the seedling stages, CC can be used to judge whether
the plants are too dense, which provides help for thinning and fixing
seedlings. In the rapid growth stages (such as from the seven leaves
to the jointing stage of maize), the stems and leaves of the crops
grow rapidly, and the soil moisture content and nitrogen status of
crops can be inverted according to CC, which provides useful
information for precision irrigation and fertilization®. In the
reproductive growth stages (such as from the tasselling to the
maturity stage of maize), CC has a strong correlation with crop
yield, which provides a basis for yield prediction'’. Therefore,
continuous CC monitoring and forecasting in the whole growth
stages of crops can explain the causes of differences in crop growth
and provide a decision-making basis for agricultural producers!'".
Digital photograph taken in the field is an effective approach
for estimating CC because of the advantages of high spatial
resolution, immediate utility, and low price!"”. Chianucci et al.”
verified the feasibility of using digital photographs to estimate CC
and applied it to crops, including aromatic plants. Coy et al.'!
introduced an unsupervised, threshold-based segmentation method
to estimate CC from digital photographs, and achieved good results
in the test of four different crops (maize, oat, flax, and rapeseed). In
summary, the estimation of CC from digital photographs is mainly
achieved by dividing the number of pixels of target crops by the
total number of pixels in the entire digital photographs. However,
all these studies mentioned above mainly focus on the real-time
estimation of CC from digital photographs, while the ahead
forecasting of CC has received little attention. Notably, the ahead
forecasting of CC can make agricultural managers master the
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growth trends of crops, which is of great significance for guiding
agricultural management decisions and realizing PA.

The performance of the forecasting model can be improved by
using the influencing factors related to the forecasted quantity as
additional inputs'™'. For example, Matsumura et al."* used multiple
linear regression and ANN to forecast the maize yield of Jilin
Province, with climatic conditions and the historical yield as input
of the forecasting models, and achieved good forecasting results.
Ferreira and da Cunha!” assessed the potential of five models to
forecast daily ET, up to seven days ahead using three input
combinations, and the results showed that the best-performing
models were obtained by using input containing additional data.
Meanwhile, many studies have shown that climatic factors such as
temperature and precipitation will have an impact on crop
growth!"*"\. Therefore, the maize CC forecasting model established
in this study fully considered the microclimate data affecting maize
growth and adopted multivariate inputs.

Recently, deep learning algorithms have attracted much
attention and have been applied in many fields, which are superior
to traditional machine learning algorithms'”. Long short-term
memory (LSTM)* and Convolutional neural network (CNN)®" are
the most effective and widely used deep learning methods. For time
series forecasting, LSTM can effectively capture series pattern
information, while CNN can automatically extract more valuable
features. However, standard LSTM is difficult to filter the noise in
the input data, while standard CNN is difficult to solve the problem
of long-term dependence®. Therefore, a time series forecasting
model combining the advantages of CNN and LSTM could obtain
better forecasting performance.

Considering the importance of maize CC forecasting, this study
proposed a novel forecasting model to realize the multi-day ahead
forecasting of maize CC by integrating field images and
microclimate data. The main contributions of this study were
summarized as follows: 1) the multivariate input was constructed by
introducing additional microclimatic factors related to maize
growth, which can provide more abundant information for the
forecasting model; 2) a hybrid CNN-LSTM model that combined
the advantages of CNN and LSTM was proposed to realize multi-
day ahead forecasting of maize CC; 3) the field experimental data
collected at four observation points for more than three years
provided sufficient data for the evaluation of the forecasting model.

2 Study region and observation data

2.1 Study region

In this study, four observation points (Al, A2, A3, and A4)
were set up in three regions, of which Al was located in
Zhengzhou, Henan Province, China (34.46°N, 113.40°E), A2 and
A3 were located in Tai’an, Shandong Province, China (36.11°N,
117.08°E), and A4 was located in Gucheng, Hebei Province, China
(39.13°N, 115.67°E). These three regions are typical maize-planting
regions in China. During the experiment, wheat-maize intercropping
technology was adopted, and the sowing time and cultivation mode
of crops were consistent with those of the local agricultural practice.
Maize was sown with a row spacing of about 90 cm and a plant
spacing of about 19 cm. Maize growth stages are from June to early
October, which takes about 100 d from sowing to harvesting.
2.2 Observation data
2.2.1 Collection of field images

At each observation point, a digital camera (E450 Olympus)
installed on a bracket about 5 m above the ground was used to
capture the field images. The fixed-focus method with a focal length

of 16 mm was used for shooting. The resolution of the captured
images was 3648x2736 pixels and the corresponding actual area at
the time of sowing was 30 m’ and the area would decrease
accordingly with the growth of maize plants.

