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Abstract: It is difficult to differentiate small, but harmful, shell fragments of Chinese hickory nuts from their kernels since they 
are very similar in color.  Including shell fragments of Chinese hickory nuts by mistake may create safety hazards for 
consumers.  Therefore, there is a need to develop an effective method to differentiate the shells from the kernels of Chinese 
hickory nuts.  In this study, a deep learning approach based on a two-dimensional convolutional neural network (2D CNN) and 
long short-term memory (LSTM) integrated with hyperspectral imaging for distinguishing the shells and kernels of Chinese 
hickory nuts at the pixel level was proposed.  Two classical classification methods, principal component analysis-K-nearest 
neighbors (PCA-KNN) and the support vector machine (SVM), were employed to establish identification models for 
comparison.  The results showed that the 2D CNN-LSTM model achieved the best performance with an overall classification 
accuracy of 99.0%.  Moreover, the shells in mixtures of shells and kernels were detected based on the proposed deep learning 
method and visualized for subsequent operations for the removal of foreign bodies. 
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1  Introduction  

Chinese hickory (Carya cathayensis Sarg.) in the genus Carya 
(Juglandaceae) is an important commercially cultivated nut tree[1].  
Its nuts are popular in eastern China and are well known for their 
daintiness and nutritional content[2].  Compared to pecan, Chinese 
hickory nuts have a smaller size and harder shell.  Furthermore, 
the difference between the shell and kernel is also small.  The 
physical and structural characteristics of Chinese hickory nuts 
create difficulties for shell breaking and shell-kernel separation.  
Although most shells are removed by airflow shell-breaking 
machines, a few small shell fragments occasionally remain.  The 
presence of shell fragments not only affects product quality but also 
creates safety hazards for consumers.  Therefore, there is a need to 
develop an effective method to detect small shell fragments 
produced during the processing of Chinese hickory nuts for quality 
control and safety assurance. 

The shell fragments of Chinese hickory nuts, which are 
intrinsic foreign bodies different from the food product itself, are 
very similar in color to kernels[3].  Currently, small shell 
fragments are manually removed, which is labor-intensive and 
subjective[4].  Since the last century, many noninvasive techniques 
have been developed for the detection of foreign bodies in food, 
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such as X-ray, computer vision, thermal imaging, spectroscopy, 
hyperspectral imaging, ultrasonication, and terahertz.  Among 
these methods, hyperspectral imaging technology, which is 
sensitive to minor components, provides spatial and spectral 
information about objects[5].  Therefore, researchers have 
attempted to employ this technique to develop objective methods 
for the discrimination of shells and kernels of nuts.  Jiang et al.[6] 
acquired hyperspectral images of shells and kernels of walnuts 
under UV fluorescent lamps at 365 nm and classified walnut shells 
and kernels using principal component analysis and a Gaussian 
mixture model (PCA-GMM)-based Bayesian approach, an overall 
90.3% recognition rate was achieved.  To improve the overall 
recognition rate, Jiang et al.[7] adopted a Gaussian-kernel-based 
support vector machine (SVM) algorithm to analyze the 
hyperspectral fluorescence images of walnut shells and kernels, the 
overall recognition rate increased to 95.6%.  

Although hyperspectral imaging technology has shown great 
potential for distinguishing shells from nut kernels, the major 
challenge in applying this technology in food processing is 
handling the huge amount of data in real time.  In recent years, 
deep learning has achieved remarkable success in big data analysis.  
Many attempts have been made to analyze hyperspectral images 
using deep learning.  Mahmoud et al.[8] succeed in detecting 
adulteration in different states of red meat products using 
hyperspectral imaging and deep learning.  The spectral-spatial 
features in hyperspectral images were extracted by a deep 
convolution neural network (CNN) to establish the detection 
models.  The developed deep-learning approach was able to 
extract robust features from raw hyperspectral images 
independently of the states of meat products and was more suitable 
for real-time applications.  Jin et al.[9] applied a deep neural 
network algorithm to classify the pixels of hyperspectral images to 
identify the diseased area of wheat heads.  The one-dimensional 
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pixel spectral data were reshaped into a two-dimensional structure 
as the input layer of the CNN.  The results indicated that the 
two-dimensional CNN model achieved better performance than the 
one-dimensional CNN model.  Alvaro et al.[10] used deep learning 
based detector for real-time recognition of tomato plant diseases 
and pests.  Kang et al.[11] used deep learning to realize fruit 
detection with 28 ms inference time.  Zhu et al.[12] identified seven 
varieties of cotton seeds using near-infrared hyperspectral imaging 
combined with deep learning.  A classification model was 
established based on a self-designed CNN and a residual network 
(ResNet), which achieved better performance than the classification 
models based on partial least squares discriminant analysis 
(PLS-DA), the logistic regression (LR), and the support vector 
machine (SVM) with full spectra as inputs.  The results indicated 
that deep learning provided an effective solution for analyzing 
hyperspectral imaging data. 

