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Identification of tomato leaf diseases using convolutional neural network

with multi-scale and feature reuse

. * .
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Abstract: Various diseases seriously affect the quality and yield of tomatoes. Fast and accurate identification of disease types is
of great significance for the development of smart agriculture. Many Convolution Neural Network (CNN) models have been
applied to the identification of tomato leaf diseases and achieved good results. However, some of these are executed at the cost
of large calculation time and huge storage space. This study proposed a lightweight CNN model named MFRCNN, which is
established by the multi-scale and feature reuse structure rather than simply stacking convolution layer by layer. To examine the
model performances, two types of tomato leaf disease datasets were collected. One is the laboratory-based dataset, including
one healthy and nine diseases, and the other is the field-based dataset, including five kinds of diseases. Afterward, the proposed
MFRCNN and some popular CNN models (AlexNet, SqueezeNet, VGG16, ResNet18, and GoogLeNet) were tested on the two
datasets. The results showed that compared to traditional models, the MFRCNN achieved the optimal performance, with an
accuracy of 99.01% and 98.75% in laboratory and field datasets, respectively. The MFRCNN not only had the highest accuracy
but also had relatively less computing time and few training parameters. Especially in terms of storage space, the MFRCNN
model only needs 2.7 MB of space. Therefore, this work provides a novel solution for plant disease diagnosis, which is of great
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importance for the development of plant disease diagnosis systems on low-performance terminals.
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1 Introduction

Tomato is rich in nutrition and has been widely processed into
tomato paste, tomato juice, etc. In the process of tomato planting, a
variety of diseases seriously restrict the yield and quality, such as
late blight, early blight, leaf mold, mosaic virus, and spot blight!.
Traditional disease identification mainly depends on farmers’
experience and usually requires a high professional knowledge of
agricultural producers due to the complexity of disease symptoms.
However, judging the types of diseases by artificial observation is
more subjective, time-consuming, and labor-consuming, which is
prone to misdiagnosis. Therefore, automatically and accurately
identifying plant leaf diseases has become a research hotspot*~..

Plant disease recognition based on traditional machine learning
(ML) algorithm includes three steps: disease spot segmentation,
feature extraction, and classifier recognition. The research based on
this method was carried out earlier and has achieved a lot of
outcomes. For example, the classical ML algorithms that were
applied to identify plant diseases include Support Vector Machine
(SVM), K-nearest neighbor (KNN)”, Random Forest (RF)", etc.
In these studies, the disease classifiers were constructed by using
manually selected features, which required a lot of time for image
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preprocessing and feature evaluation. Additionally, the disease
symptoms would become complex due to the influence of plant
type, growth stage, diseased spot, and other factors'”, leading to the
difficulty of feature extraction, which limits the application effect of
the above methods.

Compared to traditional ML methods, Convolutional Neural
Network (CNN) has abandoned complex image preprocessing and
manual feature extraction. Since 2012, researchers have proposed a
variety of excellent CNN models, such as AlexNet!", VGGNet!'",
ResNet!"”, GoogLeNet", DenseNet!", InceptionV3!""), MobileNet!'",
and Xception!”. Research showed that CNN has comprehensively
surpassed the traditional ML algorithms in image classification,
target detection, and image segmentation. Nowadays, CNN has
been widely used in various visual tasks. Meanwhile, the research
on automatic diagnosis of plant diseases has been carried out by
using CNN models. For instance, Mohanty et al."® trained classic
models AlexNet and GoogLeNet on the public PlantVillage dataset
including 14 crop species and 26 diseases. Thangaraj et al.!
explored popular CNNs like AlexNet, DenseNet, InceptionV3,
ResNet, and MobileNet in tomato leaf disease identification.
Rangarajan et al.'”’ applied pre-trained models AlexNet and VGG16
to classify six tomato diseases, and AlexNet produced higher
accuracy than VGG16. Durmus et al.” utilized AlexNet and
SqueezeNet models for the identification of nine tomato diseases
and reported an accuracy of 95.65% for AlexNet and an accuracy of
94.3% for SqueezeNet. Zhang et al.”" used AlexNet, GoogLeNet,
and ResNet to identify tomato leaf diseases, and ResNet provided
the highest accuracy of 97.28%. Ahmad et al.”? evaluated the
performance of VGG-16, VGG-19, ResNet, and Inception V3 on a
laboratory-based dataset and self-collected dataset, and Inception
V3 was proved to be the optimal model on both datasets. Although
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the above CNN models performed well in the task of plant disease
identification, the fixed CNN architectures and huge model
parameters limit the actual deployment in the field. In particular,
AlexNet and VGGNet require huge calculation costs and storage
space, so they cannot be directly deployed on mobile devices. In
addition, it must be pointed out that these classic CNNs were
designed for a huge number of categories and trained on high-
performance platforms and large-scale datasets. For the tomato leaf
diseases, the number of categories and the scale of datasets are very
small, and the use of such large models is prone to over-fitting.
Thus, for the small-scale tomato disease dataset or other similar
disease datasets, it is necessary to design a CNN model with weight
and high efficiency, which can achieve the same or even better
disease recognition effect as the popular CNNs, rather than just
relying on these popular CNNs.