Field images of maize from sowing to harvesting were
collected at observation points A2, A3, and A4 from 2011 to 2013,
respectively, while at A1 from 2010 to 2013. On each experimental
day, the field images were taken every hour from 9:00 to 16:00, so
eight field images could be captured every day. The field images of
maize from sowing to harvesting at one observation point were
taken as one image series. Therefore, thirteen maize field image
series were collected in this study. Detailed information on each
maize field image series is listed in Table 1.

Table1 Corresponding observation point, year, date range,
days, and maize variety of each maize field image series

Field image Observation

Year Date range Days  Maize variety

series point
1 2010 Jun. 28-Oct. 1 96 Jundan no.20
2 Al 2011  Jun. 4-Sept. 20 109 Jundan no.20
3 2012 Jun.9-Sept. 30 114 Zhengdan no.958
4 2013 Jun. 6-Sept. 14 101  Zhengdan no.958
5 2011 Jun. 16-Sept. 26 103 Nongda no.108
6 A2 2012 Jun. 16-Sept. 26 103 Zhengdan no.958
7 2013 Jun. 19-Sept. 27 101  Zhengdan no.958
8 2011 Jun. 28-Sept.26 91  Nongda no.108
9 A3 2012 Jun. 16-Sept. 26 103 Zhengdan no.958
10 2013 Jun. 19-Sept. 27 101  Zhengdan no.958
11 2011 Jun. 27-Oct. 9 105 Jidan no.32
12 A4 2012 Jun.24-Oct.8 107 Jidan no.32
13 2013 Jun. 26-Oct. 7 104 Zhengdan no.958

Note: Al, A2, A3, and A4 represent four observation points that were set up in
three regions, Al was located in Zhengzhou, Henan, China, A2 and A3 were
located in Tai’an, Shandong, China, and A4 was located in Gucheng, Hebeli,
China.

2.2.2  Estimating maize CC from field images

The core of estimating maize CC from field images is to
segment maize accurately. There are two most common approaches:
threshold-based  approaches and machine learning-based
approaches!*. Many researchers used digital images to estimate CC
without considering the problems caused by natural light changes or
light reflection on crop leaves!".

Owing to the field images in this study being mainly captured
in summer, the effects of natural light changes and crop leaves
reflection must be considered. The maize images from the field
were segmented using a method as in Ye et al.””, who proposed a
novel crop segmentation method by using a probabilistic superpixel
Markov random field. This segmentation method can improve crop
segmentation performance under strong illumination or shadow.
After segmenting, the percentage of the number of pixels in the
green part of maize to the total number of pixels is expressed as
maize CC (0-100%). A typical maize field image under strong
natural light is shown in Figure la along with the corresponding
segmentation result shown in Figure 1b. By calculating the
percentage of green pixels in Figure 1b, the maize CC is 59.68%
could be obtained.

As previously mentioned, eight field images were taken at each
observation point every day. The average value of maize CC
estimated from eight field images was taken as daily maize CC on
that day.

2.2.3 Collection of microclimate data
Each study region had an agricultural microclimate observation
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a. Maize field image example
was taken at A1

b. Segmentation result of image a

Figure 1 Example of maize field images taken at 10 o’clock on

July 29, 2010, at observation point Al and the corresponding
segmentation result

system, which was used to collect microclimate data of maize from
sowing to harvesting. Five microclimatic factors were obtained,
including cumulative precipitation, maximum temperature, relative
humidity, dew point temperature, and maximum air pressure (Table
2). The microclimate data, collected on an hourly timescale, were
converted to a daily timescale. The daily cumulative precipitation
was the sum of the hourly cumulative precipitation, the daily
maximum temperature and air pressure were the maximum values
of the hourly maximum temperature and air pressure, respectively,
and the daily relative humidity and dew point temperature were the
average values of the hourly relative humidity and dew point
temperature, respectively.