Chinese hickory nuts are a special local product of Lin’an in 
Zhejiang Province, China.  Local manufacturers need an 
objective method to detect shell fragments to replace manual 
inspection.  Therefore, the goal of this research was to develop a 
method using hyperspectral imaging and deep learning for Chinese 
hickory nut manufacturers to discriminate shells from kernels.  
This goal was accomplished by 1) establishing a classification 
model based on deep learning to distinguish the shells and kernels 
of Chinese hickory nuts at the pixel level; 2) evaluating the 
performance of the proposed model by comparing its performance 
with those of classic classification models; 3) visualizing shell 
fragments. 

2  Materials and methods 

2.1  Sample preparation 
As shown in Figure 1, the samples were divided into 4 

categories according to the structure and composition of Chinese 
hickory nuts: the inner shell, outer shell, light kernel, and dark 
kernel.  Among these components, the light kernel and dark kernel 
are the inside and outside of the kernel, respectively.  The color of 
the light kernel is ivory, which is different from the colors of the 
other categories.  The dark kernel, inner shell, and outer shell are 
similar in color, especially the dark kernel and the inner shell. 
 

Outer shell

Light kernel Dark kernel

Inner shell
 

Figure 1  Four categories based on the structure and composition 
of Chinese hickory nuts 

 

Almost all Chinese hickory nuts were produced in Lin’an, 
Zhejiang Province, China; purchased at a local supermarket, and 
broken manually in the laboratory.  A total of 213 samples 
including 53 dark kernel fragments, 55 light kernel fragments, 62 
outer shell fragments, and 43 inner shell fragments were obtained.  

Each category was placed on black hardboards (TB5, Thorlabs Inc., 
USA) to take hyperspectral images separately for establishing and 
testing the detection models. 
2.2  Experimental system setup 

An array charge-coupled device (CCD) camera (C8484-05G01, 
Hamamatsu Photonics, Japan), a line scan spectrometer with a 
spectral range of 400-1000 nm (ImSpector V10E-QE, Spectral 
Imaging Ltd, Finland) and a 150 W halogen light source (2900, 
Illumination Technologies, Inc., USA) were the main components 
of the hyperspectral imaging system in this study.  The spectral 
resolution was 2.8 nm.  Since there was considerable noise above 
900 nm, the spectra in the range of 400-900 nm were used for 
subsequent analysis (400 wavebands in total).  The samples were 
spread manually on black hardboards.  Furthermore, an electric 
displacement platform (TSA200-B, Beijing Zhuoli Instrument Co., 
Ltd., China) carried the samples of each class on black hardboards 
to perform line scanning.  The speed of the electric displacement 
platform in this experiment was 1.9 mm/s.  The distance between 
the camera and the samples was 50 cm, and the exposure time was 
set at 8.5 ms.  A dedicated computer (Intel RcoreTM2 4400 @ 
2.00 GHz, ACER, China) was used to collect the hyperspectral 
images through commercial software (SpectralCube_v2_75, 
Spectral Imaging Ltd., Finland). 
2.3  Hyperspectral image correction and pixel size acquisition 

To obtain the reflectance and eliminate the noise in the spectral 
images, the raw hyperspectral image was first corrected by the 
following equation[13]. 

sample dark

reference dark

R R
R

R R
−

=
−

                (1) 

where, Rsample is the raw hyperspectral image; R is the corrected 
hyperspectral image; Rdark is the black image with the camera lens 
covered and the light source turned off; Rreference is the white image 
with a 99.9% reflectance Teflon panel (Isuzu Optics Corp., 
Shanghai, China). 

