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Abstract: Agricultural robots are flexible to obtain ambient information across large areas of farmland.  However, it needs to 

face two major challenges: data compression and filtering noise.  To address these challenges, an encoder for ambient data 

compression, named Tiny-Encoder, was presented to compress and filter raw ambient information, which can be applied to 

agricultural robots.  Tiny-Encoder is based on the operation of convolutions and pooling, and it has a small number of layers 

and filters.  With the aim of evaluating the performance of Tiny-Encoder, different three types of ambient information 

(including temperature, humidity, and light) were selected to show the performance of compressing raw data and filtering noise.  

In the task of compressing raw data, Tiny-Encoder obtained higher accuracy (less than the maximum error of sensors ±0.5°C or 

±3.5% RH) and more appropriate size (the largest size is 205 KB) than the other two auto-encoders based convolutional 

operations with different compressed features (including 20, 60, and 200 features).  As for filtering noise, Tiny-Encoder has 

comparable performance with three conventional filtering approaches (including median filtering, Gaussian filtering, and 

Savitzky-Golay filtering).  With large kernel size (i.e., 5), Tiny-Encoder has the best performance among these four filtering 

approaches: the coefficients of variation with the large kernel (i.e., 5) were 8.6189% (temperature), 10.2684% (humidity), 

57.3576% (light), respectively.  Overall, Tiny-Encoder can be used for ambient information compression applied to 

microcontrollers in agricultural information acquisition robots. 
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1  Introduction

 

Ambient information is one of the major environmental factors 

that has a significant impact on many different fields, especially in 

the agricultural area[1-5].  Adverse environmental conditions 

severely influence various aspects of plant growth and 

developmental processes, causing a worldwide reduction in crop 

yields[6].  To ensure food security, environmental information is 

needed to timely monitor, transmit, and analyze.  The traditional 

system of ambient information acquisition is often divided into 

three parts: Wireless Sensor Networks (WSNs), communication 

base stations, and remote servers[7,8].  WSNs will be deployed in 

the monitoring area to obtain raw ambient information, which 

always comprise a large number of sensor nodes.  And after 

transmitting through different communication base stations with 

different communication networks, environmental information is 

sent to a remote server for further processing.  From the above 

description, the conventional system of agricultural information 
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acquisition has many potential disadvantages (e.g., fixed, 

occupation of cropland, power, etc.)[9–12].  For applying to more 

complex scenarios, more and more agricultural robots are designed 

and used in practical applications.  However, as the amount of 

collected information increases, more and more data are also 

needed to transmit.  Coding raw data (i.e., source coding, a 

professional description of the above problems in digital 

communication systems) is essential to satisfy this requirement: on 

the one hand, more agricultural information can be represented by 

smaller transmission cells; on the other hand, the operation of 

source coding is useful for reducing the effect of noise, which will 

influence the performance of data analysis[13].  Therefore, 

designing a good encoder applied to agricultural robots is one of 

the most important ways to solve the above issues, which is able to 

compress the raw environmental information and reduce the 

transmission of redundant information.  Moreover, a suitable 

method of data coding can improve the quality of raw data. 

In order to accomplish the aims mentioned, there are many 

traditional source coding approaches (e.g., Huffman code[14], L-Z 

code[15], etc.), which bases on a statistical structure depending on 

the raw data.  For better illustration, Huffman code, which is an 

entropy coding algorithm in information theory and computer 

science[16], is chosen as a case example to introduce the workflow 

of conventional source coding.  To code different raw data, 

Huffman code is to represent more frequent data with shorter codes, 

and less frequent data with longer ones[17].  This approach, 

however, has one drawback: it only focuses on a certain feature 

(e.g., the probability and length of code in Huffman code) of raw 

data and ignores other attributions (e.g., the correlation between 

adjacent data, etc.).  This limits the practicability of conventional 

approaches.  Thanks to the development of machine learning 



198   July, 2022                         Int J Agric & Biol Eng      Open Access at https://www.ijabe.org                          Vol. 15 No. 4 

approaches (especially deep learning approaches), more and more 

data-driven methods are widely used and have achieved a great 

deal of success in various fields[18-21].  Of these, auto-encoder, 

deep-learning architectures, can learn the compressed 

representation from raw datasets and can be used as source coding.  