Table 2 Details of daily microclimatic factors used in
this study

Microclimatic factors

Value ranges

Cumulative precipitation/mm 0-115
Maximum temperature/°C 14.4-41.9
Relative humidity/% 18.08-90.83
Dew point temperature/°C 1.17-26.51
Maximum air pressure/hPa 982.2-1031.1

2.2.4 Data management

In this study, the daily maize CC and its corresponding
microclimate data were taken as observation data, so 1338
observation data were collected at four observation points for more
than 3 years. All these observation data were divided into two parts:
a training set and a testing set. Particularly, the data from 2010 to
2012 were used for model training and parameter optimization,
including 931 data, and the data from 2013 were used to test the
forecasting performance of the models, including 407 data.

3 Methods

3.1 Construction of multivariate input matrix

The collected observation data is used to form a time series
dataset X, X=[x,, x,, X3, ..
of days of observation data and x; is a row vector representing

X, ..., Xp|", where D is the total number

maize CC and microclimate data at time 7, x, = [xl',xf, ...,xj“]
eR"™. Among them, x; is the maize CC, and x} to x are
microclimate data, and M is the number of variables of observation
data.

Notice that the time series dataset should be converted into an
input matrix suitable for the forecasting model. Suppose that the
“look back window”, which is the number of days of previous
historical data that are taken into consideration by a forecasting
model to make forecasting™, is set to L, and the forecasting horizon
is set to d days ahead, which means that the maize CC on the next d-
th day would be forecasted. As shown in Figure 2, the input
matrices of the forecasting model at time ¢ and #+1 are X, and X, |,

respectively, and the dimension of the input matrix is LxM. The

goal of this study was to train the forecasting model so that when

1

the input matrix is Xj, the output is x,, .

That is to say, the maize CC
on the next d-th day is forecasted by using the maize CC and

microclimate data of previous L days.
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CC |e—
data
1 3 Microclimate
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Figure 2 Input matrices of the forecasting model at time ¢ and #+1

3.2 Proposed model

CNNP!and LSTMP are the two main branches in the field of
deep learning. CNN is good at extracting features from input data,
while LSTM is effective for processing time series data. Inspired by
this, a hybrid deep learning model (CNN-LSTM) is proposed to
combine the advantages of CNN and LSTM.
32.1 CNN

The main difference between CNN and traditional neural
networks is that CNN has the characteristics of local connection and
weight sharing, so the training parameters of CNN are less than
those of traditional neural networks®”. The convolutional and
pooling layers are the most important layer structures in CNN. The
role of the convolutional layer is to automatically extract features
from input data through convolutional kernels, and the role of the
pooling layer is to reduce the size of feature maps. The
convolutional kernel used in this study was one-dimensional, which
was determined according to the dimension of the input data, and
was called 1D CNN™.
322 LSTM

LSTM is a variant of Recurrent Neural Network (RNN). It not
only has the advantages of traditional RNN, but also solves the
problem of gradient explosion or vanishing of traditional RNN in
the process of back-propagation®. In particular, LSTM introduces a
memory cell to store historical information, and combines three
control gates (input, output, and forget gates) to read and write the
memory cell. The decisions of the three control gates are all
dependent on the previous output 4, ; and the current input x,. The
internal structure of LSTM unit is shown in Figure 3. More
specifically, the equations of LSTM can be described as Equations

(1)-(6):

i, =W,x,+W,h,+b) (@9)]
fi=W,x.+W,h,+b,) 2)
0,=W,x,+W,h,+b,) 3)

¢, =gW.x,+W,h,_ +b,) “4)
¢, =f0c¢._,+i08, %)
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Figure 3 Internal structure of LSTM unit

h,=0,0g(c) (6)

where, o represents the sigmoid function, g represents the
hyperbolic tangent function, W,,, Wy, W,
matrices, Wy, Wy, W,, and W, are recurrent weight matrices, b,
by, b,, and b, are bias vectors, ¢is the candidate state of the memory
cell, and © stands for the element-wise multiplication operation.