At present, researchers have developed some lightweight or
low-order CNN models for identifying plant leaf diseases. Yan et
al.” proposed an apple disease recognition model that was built by
using the global pooling layer to replace the fully connected layer of
VGG16 to reduce parameters. Liu et al.” employed GoogLeNet’s
Inception module to improve AlexNet model to realize the
identification of apple leaf diseases. Zhang et al.”” designed a light-
weight cucumber diseases classification model namely GPDCNN,
constructed by using dilated convolution, Inception module, and
global pooling to improve AlexNet model. Overall, the model
training parameters can be reduced by removing the fully connected
layer, reducing channels and convolution kernel size, and
introducing an advanced convolution module. On the other side,
some low-order CNN models have been developed for plant disease
identification, but the recognition accuracy is not high. Agarwal et
al.” trained an eight-layer CNN on a publicly available tomato
disease dataset and reported an accuracy of 91.2% and a storage
space of 1.5 MB. Subsequently, Agarwal et al.”” evaluated this
model on a new tomato disease dataset and proved this model was
superior to traditional ML approaches as well as popular CNN
models, with an accuracy of 98.4%. Geetharamani et al.*
developed a nine-layer CNN and tested this model on the open
PlantVillage dataset, with an accuracy of 96.46% for 39 plant leaf
classes. Li et al.” developed two shallow models SCNN-KSVM
and SCNN-RF for identifying plant leaf diseases, reported the two

a. Healthy (H) b. Bacterial spot (BS)

f. Septoria leaf spot (SS) g. Spider mite (SM)

Figure 1

The field-based dataset contains five tomato leaf diseases, as
shown in Figure 2. Collecting leaf disease images from the field is a
challenging task. A total number of 326 disease images were
collected in the natural environment using a mobile phone camera
(12 megapixels, MI MIX 3). A few numbers of images were not
enough to train a deep-learning model. Thus the data augmentation

c. Early blight (EB)

h. Target spot (TS)

models outperformed large-scale models Xception and InceptionV3,
and suggested developing a shallow CNN for plant disease
identification because of its simple structure and low computational
cost. In addition, the above works mainly focus on the open plant
disease datasets and depend on a layer-by-layer CNN model. This
study also utilizes CNN to identify tomato diseases, but the CNN
architecture is different from the previous ones, and two types of
datasets were considered. The major contributions of this paper can
be stated as follows:

1) A light-weight CNN model (MFRCNN) was developed for
the identification of tomato leaf diseases, the model was established
by the multi-scale convolution and feature reuse structure rather
than simply stacking convolution layer by layer.

2) Two types of tomato leaf disease datasets were built,
including a laboratory-based dataset and a field-based dataset.

3) Various models were tested on laboratory and field datasets.
It turned out that the MFRCNN model outperformed popular CNN
models on the metrics of accuracy, precision, recall, and F1-score,
with fewer training parameters.

2 Materials and methods

2.1 Data acquisition

A categorized tomato disease dataset is an essential part of
evaluating the model performance. Some institutions have
developed the standard laboratory-based tomato leaf disease dataset,
but these samples were collected in simple background and
controlled environment, which deviates from the actual
environment. In this work, two types of datasets were considered,
one was collected from the laboratory environment, and the other
was collected in the field environment.