Moreover, a printed checkerboard was used to acquire the size 
of a pixel in the hyperspectral image collected in this study.  The 
length of each grid on the checkerboard was 89.0 mm.  The 
printed checkerboard was also placed on the electric displacement 
platform to acquire its hyperspectral image.  By counting the 
number of pixels representing the length of each grid in the 
hyperspectral image, the pixel size was acquired by calculating the 
ratio of the actual length (89.0 mm) to the number of pixels. 
2.4  Background removal and pixel spectrum extraction 

After the hyperspectral images were corrected, the background 
of the resulting images was removed by calculating the average 
image of the whole band images, segmenting the average image 
using the Otsu thresholding method for binarization, denoising 
using morphological filtering, and using the hole filling algorithm 
to obtain a mask image.  Subsequently, the ‘and’ operation was 
performed between the mask image and the calibrated 
hyperspectral images.  The above procedure is shown in Figure 2. 

 

Average imageCorrected 
hyperspectral image

Mask imageBinary image

‘and’ 
operation

Morphological 
algorithm

Foreground image

Otsu’s 
method

 
Figure 2  Hyperspectral image background segmentation process 
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Each hyperspectral image was processed by the above steps.  
Finally, the shell and kernel pixels in the hyperspectral images of 4 
categories were isolated, and the spectra were extracted as the 
inputs of the classification models.  Finally, 10 000 spectra were 
acquired.  Each category has 2500 spectra, of which 2000 were 
used as the training set and the rest were used as the testing set.  
The classification models were established using the proposed deep 
learning method and classic multivariate analysis methods with the 
training sets of four categories as inputs (Section 2.4).  The above 
background removal procedure and pixel spectrum extraction were 
performed in Matlab R2020a.  The deep learning model and 
classical classification models were established by Keras (v.2.1.2) 
with the TensorFlow (v.1.4.1) backend and Scikit-Learn (v.0.23.1) 
in Python (v.3.6.2), respectively.  The software was installed in a 
high-performance computer equipped with an Intel i7-8700K CPU, 
an NVIDIA GeForce GTX 1080ti Graphics card, 32 GB RAM, and 
500 GB SSD. 
2.5  Multivariate analysis 

The spectra of pixels belonging to four categories were 
analyzed using deep learning, principal component 
analysis-K-nearest neighbor (PCA-KNN), and support vector 
machine (SVM) methods, respectively.  The classification models 
based on the PCA-KNN and SVM are compared with the deep 
learning model. 
2.5.1  Deep learning 

A convolutional neural network (CNN) is a feed-forward 
neural network typically containing a convolution layer, pooling 
layer, and classification layer[14].  It is widely used for object 
recognition and classification.  The convolution layer extracts 
high-level abstracted feature representations from the input data.  
The pooling layer merges semantically similar features into one 
feature[15].  Furthermore, the classification layer classifies the 
input data.  A recurrent neural network (RNN), which is designed 
to recognize the sequential characteristics in data, is another 
effective neural network[16].  An RNN produces its output by 
considering not only its current input but also the history of its 
previous inputs[17].  Since the basic RNN has the problem of 
long-term dependencies, a special type of RNN, long short-term 

memory (LSTM) networks, is introduced to solve this problem[18]. 
Each pixel spectrum of hyperspectral images can be regarded 