In order to handle time series data, L LSTM units are cascaded
in turn to form an LSTM layer (Figure 4), in which each LSTM unit
corresponds to a time slot. All LSTM units share weights and
biases. Each row of the input matrix X, is fed to the corresponding
LSTM unit in the LSTM layer. The outputs of the j-th LSTM unit at
time ¢, i.e., h,,; and ¢, ;, are part of the inputs of the next LSTM
unit. Therefore, the outputs of each LSTM unit are not only
dependent on its inputs but also dependent on the inputs of the
previous LSTM units.

" and W, are input weight

Crrnl Crr2
‘ LSTM unit LSTM unit
T hthvl I hth-Z
X141 X2

L J
T

Input matrix X,

Figure 4 The unfolded LSTM layer structure

3.2.3 CNN-LSTM model

In order to combine the advantages of CNN and LSTM, a
hybrid CNN-LSTM model was proposed. Firstly, the convolutional
layer was used to automatically extract useful local features from
fixed-length input data, and the max pooling layer was used to
reduce the size of the extracted features. Then, the output was used
as the input of the LSTM layer to learn the long short-term
dependencies in time series data. Finally, the output of LSTM was
used as the input of the full connection layer to obtain the final
forecasting result. The number of convolution layers, LSTM layers,
and full connection layers in the built network was obtained through
many rigorous tests so that the proposed model can obtain the best
forecasting performance. The structure of the hybrid CNN-LSTM
framework is depicted in Figure 5, including one input layer, one
1D convolutional layer, one max pooling layer, one LSTM layer,
and two fully connected layers.

The parameters of the convolutional layer were set as follows:
the number of convolutional kernels equaled to 32, the size of

-5 O
H—=
— E Output
LI[H H »
TH H —~
" M
Input layer (X)) 1D convolution Max LSTM layer Fully connected

layer pooling layer layers

Note: L means “Look back window” which is the number of days of previous
historical data that are taken into consideration by a forecasting model to make

forecasting; M is the number of variables of observation data.

Figure 5 Network structure of the forecasting model based on
CNN-LSTM

convolutional kernel equaled to 2, the activation function was set to
Rectified Linear Unit (ReLU), and the padding was set to “same”.
In the max pooling layer, the following settings were applied: the
size of pooling kernel equaled to 1, the stride equaled to 2, and the
padding was set to “same”. The number of neurons in the LSTM
layer was set to 60. The number of neurons in the first fully
connected layer and the second fully connected layer (output layer)
was set to 10 and 1, respectively. In the training process of CNN-
LSTM model, we employed mean absolute error as the loss function
and used Adam™ optimizer to update the network weights and
biases by minimizing the loss function. The learning rate was set to
0.001, and the training epochs were set to 300. In addition, the look-
back window was set to 5 d, and considering that sufficient time
should be reserved for agricultural producers to make management
decisions, the forecasting horizon was set to three to seven days
ahead.

3.3 Design of experiments

In order to evaluate the forecasting performance of the CNN-
LSTM model, we compared it with CNN and LSTM models (Figure
6). All three models were implemented on Python 3.5 by using
Keras 2.2.2.

CNN model consisted of one input layer, one 1D convolutional
layer, one max pooling layer, one flatten layer and two fully
connected layers. The parameters of the convolutional layer, max
pooling layer, and fully connected layers of the CNN model were
the same as those of the CNN-LSTM model. The flatten layer had
no parameter to set, and its role was to convert multi-dimensional
features into one-dimensional data. The LSTM model included one
input layer, one LSTM layer, and two fully connected layers. The
parameters of LSTM layer and fully connected layers of LSTM
model were the same as those of CNN-LSTM model. Furthermore,
the loss function, optimizer, learning rate, training epochs, look-
back window, and forecasting horizon of CNN and LSTM models
were the same as those of CNN-LSTM model.