The laboratory-based data was the public PlantVillage dataset
(https://www .kaggle.com/datasets/abdallahalidev/plantvillage-
dataset), including one healthy class and nine disease classes, each
category is shown in Figure 1. Because the number of images in
each category was not uniformly distributed, the trained model
might be biased in identifying different leaf diseases””. Data
augmentation technology was used to solve this situation, including
resizing, flipping, mirroring, and rotating. Afterwards, the total
number of tomato leaf images was 17 197 in the laboratory-based
dataset.

d. Late blight (LB) e. Leaf mold (LM)

1. Mosaic virus (MV) j. Yellow leaf curl virus (YV)

Samples in laboratory-based dataset obtained from PlantVillage

method was employed to raise the number of samples, including
resizing, flipping, mirroring, rotating, adjusting brightness and
contrast, etc. Finally, the total number of disease images was 4531
in field-based dataset. In addition, all images were uniformly
adjusted to 256%256 pixels to be suitable for the input size of the
CNN model.
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a. BS b. EB c.LB

d. LM e. YV

Figure 2 Samples in field-based dataset collected in the natural environment by phone camera

2.2 Datasets

In this work, each dataset was divided into a training set,
validation set, and testing set. The details of the laboratory-based
dataset and field-based dataset for training, validation, and testing
are listed in Table 1. The previous work mainly tested the proposed
model on public datasets, which contain images obtained in a
controlled environment or perfect conditions. However, in the field
scene, it is impossible to acquire such high-quality leaf images. In
this study, the field dataset was used to further verify the
performance of the model.
2.3 Proposed model

Inspired by the structure of AlexNet, GooglLeNet, and
DenseNet, a lightweight CNN model named MFRCNN was
constructed for the diagnosis of tomato leaf diseases. In Figure 3,
the proposed MFRCNN includes 3 modules: the first module is the
“entry module”, its first convolution layer with kernels of size 3x3,
5x5, and 7x7, respectively, and the number of each kernel is 48, 24,
and 24, respectively. Then, the output features of three kernels are
concatenated into a tensor followed by 64 convolution kernels of
size 1x1 to fuse the extracted feature information and reduce the
computational complexity of the model. The second module is the
“middle module”, its core part is feature reuse structure, including
FR Block1, FR Block2, and FR Block3. Specifically, the FR Block1
consists of Conv3 and Conv4, with 64 kernels of size 5x5 and 96

kernels of size 1x1, respectively. The FR Block2 consists of Conv5,
Conv6, and Conv7, with 96 kernels of size 3x3, 96 kernels of size
3x3, and 192 kernels of size 1x1, respectively. The FR Block3
consists of Conv8 and Conv9, with 96 kernels of size 3x3 and 192
kernels of size 1x1, respectively. The last module is the “rear
module”, which is composed of a global average pooling layer, a
fully connected layer, and a 10-way softmax layer.

Table 1 Details of the laboratory-based dataset and
field-based dataset
Testing set Total

Class Training set Validation set
name [ aboratory Field Laboratory Field Laboratory Field Laboratory Field
H 1146 - 318 - 127 -- 1591 --
BS 1226 630 340 180 136 90 1702 900
EB 1233 641 342 183 136 91 1711 915
LB 1268 588 351 168 140 84 1759 840

LM 1274 663 353 189 141 94 1768 946

SS 1276 - 354 - 141 -- 1771 --
SM 1207 - 335 - 134 -- 1676 --
TS 1236 - 343 - 137 -- 1716 --
MV 1272 651 353 186 141 93 1766 930
YV 1251 - 347 - 139 -- 1737 --

Total 12389 3173 3436 906 1372 452 17197 4531

Note: The laboratory dataset contains nine leaf diseases, while the field dataset
contains five leaf diseases.
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Figure 3 Architecture diagram of the MFRCNN model for the diagnosis of tomato leaf diseases

2.3.1 Multi-Scale structure

Generally speaking, the small-scale kernel extracts low-
frequency content but high-frequency details of the image are easily
lost, while the large-scale kernel extracts big features information of
the image but low-frequency contents are often lost. For tomato leaf
diseases, the same leaf disease also has significant differences in
different infection stages. Figure 4 gives the early, mid, and late

infected leaf images of tomato early blight. As seen, the diseased
leaves show obvious differences in contour, color, and texture.
Therefore, multi-scale kernels are applied in the first layer of CNN
to obtain the low-frequency and high-frequency details of the input
leaf image. The proposed multi-scale block includes three different
convolution kernels with the size of 3x3, 5x5, and 7x7 respectively.
All convolution operations are performed at the same time, and then
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all feature maps are merged together and sent to the layer with a
kernel size of 1x1 to complete feature fusion and dimensionality
reduction.