as a data sequence since different wavelengths of the spectrum are 
correlated with each other[19].  In this study, a CNN was integrated 
with LSTM to take advantage of the characteristics of the 
convolutional and recurrent layers.  As shown in Figure 3, the 
proposed deep learning architecture was composed of 4 
two-dimensional convolutional layers, 2 pooling layers, and a 
3-layer stacked LSTM.  The high-level features of spectra were 
extracted in the convolutional layers, semantically similar features 
were merged in the pooling layers, and the contextual information 
of the features was obtained from stacked LSTM.  First, the 
spectral vector of the hyperspectral image pixel (1×400) was 
normalized and reshaped into two dimensions (20×20).  The 
normalized spectral vector was one-dimensional and had 400 
elements.  When the spectral vector was reshaped, the first line of 
the new two-dimensional matrix (20×20) consisted of elements 
1-20 of the spectral vector, and the second line consisted of 
elements 21-40.  By analogy, the normalized pixel spectrum was 
reshaped into two dimensions.  Four two-dimensional 
convolutional layers were used to extract deep features from the 
spectra.  Every 2 convolutional layers were followed by a max 
pooling layer to acquire the compressed feature representation.  
The convolution kernel sizes of the convolutional layers and max 
pooling layers are 3×3 and 2×2, respectively.  Each convolutional 
layer of the architecture generates 64 feature maps.  Before 
entering the stacked LSTM, the data were flattened into a 
one-dimensional vector.  The softmax activation function was 
adopted to acquire multiple scores over all the categories for an 
input spectrum and output the category with the highest score.  
The L2 regularization method was used to prevent overfitting[20].  
The batch size and the regularization parameter λ were set as 128 
and 0.01, respectively.  The cross-entropy loss function was used 
to measure the errors between the predicted outputs and real 
outputs[21].  The Adam optimizer was adopted to optimize the 
weights of the proposed model[22].  The configuration of the 
proposed deep learning architecture based on 2D CNN-LSTM is 
listed in Table 1. 

 
Note: LSTM: Long short-term memory. 

Figure 3  Proposed deep learning architecture integrated 2D CNN with LSTM 
 

Table 1  Structural parameters of 2D CNN-LSTM 
Layer Kernel size Stride Output size Activation function

2D Convolutional 3×3 1×1 18×18×64 ReLU 
2D Convolutional 3×3 1×1 16×16×64 ReLU 
Max pooling 2×2 -- 8×8×64 -- 
2D Convolutional 3×3 1×1 6×6×64 ReLU 
2D Convolutional 3×3 1×1 4×4×64 ReLU 
Max pooling 2×2 -- 2×2×64 -- 
LSTM -- -- 64×1 ReLU 
LSTM -- -- 64×1 ReLU 
LSTM -- -- 64×1 ReLU 
Classification -- -- 4×1 Softmax 

Note: Stride is the number of jumps required when a filter scans the original 
image.  ReLU: Rectified Linear Unit; CNN: Convolution Neural Network; 
LSTM: Long short-term memory. 

2.5.2  PCA-KNN 
Principal component analysis (PCA) is a classical statistical 

method that can reduce the dimensionality of a dataset by 
converting the original variables to a new set of orthogonal 
variables called principal components[23].  To reduce the 
dimension of the spectra, PCA was performed before modeling 
based on the K-nearest neighbors (KNN) algorithm.  The KNN, 
which is a nonparametric classifier, is a supervised machine 
learning algorithm[24].  The classes of new observation data are 
predicted according to the majority class of the K-nearest neighbors 
in the training set. 

In this study, the number of components was determined by 
the cumulative contribution rate of the variance of principal 
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components.  When the first n principal components retained 90% 
of the variance of the original data, they were fed as the inputs of 
the KNN model.  The selection of the neighborhood size K was 
optimized by the tenfold cross-validation method. 
2.5.3  SVM 

The support vector machine (SVM) is a supervised machine 
learning algorithm for linear and nonlinear classification that 
separates the classes with a decision surface or hyperplane that 
maximizes the margin between the classes[25].  The SVM has 
many unique advantages in solving small samples, nonlinear, and 
high dimensional pattern recognition and is widely used to analyze 
multispectral and hyperspectral images[22,26].  The effectiveness of 
an SVM depends on the selection of the kernel, the kernel's 
parameters, and the soft margin parameter C[27].  In this study, the 
Gaussian radial basis function (RBF) was used as the SVM kernel 
function.  The kernel’s parameter ɤ and soft margin parameter C, 
which were selected using the tenfold cross-validation method, 
were 0.9 and 0.8, respectively. 
2.6  Model evaluation 

Accuracy, precision, recall, and F1 score[28] were used to 
evaluate the performance of the classification model in each 
category; and the metrics were calculated using Equations (2)-(5), 
respectively.  The values of these indicators are in the range of 
0-100%.  The closer the value is to 100%, the better the 
performance of the model.  Equation (5) indicates that the F1 
score is a better metric of the model performance since the F1 score 
combines precision with recall. 