3.4 Data preprocessing

To eliminate the negative effects of variable differences on the
performance of the forecasting model, all six variables (maize CC
and five microclimatic factors) were normalized into [0, 1]
according to Equation (7). It is worth noting that the minimum and
maximum values of each variable were calculated only by the
training data, not by the testing data.

X = Xunin

Xoom = ————— (7

Xmax ~ Xmin

where, x and x,,,, represent the original and normalized values,
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Figure 6 Network structures of the forecasting models based on
CNN and LSTM

respectively; X, and x,,,, represent minimum and maximum values,
respectively.
3.5 Model evaluation

The performance of the forecasting model is evaluated by using
Root Mean Square Error (RMSE) and coefficient of determination
(R*)B*31, Obviously, for a good forecasting model, RMSE should be
close to 0 and R*> should be close to 1. They are defined as
Equations (8) and (9).

RMSE = ®

S 0=I ==y
R = i=1 i=1

; ©)
S5

where, y; is the observed maize CC, ¥, is the forecasted maize CC, y
is the mean of the observed maize CC, and N is the number of
samples in the testing set.

4 Results and discussion

4.1 Analysis of the changing trend of maize CC

In this study, 13 field image series of maize from sowing to
harvesting were collected. After estimating maize CC from field
images, the change curves of maize CC can be obtained. Taking
2013 as an example, the change curves of maize CC at four
observation points are shown in Figure 7. Overall, maize CC shows
a slow rise at first, then a rapid rise, then relatively stable, and
finally a slow decline in the trend. However, the change trends of
maize CC at different observation points are also different. For
example, the data fluctuation at observation point Al is the most
obvious, followed by A4, while A2 and A3 are relatively stable.
The difference in change curves of maize CC at four observation

points is mainly related to climatic conditions. Therefore, in the
ahead forecasting of maize CC, the traditional strategy of using only
historical maize CC is difficult to obtain accurate results, while the
strategy of combining additional microclimate factors can solve this

problem.
100 100
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D
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Figure 7 Change curves of maize CC at four observation points
Al, A2, A3, and A4 in 2013

According to the microclimate data of maize during the total
growth stage at four observation points in 2013, it was observed that
the average maximum temperature and cumulative precipitation at
Al were 32.7°C and 125.8 mm, respectively. The temperature was
high and the precipitation was low, so drought often occurred,
causing maize leaves to turn yellow and wilt, and after rain, maize
leaves returned to green and unfold, which led to the fluctuation of
the changing curve of maize CC. A2 and A3 shared an agricultural
microclimate observation system, the average maximum
temperature and cumulative precipitation at A1 were 30.8°C and
339.1 mm, respectively. The temperature was suitable, and the
precipitation was moderate and evenly distributed. Few maize
leaves showed drought and wilt, so the change curve of maize CC
was relatively stable. The average maximum temperature and
cumulative precipitation at A4 were 28.8°C and 373.3 mm,
respectively. The temperature was low, and the precipitation was
abundant but unevenly distributed, which would also lead to slight
fluctuations in maize CC.

Due to the accumulation or lag effect of microclimatic factors,
there are some obvious data fluctuation points (A, B, C, D, E, F, G)
in the change curves of maize CC (Figure 7). The average
maximum temperature and cumulative precipitation between data
fluctuation points are listed in Table 3. It can be seen that in the
range of A-B, C-D, and F-G, there was basically no precipitation
and the temperature was relatively high, which made maize leaves
wilt and led to a decrease in maize CC. In the range of B-C, D-E,
and G-H, there was sufficient precipitation and the temperature was
suitable, which made the wilted maize leaves unfold again, and led
to the increase of maize CC.