b. Mid c. Late

a. Early

Figure 4 Infected images of different stages of early blight

2.3.2 Feature reuse structure

The traditional CNNs usually extract image features layer by
layer, so that there is no connection between non-adjacent layers.
As CNNs become increasingly deep, the gradient disappearance
phenomenon will become more and more obvious. At present, many
papers have reported solutions to this problem, and the core idea is
to create a short path from the early layer to the later layer®".
However, the DenseNet showed a novel perspective that each layer
can directly access the later layers, and its performance also
exceeded the classic model ResNet. However, DenseNet seriously
consumes GPU memory, which is a challenge for low-performance
computing platforms. For this reason, this study only refers to the
design idea in model.

As shown in Figure 5, the feature extraction structure that the
current layer can accept the previous n layers as additional input
was constructed. It is worth noting that the number of input feature
maps in the last layer was the sum of the previous # layers, which
was not conducive to feature extraction in the next stage. Therefore,
Layer4 with a small size convolution kernel 1x1 was introduced to
reduce the number of feature maps, which not only reduced the
amount of calculation but also fused the feature maps of all input
channels. In addition, the batch normalization (BN) algorithm”" was
introduced to accelerate the convergence of the model, and the
rectified linear unit (ReLU)® was selected as the activation
function.

Note: BN: Batch Normalization; ReLU: Rectified Linear Unit.
Figure 5 Feature reuse structure

In Figure 5, the feature extraction also can be described by
mathematical expression, and the output of feature reuse structure in
the / layer is shown in Equation (1).

X = H([x,%,...,%]) (1)

where, H/(*) is the nonlinear transfer function; x,, x,, x3, ..., x; are
the output of different layers.
2.4 Performance evaluation metrics
2.4.1 Basic metrics

In the training phase, average recognition accuracy is the
primary criterion in judging model performance, and the higher the
accuracy is, the better the performance is. Many related works paid

more attention to the recognition accuracy and ignored other

performance metrics. In view of this, considering the deployment
and model calculation on low-cost terminals, the model size also
was used as a model evaluation metric. In addition to accuracy and
model size, training time was an important metric for evaluating the
model performance. If the model has a high accuracy, few
parameters, small size, and short training time, it is more conducive
to the application of the model in practice.
2.4.2  Additional metrics

The Precision, recall, and Fl-score were employed to
comprehensively evaluate model classification performance.
Among them, precision, recall, and F1-score were derived from the
sample number of true positive (TP), false positive (FP), true
negative (TN), and false negative (FN) results. These metrics were

calculated as follows:

TP
Precision = ———— 2
recision = -m——0p 2)
TP
Recall = ————
T TPTEN (3)
Fl-score = 2-Precision‘Recall )

Precision + Recall

where, Precision is the proportion of all positive predictions that are
correct; Recall is the proportion of all real positive observations that
are correct; F1-score is the harmonic mean of Precision and Recall;
TP means the prediction is positive and the ground truth is positive
FP means he prediction is positive and the ground truth is negative;
FN is the prediction is negative and the ground truth is positive.

3 Results

Reference [33] reports that models like AlexNet, GoogLeNet,
VGG16, and ResNet were the most frequently used for plant disease
identification. Hence, several popular CNN models include
AlexNet, SqueezeNet®*, VGG16, ResNetl8, and GoogleNet were
used to verify the effectiveness of the MFRCNN.

3.1 Experimental parameters

The software environment is Ubuntul6.04LTS

installed Caffe deep learning framework and Python2.7. The

system,

hardware platform is a computer equipped with Intel® Core™
17-9700 @ 3.0 GHz processor, 32 GB memory, and NVIDIA
GTX1080Ti.

Stochastic Gradient Descent (SGD) was selected as the
optimization algorithm, and the momentum parameter was set to
0.9. The initial learning rate was set to 0.005, the training batch size
was set to 32, the test batch size was set to 50, and the maximum
iteration was set to 20 000 times.