Traditional auto-encoder is based on artificial neural network 

(ANN), but the results obtained from the basic auto-encoder 

remained significant room for improvement.  To improve the 

performance, there are many new auto-encoder architectures (e.g., 

long short-term memory (LSTM) encoder[22], stack auto-encoder, 

sparse auto-encoder, variational auto-encoder, etc.[23]).  Although 

these approaches can overcome the disadvantages of traditional 

approaches, they are unsuitable for agricultural robots due to a 

variety of reasons (e.g., model size, large memory, etc.).  

Therefore, an encoder, which is applied to agricultural robots, 

should be designed and developed. 

Based on the above considerations, an encoder was developed 

for ambient data compression in this study, which can be applied to 

agricultural information acquisition robots.  This encoder is 

named Tiny-Encoder and is based on convolutional and pooling 

operations.  To evaluate the performance of compression, 

Tiny-Encoder was used to compress three kinds of ambient 

information (including temperature, humidity, and light) and it 

performed better than the other two auto-encoders based 

convolutional operations with different compressed features 

(including 20, 60, and 200 features).  Besides, Tiny-Encoder was 

compared with three traditional filtering methods (including 

median filtering, Gaussian filtering, and Savitzky-Golay filtering) 

for removing noise.  The results demonstrate that Tiny-Encoder 

has comparable performance with three conventional filtering 

approaches.  Overall, Tiny-Encoder can be used for ambient 

information compression applied to agricultural information 

acquisition robots. 

2  Materials and methods 

2.1  Platform for collecting ambient information and 

processing 

Arduino Nano 33 Bluetooth Low Energy (BLE) was selected 

as an example device to collect environmental information in this 

work, and it is deployed Tiny-Encoder.  Arduino Nano 33 BLE 

Sense embeds a 32-bit ARM Cortex-M4 CPU (nRF52840) running 

at 64 MHz, which has 1 MB of program memory.  Besides, 

Arduino Nano 33 BLE Sense comes with a series of embedded 

sensors (including a temperature and humidity sensor (HTS221), an 

ambient light sensor (APDS-9960), etc.), and it can be used to 

obtain temperature (0.5°C, 15 to +40°C), humidity (3.5% RH, 

20 to +80% RH), and light (0 to 4097 lx).  It should be specially 

explained that the monitored ranges of light intensity are adjustable, 

which is based on the integration time (set as 10 ms in this 

experiment) and count register size (set as 16 bits).  In this work, 

experimental samples were collected between 5:00 and 8:00 am on 

May 3, 2021, and detailed characteristics are presented in Table 1. 
 

Table 1  Description of raw ambient data 

Total 

samples 

Temperature/°C Humidity/(% RH) Light/lx 

Min Max Mean Min Max Mean Min Max Mean 

10 500 15.9 22.19 17.14 27.96 43.91 37.78 20 4097 2623.95 
 

Tiny-Encoder is implemented on the Python platform using the 

TensorFlow Lite library, and the part deployed in Arduino Nano 33 

BLE was written in C++, which is transformed by a Linux 

command, xxd.  The process was performed on a Windows laptop 

(Windows 10) with 16 GB of RAM, and an Nvidia Geforce GTX 

1650 graphics card with 4 GB of RAM.  The schematic diagram 

of data streams for this study is shown in Figure 1. 

 
Note: BLE: Bluetooth Low Energy. 

Figure 1  Schematic diagram of data streams 
 

2.2  Auto-encoder based on convolutional and pooling operations 

The aim of the auto-encoder is to select the characteristic 

features of raw ambient information, which can revert to the 

original data.  Typically, the auto-encoder contains two parts: 

encoder and decoder.  The characteristic features of raw data were 

selected in the encoding phase, and the original data were 

recovered in the decoding phase.  The ambient data were 

associated with acquisition time, and commonly, the mutation does 

not occur.  Therefore, the relationships between the ambient data 

should be considered.  In response to this demand, convolutional 

and pooling operations have a better performance: convolutional 

and pooling operations can be used to capture and compress the 

characteristic features (i.e., encoder)[24,25].  Deconvolutional and 

un-pooling operations can be thought of as an inverse operation to 

convolutional and max-pooling operations (i.e., decoder)[26].  

As shown in Figure 2, an example of two layers with the 

convolutional/deconvolutional layer having a filter (the size of the 

filter is three and strid is also three).  The pooling size of the max 

pooling/un-pooling layer is three.  The input of the auto-encoder 

based on convolutional operations is raw environmental data (i.e., 

green rectangles) and the output is decoded data (i.e., light green 

rectangles).  One neuron after the pooling layer (i.e., orange 

rectangle) covers 9 original ambient data, respectively.  