4.2 Comparison of forecasting performance of different models

The performance of three models at the forecasting horizon of
three-seven days ahead is listed in Table 4 and Figure 8. The RMSE
is ranked in the descending order of CNN, LSTM, and CNN-LSTM,
which is completely consistent with the ascending order of the R*. In
addition, the performance of all models suffers from a loss with the
increase of the forecasting horizons. However, even in the 7 d ahead
forecasting, CNN-LSTM still obtains acceptable forecasting
accuracy with the RMSE of 8.260% and the R* of 0.922.
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Table 3 Average maximum temperature and cumulative
precipitation between different data fluctuation points

Datapoints range ~ MaximumTemperature/°C ~ CumulativePrecipitation/mm

A-B 35.7 0.2
B-C 31.7 5.5
C-D 313 0.1
D-E 25.5 3.8
F-G 23.8 0.0
G-H 22.9 7.6

Furthermore, the advantages of CNN-LSTM are more obvious with
the increase in the number of ahead forecasting days. For example,
compared with the second-ranked LSTM, the RMSE of CNN-
LSTM decreases by 0.48% and the R* increases by 0.10% in the 3-
day ahead forecasting, while the RMSE decreases by 9.53% and the
R’ increases by 1.99% in the 7 d ahead forecasting. This indicates

10
-~ CNN
9l LSTM
- CNN-LSTM
8
c\\°
& 7t
=
=4
6L
5k
4 1 1 1 1
3 4 5 6 7
Forecasting horizon/d
a. RMSE

that CNN-LSTM has better performance for long-term forecasting.
In practical application, the forecasting accuracy for more distant
days ahead is what we are most concerned about, because the more
distant days ahead, the earlier the decision-making that agricultural
producers can make. Therefore, CNN-LSTM is considered to be the
optimal model for multi-day ahead forecasting of maize CC.

Table 4 Comparison of multi-day ahead forecasting
performance based on RMSE and R’ of different models

' RMSE/% R
Horizon/day
CNN LSTM CNN-LSTM CNN LSTM CNN-LSTM
3 4.640 4.187 4.167 0.979  0.982 0.983
4 5.938 5.770 5.585 0.964  0.966 0.968
5 7.062  6.741 6.534 0.947  0.952 0.955
6 8.547 8.044 7.385 0.920 0.929 0.940
7 9.496 9.130 8.260 0.897  0.904 0.922
1.00
- CNN
0981 AL LSTM
\\ —a- CNN-LSTM
L EN
0.96 \\E\
% 0941 y\\i\
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Figure 8 Comparison of RMSE and R’ obtained by different models at the forecasting horizon of three to seven days ahead

In order to further illustrate the difference in the forecasting
performance of the three models, the comparison of forecasting
results of the three models at the forecasting horizon of three, five,
and seven days ahead is given in Figure 9. In general, all three
models can track the change of maize CC at three forecasting
horizons, but their forecasting accuracy is slightly different. In
terms of different forecasting horizons, the forecasting accuracy of
all three models decreases with the increase of the forecasting
horizons. In terms of different observation points, the forecasting
accuracy of all three models at A2 and A3 is higher than that at A1l
and A4 because the change of maize CC at A2 and A3 is relatively
stable and that at Al and A4 fluctuates obviously. However, the
forecasted maize CC values using CNN-LSTM are closer to the
observed maize CC values than using CNN and LSTM at the same
forecasting horizon and observation point. This indicates that the
combination of CNN and LSTM achieves additional performance
gains over the use individually of CNN and LSTM.

4.3 Comparison of the forecasting performance of CNN-
LSTM under different input types

To better
microclimate data to the forecasting performance of CNN-LSTM,
the RMSE, and R* of different forecasting horizons obtained by
CNN-LSTM under univariate and multivariate inputs are listed in
Table 5. Among them, univariate refers to only one variable, maize
CC, which is contained as the input of CNN-LSTM, while
multivariate refers to five microclimatic variables that are also
contained besides maize CC. Meanwhile, CNN-LSTM used for two
different input types has the same network structure and parameters.

illustrate the contribution of the introduced

Compared with univariate input, the mean RMSE of multivariate

input decreases by 3.36% and the mean R2 increases by 0.34%, and

—— Observed —— CNN LSTM —— CNN-LSTM
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Figure 9 Comparison of forecasting results of different models at

the horizon of 3-d, 5-d, and 7-d ahead
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Table 5 RMSE and R’ of different forecasting horizons growth stages of maize

obtained by CNN-LSTM under different input types From sowing to harvesting, maize includes the following
) Horizon/day growth stages: emergence, three leaves, seven leaves, jointing,