3.2 Training results

Table 2 lists the average accuracy, training time, parameters,
and model size of different CNNs. The results on both datasets
showed that the proposed MFRCNN model achieved the optimal
performance, with the highest accuracy of 99.01% on the laboratory
dataset and accuracy of 98.75% on the field dataset, which also
indicated the multi-scale structure of the first layer made a better
respond to different disease characteristics, and feature reuse
structure effectively integrated high and low order features. In fact,
the feature reuse structure could be regarded as a special multi-scale
feature information fusion, which strengthened the communication
between layers and reduced model parameters to a certain extent. In
addition, Figure 6 shows the accuracy and loss of MFRCNN as well
as five popular models, including AlexNet, SqueezeNet, VGG16,
ResNet18, and GoogLeNet. It can be observed that the loss values
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decreased with the increase in accuracy. After 20 000 iterations, the
accuracy and loss value of all models tend to stabilize. MFRCNN
achieved the highest accuracy and lowest loss value than other
models.

Table 2 Performance comparison of different models

Average accuracy/% Parameters

Model - o Training time/s Model size/MB
Laboratory  Field /Millions

AlexNet 96.67 95.68 ~56.91 ~901 ~222.0
SqueezeNet  94.55 93.16 ~0.73 ~761 ~2.9

VGG16 97.77 95.89 ~134.30 ~7693 ~537.2
ResNet18 98.43 98.11 ~11.19 ~2441 ~44.8
GoogLeNet  98.61 97.89 ~5.98 ~1875 ~24.0
MFRCNN  99.01 98.75 ~0.66 ~712 ~2.7

Table 2 also compares the six models with the number of
model parameters, training time, and model size. Figure 7 shows the
accuracy and parameter comparison of different models on the
validation set of the laboratory dataset and field dataset. It is

concluded that the MFRCNN obtained the optimal performance in
each metric. On the contrary, the SqueezeNet is a lightweight
model, its parameters, training time and model size are slightly
more than MFRCNN, but it produced the lowest accuracy on the
two datasets. The VGG16 has the most parameters, training time,
and model size, but its accuracy on each of the datasets is lower
than that of MFRCNN. Both ResNetl8 and GoogLeNet could
produce satisfactory accuracy on the two datasets, but their
parameters, training time, and model size are more than MFRCNN.
In fact, the reason why AlexNet and VGG16 have such a large
model size is that there are three fully connected layers at the end of
the two models, resulting in a mount of model parameters. In
although the MFRCNN has relatively few model
parameters and a short training time, it produced the highest
classification accuracy compared to other models. Thus the
proposed model MFRCNN with few parameters and high accuracy
can provide an important reference for the development of a tomato

general,

disease diagnosis system on mobile terminal.
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Figure 7 Accuracy and parameters comparison of different models
on the laboratory and field dataset

category was counted, as shown in Figure 10.

In Figure 8 and Figure 10, it can be seen that the prediction
ability of the six models for each disease category was quite
different, but all models have a common ground in that they were
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difficult to distinguish the diseases EB, SS, and TS. Similarly, for
the field dataset, Figure 9 shows that the disease EB is also difficult
to identify. In Figure 8, H and YV were completely and correctly
recognized by AlexNet. BS and SM were wholly and rightly

wn O
2N

True label

SM

2 P we o e o

(=T~ - - - -

MV
YV

Fe ©o © o o o o

H BSEBLBLMSS SMTSMVYV
Predicted label
a.AlexNet

el
& =z

True label

<
HOH &2 e H oo Boa

£ 4
<U)

140

120

100

FH o H o o o o -

=~
<

H BSEBLBLMSS SMTSMVYV
Predicted label

d. ResNet18

True label

True label

v O
w £

=l
& =z

2oL Qe 2 e o e

BS EBLBLM SS SMTSMVYV
Predicted label
b. SqueezeNet

H oo o o o
(=T =T e Y = T = N = T = T =]

SM 1} 1}
TS 0 0
MV o 00 0
YVio 1 9 0 0 0
H BSEBLBLMSS SMTSMVYV
Predicted label

e. GoogLeNet

140
120
100
80
60
40
20
0

v O
2N

True label

SM

o 0 0 0O 0o o o o
H oo o o o o o O

MV
YV

BS EBLBLM SS SMTSMVYV
Predicted label
c. VGG16

H 0 0 0 0 0
BS 0 0 0 0 0
EB 00 0 0 0
_ LB 0 00 0 O
f:é) LM 0 00 0 O
2SS 00 0 O
Y 0 00 0
TS ] 1]
MVEo o 0 2 0
YVEO 2 0 0 0 0
H BSEBLBLMSS SMTSMVYV
Predicted label
f. MFRCNN