 
Note: Conv: Convolution; Deconv: Deconvolution. 

Figure 2  Diagram of auto-encoder based on convolutional and 

pooling operations 
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The key point for the auto-encoder is to determine the number 

of hidden nodes, which are influenced by the number from 

one-channel (Figure 2) and channel size.  Suppose the kernel size 

of the convolutional layer is k, the stride size is s and the padding 

size is p.  When the numbers of features are i after the previous 

convolutional layer, the numbers of features in the output layer (o) 

from one channel are able to be computed by Equation (1).  

Through the max-pooling layer, in which pooling size is 

Pooling_size, the number of features from one-channel (o′) are 

calculated by Equation (2).  The final number of hidden layers for 

auto-encoder is the channel size of the last layer multiplied by the 

number from one-channel. 

2
1

i p k
o

s

 
                  (1) 

_

o
o

Pooling size
                 (2) 

Considering application to microcontrollers, simple structure is 

an important factor other than accuracy.  Therefore, the 

auto-encoder was designed as shown in Figure 3.  This 

auto-encoder only has 4 layers (2 convolutional layers (labeled as 

Conv) and 2 pooling layers) in the structure of the encoder (i.e., 

Tiny-Encoder), 2 deconvolutional layers, and 2 un-pooling layers 

in the decoder.  The input of the auto-encoder is raw ambient data 

and the output is decoded data.  The length of to-be-transmitted 

characteristics can be controlled by the parameters of convolutional 

and pooling layers. 

2.3  Design of experiments 

2.3.1  Performance of compressing raw ambient data with 

different models 

The performance of compressing raw ambient data is directly 

affected by the structure of the auto-encoder.  To evaluate the 

effect of different architectures, two other auto-encoders were built 

based on the convolutional and pooling operation (shown in Figure 

4).  The major difference between these models lies in the 

numbers of layers and filters, which will impact the number of 

characteristic features and the size of the models. 

 
Figure 3  Diagram of auto-encoder that contains Tiny-Encoder 

 
a. Model 1 

 
b. Model 2 

Figure 4  Architectures of two autoencoders based on convolutional and pooling operations 
 

The input of each model is three different types of ambient data 

(including temperature, humidity, and light), which are measured by 

one Arduino Nano 33 BLE Sense inside the chamber.  The 

convolutional/deconvolutional layers are labeled as Conv/Deconv 

and max-pooling/un-pooling layers are labeled as Pooling/ 

Un-pooling.  Due to the memory size of Arduino Nano 33 BLE 

Sense, each model only has fewer numbers of layers and each layer 

has fewer numbers filters.  In this way, designed auto-encoders 

will be thinner and more compact.  In this work, zero-padding is 

used to retain the edge information, and the rectified linear unit 

(ReLU) is selected as the activation function for the convolutional 

layers in each model.  Besides, Adam optimizer was selected to 

search the local minimum of the objective function.  Mean squared 

error (MSE) is adopted as the loss function, which is presented in 

Equation (3). 
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where, yi and ˆ ly [[are measured values and predicted values, 

respectively; n is the number of samples in the training set; i is the 
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i-th sample. 

2.3.2  Performance of ambient data transfer with different filter 

processing 

Due to the effect of the communication environment and sensor 

status (e.g., electromagnetic wave, the temperature of the device, 

etc.), there is usually a lot of noise in the raw ambient data.  

Filtering out noise is one of the important goals of source encoding.  

With traditional approaches, the small size of raw data was firstly 

selected, and then stable information was picked out by different 

operations (e.g., mean) according to these samples mentioned.  

Other new data can be generated by repeating the process above.  

Different from conventional methods, Tiny-Encoder removes the 

noise during the operations of convolution and pooling.  To 

evaluate the performance of Tiny-Encoder with the task of moving 

noise, three common algorithms (including median filtering[27], 

Gaussian filtering[28], and Savitzky-Golay (SG) filtering[29]) were 

selected to compare with Tiny-Encoder, and coefficient of variation 

(CV, Equation (4)) to measure the performance of different filters, a 

smaller CV indicates a better result. 

100%CV



                   (4) 

where, δ is the standard deviation; μ is the mean of target variables. 