Input type Metrics . . o . . .
4 5 6 7 tasselling, flowering, spinning, and maturity stage™. Taking
Univariate RMSE/% 4359 5788 6717  7.641  8.499 observation point A3 in 2013 as an example, the dates of maize
R 0.981 0966 0952 0936 0917 entering different growth stages and the corresponding days after
Multivariate  MSE/% 4167 5.585 6534 7385 8.260 sowing obtained by the field observation of the observers are listed

R 0.983 0.968 0.955 0.940 0.922

in Table 6. In different growth stages, the change trends of maize
CC are quite different, so the corresponding forecasting accuracy is
also various. According to the characteristics of maize in different
growth stages, it can be divided into four periods: emergence-three

the forecasting accuracy of multivariate input is better than that of
univariate input at all forecasting horizons. In addition, existing
studies have shown that the stability of the forecasting model will

be better if the influencing factors are related to the forecasted leaves stage, seven leaves the stage, jointing-flowering stage, and
quantity as an additional input of the forecasting model®?. spinning-maturity stage. The 3-day ahead forecasting results of
Therefore, from the perspective of forecasting accuracy and model CNN-LSTM in different growth stages are analyzed.

stability, CNN-LSTM under multivariate input is considered the As shown in Figure 10, the forecasted values are basically
optimal input type. consistent with the observed values during the total growth stage of
4.4 Analysis of forecasting results of CNN-LSTM in different maize. From the emergence to the flowering stage, maize CC

Table 6 Dates of maize entering different growth stages and the corresponding days after sowing at observation point A3 in 2013

Growth stages Sowing Emergence Three leaves Seven leaves Jointing Tasselling Flowering Spinning Maturity
Entering dates Jun. 19 Jun. 25 Jun. 27 Jul. 6 Jul. 19 Aug. 7 Aug. 8 Aug. 9 Sept. 27
Days after sowing 0 6 8 17 30 49 50 51 100
increases continuously and tends to be stable in the later periods, ability of CNN-LSTM to capture rapid changes in maize CC is
while from the spinning to the maturity stage, maize CC begins to insufficient, which leads to low forecasting accuracy. However, in
decrease, accompanies by fluctuations. As shown in Figure 10a, the the latter part of this period, maize CC tends to be stable, and the
forecasting errors in several days are large, which may be due to the coincidence degree between forecasted values and observed values
maize CC being relatively small and easy to be disturbed by is high. As shown in Figure 10d, the maize CC curve has
weeding and other agricultural activities. As shown in Figures 10b, fluctuations due to climatic conditions, but CNN-LSTM can still
maize CC increases approximately linearly, and CNN-LSTM can accurately track and forecast maize CC. This is because we fully
well capture this linear change relationship, so the highest considered the microclimatic factors affecting maize CC when
forecasting accuracy is obtained, and the fitted line almost coincides establishing the forecasting model.
with the 1:1 line. As shown in Figure 10c, the early part of this Comparisons between observed crop coverage (CC) and
period is the jointing stage. Maize grows most vigorously, and the forecasted CC
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Figure 10 Comparisons and regression plots between observed CC and forecasted CC, respectively
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5 Conclusions

In this study, a novel forecasting model CNN-LSTM was
proposed to forecast maize CC, which combined the advantages of
CNN in feature extraction and LSTM in time series processing. The
forecasting performance of CNN-LSTM was compared with that of
CNN and LSTM at the horizon of three to seven days ahead, the
results showed that CNN-LSTM had the lowest RMSE and the
highest R?>, followed by LSTM, and the worst was CNN.
Furthermore, the forecasting performance of CNN-LSTM under
univariate and multivariate inputs was compared, and the results
showed that multivariate input performed better than univariate
input, which indicated that the additional microclimatic variables
had a positive effect on the improvement of the forecasting
performance. Finally, taking observation point A3 in 2013 as an
example, the 3 d ahead forecasting results of CNN-LSTM in
different growth stages of maize were analyzed, and the results
indicated that the forecasting accuracy of CNN-LSTM in different
growth stages of maize was different, and the highest R* was
obtained in the seven leaves stage. Overall, this study showed the
potential of using CNN-LSTM to forecast maize CC by integrating
field images and microclimate data.
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