Figure 8 Confusion matrixes of six models on the testing set of the laboratory dataset
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Figure 9 Confusion matrixes of six models on the testing set of the field dataset

identified by the MFRCNN as well as the VGG16. LB was
completely and rightly distinguished by GoogLeNet. In Figure 9,
YV was completely and rightly identified by the MFRCNN,
GoogLeNet, and ResNet18.
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40 m AlexNet number of samples in the testing set was too small to cover
. 30F ® SqueezeNet comprehensive disease characteristics. Overall, the MFRCNN model
L . . . . . . .
2 20} "VGGl6 is more accurate and effective in identifying tomato leaf diseases.
Z M ResNetl8
10 u -
GooglLeNet Table 3 Recall, precision, and F1-score on the laboratory
®MFRCNN
H BS EB LB LM SS SM TS MV YV dataset and field dataset
Category Modsl Precision/% Recall/% Fl-score/%
oae R R ;
Figure 10 Number of mispredicted samples of each model on the Laborat-ory Field Laboratory Field Laboratory Field
laboratory dataset AlexNet 9630 9668 9623 9669 9621  96.68
o . . . SqueezeNet 9269  91.60 9233 9154 9224 9155
Furthermore, ?lthough thev predictive ability w_as.dlfferent in VGG16 96.52 95.60 0638  95.55 96.37 95.57
each model, .the mlspredlcted. disease category was similar when jclll ResNetl8 97.26 98.30 9715 9823 9715 98.26
m9dels predicted the sam.e dllsease. For examPle, all models eas.lly GooglLeNet 97.81 98.28 9775 9820 9774 9823
mistake YV for BS, which is due to the disease features being MPFRCNN 98.46 98.90 08.41 98.87 98.41 08.88

similar. Overall, the models are easily confused in identifying
diseases with similar geometric features. In general, the SqueezeNet
showed the worst outcome on the two datasets, with 106
mispredicted samples in the testing set of the laboratory dataset,
while the MFRCNN produced the best results, with 22 mispredicted
samples. MFRCNN can significantly reduce the number of
mispredicted samples compared to other models.
3.3.2 Classification performance analysis

To comprehensively evaluate the classification performance of
these models, the precision, recall, and F1-Score of all models on
both datasets were calculated based on the above confusion
matrices, as listed in Table 3. It can be concluded that MFRCNN
performed better than other models on both datasets. In both
circumstances, the score of MFRCNN, GoogLeNet, ResNet18, and
AlexNet achieved on the field-based dataset is superior to that
achieved on the laboratory-based dataset. The first reason may be
that the laboratory dataset is a standard and comprehensive dataset,
including the early, middle, and late stages of each disease. Despite
our field dataset being collected in natural conditions, most of the
diseases were in late stage and had obvious symptoms, which means
that it was easier for the model to learn the key features used to
distinguish different diseases. Another reason may be that the

3.4 Prediction analysis

To provide some suggestions for building high-quality dataset,
this paper also summarizes the causes of sample misprediction on
the two datasets. In the process of testing, each image was fed into
the program, then five labels with the prediction probability were
output in descending order from top to bottom and the label with the
highest probability was the prediction result. Figure 11 shows an
example of the correctly predicted samples on both datasets.
Figure 12 presents the samples that were incorrectly predicted on
both datasets.

From Figures 11 and 12, three factors affecting the model
performance are summarized. One is that the shape of the leaf
image is not standard (e.g., in No.18 19, and 25, the leaf accounts
for a merely small space in the whole image.). The second is the
color or other characteristics in different disease leaves may be
similar (e.g., in No. 15, 16, and 22, they have similar contour
features.). The last is the disease spots are not obvious (e.g., in No.
20, the diseased spot area in the leaf is relatively small.). These
factors have important reference significance for establishing high-
quality plant leaf disease data set and improving the application of
deep learning technology in disease control.