3  Results and discussion 

3.1  Performance of data compressing with different models 

In the first experiment, 10 500 samples are divided into 35 

groups (300 samples/group, which were collected in 5 min) as 

training samples.  To analyze the effect of feature numbers, 300 

samples in each group are compressed to 200, 60, and 20 

characteristic features according to the pooling operation with 

different pooling sizes (Table 2), respectively.  The results are 

shown in Figure 5.  Note that, the kernel size of different 

convolutional layers was 3, the stride was 1, and zero-padding was 

set to preserve the raw dimensions.  Moreover, the batch size was 

256, and the size of the epoch was 15 000. 
 

Table 2  Hyperparameters set in different models 

Model Features Pooling 1 Pooling 2 Pooling 3 

Tiny-Encoder 

200 3 1 -- 

60 5 2 -- 

20 6 5 -- 

Model 1 

200 3 2 -- 

60 5 4 -- 

20 10 6 -- 

Model 2 

200 3 1 1 

60 5 2 1 

20 5 3 2 
 

As it can be seen from Figure 5, all these three models are able 

to maintain the trends of raw data.  With the number of layers 

increasing, decoding data can retain more information than the 

original data (e.g., Model 2).  This is because models with more 

layers can capture more different features of raw ambient data.  It 

can also increase the number of filters in each layer to maintain 

more details of raw data, but the performance is weaker than the 

model with more layers.  Differences between raw ambient data 

and decoding data among the three models are less than the 

maximum error of sensors (±0.5°C or ±3.5% RH). 

As noted earlier, the performance of recovery data is affected 

directly by the number of features (instead of model architecture), 

which are selected by max-pooling layers.  The numbers of layers 

and filters in convolutional layers only affect the content of features, 

but pooling size will directly affect the number of features.  More 

filters (e.g., Model 1) or layers (e.g., Model 2) are more sensitive to 

details of raw ambient data, this is because these models capture 

more features for each neuron in convolutional layers[30,31].  To 

transmit the same numbers of data, Model 1 and Model 2 need to 

pick out fewer features in pooling layers.  In other words, they will 

discard more information.  Tiny-Encoder takes this into account 

and has fewer layers and each layer has fewer filters. 

 
a. Decoding temperature with 20 features  b. Decoding temperature with 60 features 

 
c. Decoding temperature with 200 features  d. Decoding humidity with 20 features 
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e. Decoding humidity with 60 features  f. Decoding humidity with 200 features 

 
g. Decoding light with 20 features  h. Decoding light with 60 features 

 
i. Decoding light with 200 features 

Figure 5  Results of decoding ambient data with different models 
 

Statistical characteristics of the ambient data are more 

important than instantaneous data in the agriculture domain.  

Therefore, the statistical characteristics were compared of decoding 

data with different models, and results are shown in Table 3.  As 

can be seen, all these three models are able to obtain good 

performance when the data variance is small.  Besides, 

Tiny-Encoder can obtain the best results with the variable of light, 

which has the largest data variance in the three types of ambient 

data.  The results obtained in the experiments provide enough 

evidence of the usefulness of Tiny-Encoder. 
 

Table 3  Statistical characteristics of decoding data with different models. 

Data source Features 
Temperature/°C Humidity/(% RH) Light/lx 

Min Max Mean Min Max Mean Min Max Mean 

Raw data -- 15.90 22.19 17.14 27.96 43.91 37.78 20 4097 2623.95 

Tiny-Encoder 

200 15.93 22.15 17.14 28.01 43.86 37.77 19.68 4095.95 2623.05 

60 15.95 22.11 17.14 28.04 43.84 37.77 19.12 4100.43 2625.22 

20 15.96 22.04 17.14 28.18 43.83 37.77 14.77 4099.59 2623.65 

Model 1 

200 15.93 22.16 17.14 27.99 43.84 37.77 17.42 4096.90 2623.63 

60 15.95 22.10 17.14 28.04 43.84 37.78 14.14 4098.16 2623.61 

20 15.94 21.96 17.14 28.14 43.80 37.77 7.34 4098.06 2619.34 

Model 2 

200 15.93 22.18 17.14 28.02 43.92 37.77 20.53 4108.93 2623.68 

60 15.95 22.11 17.14 28.11 43.93 37.84 18.62 4099.17 2623.56 

20 15.95 22.07 17.14 28.17 43.90 37.77 13.57 4099.25 2622.77 
 

In order to apply to Arduino Nano 33 BLE Sense, the other 

critical point is the size of models (shown in Table 4).  Different 

ambient information does not affect the size of models, so only one 

value was shown with different ambient information.  According 
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to Table 4, Model 1, which has four filters in different 

convolutional layers and has the least number of features in each 

layer, obtained the smallest size of models with different features, 

Tiny-Encoder is the second smallest, and Model 2 has the largest 

size of the model.  This implies that the number of features in 

each layer affected more model size and the model size will 

increase with the increasing number of layers. 