Correctly classified number of samplesAccuracy 100%
Total number of samples

= ×  (2) 

TP( )Precision ( ) 100%
TP( ) FP( )

ii
i i

= ×
+

          (3) 

TP( )Recall ( ) 100%
TP( ) FN( )

ii
i i

= ×
+

           (4) 

2 Precision ( ) Recall ( )F1 Score ( ) 100%
Precision ( ) Recall ( )

i ii
i i

∗ ∗
= ×

+
    (5) 

where, TP(i), FP(i), and FN(i) represent the true positives, 
false-positives, and false negatives of category i (i=1,2,3,4), 
respectively.  TP(i) represents the correctly classified number of 
samples in category I; FN(i) represents the misjudged number of 
samples in category I; FP(i) represents the number of samples in 
other categories that were misjudged as category i.  TP(i), FP(i), 
and FN(i) were extracted from the confusion matrix. 

3  Results and discussion 

3.1  Pixel size and spectrum analysis 
The length of each grid on the checkerboard corresponded to 

996 pixels in the hyperspectral image.  Since the actual length of 
each grid was 89.0 mm, the pixel size was approximately     
0.089 mm.  Therefore, the actual area corresponding to a single 
pixel in the hyperspectral image was approximately 0.008 mm2.  
Figure 4 shows the resulting images of a raw hyperspectral image 
processed according to the procedure described in Section 2.3. 

After an ‘and’ operation was performed between the mask 
image and the corrected hyperspectral images, the shell and kernel 
pixels in the hyperspectral images were isolated.  Then, the pixel 
spectra of the four categories were extracted.  Their mean 
reflectance spectra are shown in Figure 5.  It was observed that 
the light kernel had higher reflectance in the range of 400-900 nm 
than other categories.  The average spectral reflectance of the dark 

kernel was lowest in the range of 400-650 nm, which then 
increased faster than other categories.  In general, the mean 
reflectance spectra of the outer shell, the inner shell, and the dark 
kernel overlapped one another; and their waveforms were similar.  
Therefore, it was difficult to distinguish four categories of Chinese 
hickory nuts using their mean reflectance spectra. 

 

 
a. Average image 

 
b. Resulting image after 

background segmentation 
c. Mask image 

 
 

Figure 4  A typical average image, resulting image after 
background segmentation, and mask image 

 

 
Figure 5  Mean reflectance spectra of the four components of 

Chinese hickory nuts in the range of 400-900 nm 
 

3.2  Modeling based on CNN-LSTM 
Since there was no significant difference between the 

reflectance spectra of kernels and shells of Chinese hickory nuts, it 
was difficult to distinguish them using feature wavelengths.  
Therefore, a model based on CNN-LSTM was established to 
achieve this goal.  The deep learning architecture integrated a 
CNN with LSTM.  The extracted spectrum of a pixel was 
regarded as a one-dimensional vector with a length of 400.  The 
element in the ith column corresponded to the reflectance at the ith 
wavelength (i = 1, 2, 3, …, 400).  First, this vector was converted 
into two dimensions (20×20), whose element in the mth row and 
nth column (m=1, 2, 3, …, 20 and n=1, 2, 3, …, 20) represented 
the reflectance at the kth wavelength (k=(2m−2)×10+n).  The new 
matrix was input into the CNN-LSTM model.  The proposed 
architecture contained 4 convolutional layers, 2 pooling layers, and 
3-layer stacked LSTM.  Figure 6 shows the loss curves acquired 
in the training process of the proposed CNN-LSTM model.  The 
cross-entropy loss function was used, which learned quickly when 
the model was poor and learned slowly when the model was good; 
therefore, the loss function first decreased rapidly and then 
decreased slowly.  When the model effect gradually improves, the 
decline speed of the loss function will also slow down.  It was 
observed that the loss decreased rapidly at the beginning and then 
slowly with local fluctuations.  The experimental results showed 
that the model loss function decreased to 0 after the 150th iteration 
when the parameters were set.  Therefore, the number of iterations 
in training the model was determined based on the results of the 
loss values.  Then, the model training process ended.  The 
trained CNN-LSTM model and its weights were saved. 