Predicted H, True label H

Predicted BS, True label BS

Predicted EB, True label EB

1.0000-"H" 0.9999-"BS" 0.9998-"EB"
0.0000-"BS" 0.0000-"YV" | 0.0001-"BS"
0.0000-"LB" 0.0000-"EB" | 0.0001-"SS"
0.0000-"TS" 0.0000-"TS" | 0.0000-"LB"
0.0000-"SM" 0.0000-"SS" 0.0000-"LM"

Predicted SS, True label SS Predicted SM, True label SM  Predicted TS, True label TS
1.0000-"SS" 0.9994-"SM" 0.9939-"TS"
0.0000-"TS" 0.0004-"YV" 0.0051-"BS"
0.0000-"LB" 0.0001-"LM" 0.0006-"SM"
0.0000-"EB" 0.0001-"TS" 0.0003-"EB"
0.0000-"BS" 0.0000-"MV" 0.0000-"YV"

Laboratory samples

Predicted LB, True label LB
14 A 1.0000'"LB”

Predicted LM, True label LM
0.9992-"LM"

0.0000-"SS" 0.0004-"SS"
0.0000-"LM" 0.0004-"MV"
0.0000-"BS" 0.0000-"LB"
0.0000-"H" 0.0000-"YV"
Predicted MV, True label MV Predicted YV, True label YV
0.9986-"MV" 0.9998-"YV"
0.0010-"TS" 0.0001-"SM"
0.0003-"SM" 0.0001-"BS"
0.0001-"SS" 0.0000-"LM"
0.0000-"LM"

0.0000-"EB"

Predicted BS, True label BS
B 1.0000-"BS"
0.0000-"LM"
0.0000-"EB"
0.0000-"LB"
0.0000-"YV"

Predicted EB, True label EB
% 0.9989-"EB"
0.0007-"BS"
™ 0.0004-"LM"
0.0000-"LB"
0.0000-"YV"

Predicted LB, True label LB

B 1.0000 -"LB"
0.0000-"EB"
4 0.0000-"BS"
e 0.0000-"LM"
0.0000-"YV"

Field samples

Predicted LM, True label LM
0.9999-"LM"
0.0000-"YV"
0.0000-"LB"
0.0000-"EB"
0.0000-"BS"

Predicted YV, True label YV
0.9973-"YV"
0.0027-"LM"
0.0000-"LB"
&1 0.0000-"BS"
0.0000-"EB"

3.5 Feature visualization

Feature visualization can provide help in debugging the CNN

Figure 11

model®. Figure 13 is the visualization of the different layers of the
MFRCNN. In Figure 13, the shallow Convl-3 and Relul-3

Example of correctly predicted samples on both datasets
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extracted obvious edge and contour features from the input image. information in the diseased area. In the high-order layer (ConvS),
In the middle layer (Pooll and Conv6), the feature maps gradually the feature maps have become more abstract, which means the
became blurred, which indicated that the local information of the MFRCNN had a strong response to the diseased area and extracted
image began to be highlighted, such as shape and texture plenty of disease feature information.

Predicted LB, True label H Predicted LB, True label EB Predicted BS, True label LB Predicted LB, True label LM

0.8665-"LB" 0.5419-"LB" 0.6350-"BS" 0.6772-"LB"
0.0747-"BS" 0.3545-"EB" 0.2777-"LB" 0.3133-"LM"
0.0347-"H" 0.0629-"YV" 0.0682-"H" 0.0040-"EB"
0.0060-"SS" 0.0197-"BS" 0.0134-"EB" 0.0023-"BS"
0.0055-"SM" 0.0157-"SM" 0.0037-"SM" 0.0019-"YV"
Predicted LM, True label SS  Predicted SM, True label TS ~ Predicted SM, True label MV Predicted BS, True label YV

0.3417-"LM" 0.9871-"SM" 0.8883-"SM" 0.9625-"BS"
0.2322-"MV" 0.0098-"TS" 0.0946-"MV" 0.0365-"YV"
0.2087-"SS" 0.0012-"H" 0.0129-"TS" 0.0008-"EB"
0.1550-"LB" 0.0007-"YV" 0.0026-"YV" 0.0000-"SS"
0.0204-"SM" 0.0006-"LB" 0.0010-"H" 0.0000-"LB"

Laboratory samples

Predicted LB, True label EB  Predicted EB, True label LB Predicted YV, True label LM