3.2  Performance of data filtering with different methods 

The effect of filters is mainly affected by the small range 

scanning, which can be set as an artificial upper limit.  In order to 

compare the performance of different filtering, 3 and 5 were 

selected as the kernel sizes of different filters (including median 

filters, Gaussian filters, SG filters, and Tiny-Encoder) to filter the 

raw ambient data, and the results are shown in Figure 6. 
 

Table 4  Statistical characteristics of decoding data with 

different models 

Model Tiny-Encoder Model 1 Model 2 

Features 20 60 200 20 60 200 20 60 200 

Size/KB 107 127 205 92 119 173 152 173 298 
 

 

 
a. Filtering temperature data with 5 kernels  b. Filtering temperature data with 3 kernels 

 
c. Filtering humidity data with 5 kernels  d. Filtering humidity data with 3 kernels 

 
e. Filtering light data with 5 kernels  f. Filtering light data with 3 kernels 

 

Figure 6  Performance of different filters with different kernels 
 

According to Figure 5, with a smaller kernel, different filters 

can retain more detail and the filtered data are closer to the original 

data.  With a larger kernel, median filters and Tiny-Encoder have 

more flat-top and the other filters can retain more details of raw 

data.  The reason is that Tiny-Encoder and median filter the noise 

by sampling (median or max), and Gaussian filter and SG filtering 

filter the noise by fitting the data.  In order to further examine the 

effect of different filtering, we compared the CV of different 

filtering (Table 5).  Note that the results are decimal and 

up to 4 digits. 

According to Table 5, it is known that Tiny-Encoder has a little 

different from the other filtering, and it has strong stability with 

different kernel sizes.  Even in many cases (e.g., filtering 

temperature and light), Tiny-Encoder has the optimal results.  

Medina filter with smaller kernel size performs better than lager.  

This is because ambient information will not change suddenly, data 

in a small range is stable.  Gaussian filter is based on an 

assumption that ambient data is accorded with Gaussian 
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distribution.  However, it is not obvious in real applications.  As 

for the SG filter, it is the most stable filter, but the performance is 

worse than Tiny-Encoder. 
 

Table 5  Performance of filters with different kernels 

Kernel size Methods 

Coefficient of variation 

Temperature Humidity Light 

5 

Median 8.6201% 10.2684% 57.3599% 

Gaussian 8.6251% 10.2867% 57.3601% 

Savitzky-Golay 8.6202% 10.2692% 57.3599% 

Tiny-Encoder 8.6189% 10.2684% 57.3576% 

3 

Median 8.6194% 10.2689% 57.3599% 

Gaussian 8.6231% 10.2799% 57.3601% 

Savitzky-Golay 8.6204% 10.2693% 57.3599% 

Tiny-Encoder 8.6199% 10.2690% 57.3591% 

4  Conclusions 

Agricultural robots are flexible to obtain ambient information 

across large areas of farmland.  But it needs to face two major 

challenges: data compression and filtering noise.  To address these 

challenges, an encoder, named Tiny-Encoder, is presented and it 

can be applied to agricultural robots.  The following conclusions 

are accordingly achieved. 

1) Tiny-Encoder can compress ambient information (e.g., 

temperature, humidity, and light).  Compared with the other two 

auto-encoders based convolutional operations, Tiny-Encoder 

obtained higher accuracy (less than the maximum error of sensors 

0.5°C or 3.5% RH) and more appropriate size (the largest size is 

205 KB) with different compressed features (including 20, 60, and 

200 features). 

2) Tiny-Encoder has comparable performance with 

conventional filtering approaches (e.g., median filtering, Gaussian 

filtering, and Savitzky-Golay filtering).  Tiny-Encoder has the 

best performance with the larger kernel: the values of coefficient of 

variation with the large kernel (i.e., 5) are 8.6189% (temperature), 

10.2684% (humidity), 57.3576% (light), respectively. 

Tiny-Encoder is a new approach for ambient data compression, 

which can be applied into agricultural robots.  We only considered 

a simple application of ambient data compression in this work, and 

there are many problems (i.e., missing data, concurrent, and etc.) 

may be encountered in the practical application.  Moreover, with 

the development of hardware and software, more and more deep 

learning algorithms can be applied to embedded devices, and these 

works will be the focus of our future studies. 
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