Figure 7 and Table 2 show the confusion matrix, precision, 
recall, and F1 score acquired by the CNN-LSTM model for 
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classifying the four hickory nut categories of the testing set.  The 
results showed that the correctly classified numbers of outer shells, 
inner shells, dark kernels, and light kernels were 480, 500, 500, and 
500, respectively.  According to Equation (2), the accuracy of the 
CNN-LSTM model for the testing set equaled 
(480+500+500+500)/2000×100%=99.0%.  Figure 7 also shows 
that all samples of the inner shells, dark kernels, and light kernels 
were judged correctly.  Twenty outer shell pixels were misjudged, 
but only four of them were classified as kernels.  The precision 
and recall values of the four categories were all higher than 96.9%.  
The F1 scores of the four categories were greater than 98.0%, but 
the outer shells and inner shells had lower F1 scores than the dark 
kernels and light kernels.  The results indicated that the proposed 
CNN-LSTM model achieved satisfactory performance in 
classifying four categories of Chinese hickory nuts and was better 
at identifying kernels than shells. 

 
Figure 6  Loss change curves in CNN-LSTM model training 

 
Figure 7  Confusion matrix acquired by the CNN-LSTM model 

for classifying the four categories of the testing set 
 

Table 2  Precisions, recalls, and F1 scores acquired by 
CNN-LSTM model for classifying four categories of the testing 

set 

Indicators Outer shells Inner shells Dark kernels Light kernels

Precision 96.0% 100.0% 100.0% 100.0% 
Recall 100.0% 96.9% 99.2% 100.0% 

F1 score 98.0% 98.4% 99.6% 100.0% 
 

3.3  Modeling based on PCA-KNN and SVM 
For comparison, the detection model was also established 

based on classical modeling approaches, the PCA-KNN, and the 
SVM.  The variance contribution rate of the first ten principal 
components is shown in Figure 8.  The figure shows that the 
proportion of the first principal component is very large, 
accounting for 78%; and the second principal component accounts 
for 13%.  The cumulative variance contributions of the first two 
principal components exceeded 90%.  Therefore, the first two 
principal components were used to establish the PCA-KNN model.  
A tenfold cross-validation method was used to optimize the 
neighborhood size K of the PCA-KNN model and the kernel 
parameter ɤ and soft margin parameter C of the SVM model.  In 

this study, the optimal K, ɤ, and C were 3, 0.9, and 0.8, 
respectively. 

 
Figure 8  Variance contributions of the first ten principal 

components of Chinese hickory nut spectra 
 

Figure 9 and Table 3 show the confusion matrices, precision, 
recall, and F1 scores acquired by the PCA-KNN and SVM models 
for classifying the four categories of the testing set.  The results 
showed that the overall accuracy of the PCA-KNN and SVM 
models was 94.1% and 93.0%, respectively.  For the PCA-KNN 
model, light kernels had the highest precision (95.0%).  This 
might be because the spectra of the light kernels were significantly 
different from those of other components.  The dark kernels had 
the second-highest precision and the lowest recall, which indicated 
that a relatively large number of dark kernel pixels were misjudged.  
The precision of the inner shells was the lowest, but their recall was 
the highest.  This meant that many other components were 
classified as inner shells.  The F1 scores of the four categories 
showed that the PCA-KNN model also had higher accuracies for 
identifying kernels than shells.  Misjudged samples of shells 
appeared in the inner shell and outer shell groups, and only 7 of 
these were classified as kernels.  In contrast, more misjudged 
samples of shells in the SVM model were classified as kernels.  
This would increase the occurrence of food safety incidents.  
Generally, the performance of the PCA-KNN model was better 
than that of the SVM model but still not as good as that of the 
CNN-LSTM model. 