0.5974-"LB" 0.8146-"EB" 0.4806-"YV"
0.4002-"EB" 0.1232-"LB" 0.3648-"EB"
0.0019-"BS" 0.0561-"BS" 0.0994-"BS"
0.0005-"LM" 0.0040-"YV" 4 0.0537-"LM"
0.0001-"YV" 0.0022-"LM" 0.0015 -"LB"

Field samples

Figure 12 Example of incorrectly predicted samples on both datasets

Input image —

Convl-3 —

Relul-3 -

Pooll

Conv6

Conv8 —

a. Input image | and the visualization b. Input image 2 and the visualization
of different layers of different layers

Figure 13 Feature visualization of the input image using MFRCNN

SqueezeNet, VGG16, ResNetl8, and GoogLeNet) were employed
to identify tomato diseases. Because these models are designed to
In this work, several popular CNN models (AlexNet, classify 1000 categories of the Imagenet dataset, the scale of these

4 Discussion
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models is very large, and each convolution layer has a large number
of kernels””. Although these models have achieved good results on
laboratory and field datasets, they were implemented at the cost of
massive calculation time and huge storage space. From the
perspective of the future development of smart agriculture,
embedded devices are more competitive than high-performance
computers and servers in field applications, especially considering
portability, economy, and practicality™. Therefore, the light-weight
CNN model is more suitable than the above models. Fortunately,
this study developed a lightweight model MFRCNN, which can
provide the basis for the development of disease identification
systems in mobile terminals.

As listed in Table 4, researchers used the popular models to
classify the laboratory-based tomato leaf diseases. It can be seen
that the accuracy of most models is lower than that of the MFRCNN
model. In particular, Agarwal et al.”” also proved that simplified
CNN is better than deep models such as VGG16, Inception-V3, and
MobileNet. It is noted that this simplified CNN achieved 98.4%,
which is lower than the 99.01% obtained by MFRCNN. In addition,
deep models like VGG16, MobileNet, and Inception-V3 have
millions of training weights. If these models are trained on small-
scale datasets, the over-fitting is easier to occur. The MFRCNN
model has very few weight parameters, which cannot only save
storage space but also prevent over-fitting. Overall, compared with
some popular models, the proposed MFRCNN has a good ability to
deal with general tomato leaf disease identification tasks and
obtains higher accuracy.

Table 4 Accuracy comparison on the laboratory-based dataset

Literature Class  Samples Model Accuracy/%
AlexNet 95.65
(20]
Durmus et al. 10 18 160 SqueezeNet 04.30
AlexNet 95.83
Zhang et al.?" 9 41127 GoogLeNet 95.66
ResNet 97.28
. AlexNet 97.29
1]
Rangarajan et al. 7 13262 VGG16 9749
AlexNet gzg;
Wu et al." 5 4300 GoogLeNet ResNet ’
VGG16 83.00
79.30
VGG16 93.50
, Inception-V3 77.50
. 27
Agarwal et al. 10 18 160 MobileNet 82,60
Simplified CNN 98.40
ResNet50 98.15
Singh et al.’ 10 18 160 DenseNet121 98.54
DenseNet201 98.95
AlexNet 96.67
SqueezeNet 94.55
Proposed method 10 17197 VGGl6 97.77
in this study ResNet18 98.43
GoogLeNet 98.61
MFRCNN 99.01

CNN is a powerful and important technology for plant leaf
disease identification. As a suggestion, this work calls on more
researchers to develop lightweight CNN models instead of relying
solely on popular models, especially considering the simple
architecture, few parameters, and high accuracy. Further, it can be
considered to establish lightweight models by combining advanced
convolution modules, such as attention mechanisms and depthwise
separable convolutions.

5 Conclusions

This study developed a lightweight CNN model MFRCNN for
the identification of tomato leaf diseases. The success of the

proposed MFRCNN was compared with the state-of-the-art CNN
models on the laboratory-based dataset and field-based dataset
using multiple performance metrics. The results show that the
performance of the proposed CNN model was better than that of
popular CNNs on both datasets. The proposed CNN model with
fewer parameters, shorter training time, and higher recognition
accuracy, and it provides a theoretical basis for the development of
the automatic disease diagnosis system based on low-cost terminals.
It is suggested that the lightweight CNN should be first developed
for plant disease diagnosis because of low computational costs,
good performance, small storage space, etc. If lightweight CNNs
can not meet the needs, then further consider using popular CNNs.
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