 
a. PCA-KNN                                       

 
b. SVM 

Figure 9  Confusion matrices acquired by the PCA-KNN and 
SVM models for classifying four categories of the testing set 
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Table 3  Precision, recall, and F1 scores acquired by PCA-KNN 
and SVM models for classifying four categories of the testing 

set 
Modeling 
methods Indicators Outer  

shells 
Inner  
shells 

Dark  
kernels 

Light  
kernels 

Precision 92.4% 97.4% 91.4% 95.0% 
Recall 90.9% 88.5% 97.9% 100.0% PCA-KNN 

F1 score 91.6% 92.7% 94.5% 97.4% 
Precision 94.3% 83.2% 96.6% 100.0% 

Recall 86.6% 97.6% 95.2% 92.4% SVM 
F1 score 90.3% 89.8% 95.9% 96.0% 

 

3.4  Foreign body visualization 
For subsequent removal operations, foreign bodies need to be 

visualized.  First, the proposed 2D CNN-LSTM model was used 
to detect and visualize the shells in the hyperspectral images of 
mixtures of shells and kernels at the pixel level.  Some color 
images of the mixtures are shown in Figure 10a.  The 4-category 
classification results of the 2D CNN-LSTM model are shown in 

Figure 10b.  The 4 categories of Chinese hickory nuts are 
marked with different colors.  The figure shows that there were 
some misjudged pixels.  For the ease of the subsequent removal 
operations of foreign bodies, the inner and outer shell pixels were 
further merged into one category (foreign body) marked in red, 
and the light and dark kernel pixels were also merged into another 
category (food) marked in blue (Figure 10c).  Although the 
number of misjudged pixels decreased, a few remained.  Since 
the actual area corresponding to a single pixel in a hyperspectral 
image was 0.008 mm2, a shell with an area of 1 mm2 corresponds 
to 125 connected pixels in a hyperspectral image.  The actual 
area of a shell is usually larger than 1 mm2.  Therefore, the 
number of pixels in each connected domain in Figure 10c was 
calculated.  If the number was less than 125, the color of the 
pixel was changed to the color of the nearest connected domain.  
In this way, all endogenous foreign bodies were accurately 
detected, and the final visualization results are shown in Figure 
10d. 

 

    

    

    

    
a. Color images b. 4-category classification results of the 2D CNN-LSTM 

model (outer shells in red, inner shells in green, dark 
kernels in blue and light kernels in yellow) 

c. binary classification results (food 
in blue and foreign bodies in red) 

d. Final visualization results for 
foreign body removal 

 

Figure 10  Visualization of endogenous foreign bodies in hyperspectral images of mixtures of shells and kernels  
 

4  Conclusions 

In this study, a deep learning approach was proposed for the 
detection of endogenous foreign bodies in Chinese hickory nuts 

based on hyperspectral spectral imaging and 2D CNN-LSTM.  
The mixtures of shells and kernels were classified into 4 categories.  
The spectra of each category at the pixel level were extracted after 
removing the background of corrected hyperspectral images, which 
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were reshaped from one dimension into two dimensions for 
inputting the 2D CNN-LSTM model.  The overall accuracy of 
99.0% was achieved by the trained 2D CNN-LSTM model for the 
testing set.  For comparison, the models based on the PCA-KNN 
and SVM were also established and achieved accuracies of 94.1% 
and 93.0%, respectively.  Although the overall accuracies of the 
PCA-KNN and SVM models were acceptable, their F1 scores for 
the inner and outer shell categories were significantly lower than 
those of the 2D CNN-LSTM model.  This result indicated that the 
occurrence rate of food safety incidents caused by the accidental 
ingestion of shells would increase.  Therefore, the 2D 
CNN-LSTM model was more promising than the PCA-KNN and 
SVM models.  Moreover, the shells in mixtures of shells and 
kernels were visualized for ease of subsequent operations for the 
removal of foreign bodies.  
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