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Abstract: With the development of precision livestock farming, non-contact health monitoring technology is particularly 
important in the breeding process.  To help improve the management of the rabbit breeding industry, a remaining feed weight 
(RFW) estimation model was developed based on the image segmentation method.  The model proposed in this study 
consisted of a feed instance segmentation neural network and feed weight estimation network.  Feed instance segmentation 
neural network was based on the improved Mask Region-based Convolution Neural Network (Mask RCNN), the state-of-art 
image segmentation method, and the PointRend algorithm was used to replace the original network head.  Through an 
adaptive subdivision strategy, the boundary points were segmented with fine details.  Features were extracted from the 
segmentation results and used as the input of the feed weight estimation network based on the Back Propagation (BP) algorithm.  
The model was applied in rabbit breeding to explore the relationship between RFW and the mortality probability of meat rabbits.  
The model evaluation results showed that the Average Precision (AP) value of the feed instance segmentation neural network 
was 0.987, the Mean Pixel Accuracy (MPA) value was 0.985.  The correlation coefficient of the feed weight estimation 
network was 0.97, the Mean Squared Error (MSE) was 208.3, and the Mean Absolute Error (MAE) was 10.51 g.  The practical 
application results showed that the feed intake of the unhealthy meat rabbits would decrease significantly.  When the RFW 
was more than 50% of feed quantity, the mortality probability of the rabbit was more than 85%; when the RFW was more than 
65% of feed quantity, all the rabbits finally died in a short time.  Therefore, there is a significant correlation between RFW and 
the mortality probability of rabbits, by which this proposed model can help farms to monitor the health of meat rabbits by 
predicting RFW. 
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1  Introduction  

As a traditional special economic animal breeding industry, 
China is committed to the mechanization and intelligence of the 
rabbit industry.  Health monitoring regularly is one of the most 
important and heaviest tasks in rabbit breeding farms because dead 
or dying rabbits may cause the spread of the diseases.  However, 
the research of rabbit epidemic has invested a lot of energy in 
rabbit population tracking and pathological anatomy, but there are 
few reports about disease prevention in the process of rabbit 
breeding[1-3]. 

Large-scale rabbit breeding mostly blocks the spread of the 
disease through the batch and standardization of production 
management.  However, the disease monitoring of an individual 
meat rabbit still depends on the regular inspection of rabbit houses 
by breeders.  In actual rabbit breeding, the diseases monitoring by 
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breeders would be costly and consuming.  On the other hand, the 
activity of rabbits in cages is significantly lower than that in the 
wild, so most rabbit diseases do not have any symptoms in the 
early stage[4], which reduces the accuracy of manual inspection.  
Besides, to ensure meat quality and reduce drug resistance of farm 
animals, the addition of veterinary drugs and antibiotics to feed is 
gradually restricted in many countries and districts, which makes 
rabbits more susceptible to infection[5,6].  

At present, most intelligent health monitoring technologies for 
farm animals are based on sensors and machine vision to extract 
images, sounds, temperature, weights, and other features.  Cuan et 
al.[7] proposed a chicken sound convolutional neural network to 
detect chickens with avian influenza.  Four features of the chicken 
sounds were extracted and combined into feature maps.  The 
proposed network recognized the sounds of healthy chickens and 
chickens with avian influenza.  Zhang et al.[8] used the thermal 
infrared images of dairy cow eyes and udders to detect dairy cow 
mastitis, the temperature difference between the eyes and the 
udders was obtained based on the YOLOv3 algorithm.  Zhao et 
al.[9] designed a real-time video capturing system for dairy cows, 
and the breathing rate was monitored based on the optical flow 
algorithm.  Cows breathing abnormity was detected according to 
the duration of each breath.  Hertem et al.[10] detected lameness of 
cows with multivariate continuous sensing.  The sensors measured 
neck activity and ruminating time of healthy cows and lame cows, 
and the dataset was used as input of the logistic regression model.  
Combining the advanced sensors and network analysis methods has 
become a valuable tool in farm animal sciences as the whole 
system can easily extract features that are difficult for humans to 
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distinguish. 
Most of the current researches on intelligent disease detection 

and prevention technology of farm animals mainly focus on large 
animals such as pigs, cattle, and sheep which is due to the breeding 
scale and consumption market of these farm animals being much 
larger than that of rabbits.  Rabbit farming is predominantly a 
closed cycle performed on a single farm in individual cages[11].  
For each cage, the activity space of the rabbits is crowded, and the 
number of breeding rabbits is uncertain.  It is complicated to 
monitor the health of rabbits directly: the cost of the wearable 
sensor is too high, and the sound features are hard to obtain 
because rabbits seldom bark, and cages and equipment block the 
view of the machine.  Therefore, in large-scale rabbit breeding, 
the studies on intelligent disease detection and prevention 
technology, especially on the prediction of rabbit mortality 
probability are few. 

To a certain extent, the remaining feed weight (RFW) can 
reflect the health of rabbits.  All-in-all-out production is widely 
used in rabbit breeding industry, and it is obvious that the feed 
intake of rabbits in the same batch is close[12].  According to the 
previous studies[4,13-16], most of the common rabbit diseases, 
especially gastrointestinal diseases, respiratory diseases, and 
parasitic diseases, set off the loss of appetite and reduce the average 
daily feed intake (ADFI) of rabbits.  Therefore, the more the RFW 
is, the higher the mortality probability.  Because of the habit of 
rodents, using sensors or other engineering means to automatically 
weigh the feed for each cage is expensive and unsafe.  However, it 
was convenient to obtain the feed images of the feed boxes, so an 
RFW estimation model with feed images was developed.  The 
model consisted of a feed instance segmentation neural network 
and a feed weight estimation network.  The feature of feed 
instances was extracted based on feed instance segmentation neural 
network, which employed the Mask Region-based Convolution 
Neural Network (Mask RCNN) framework and used the PointRend 
algorithm as the network head to extract boundary.  The feed 
weight estimation network was based on Back Propagation Neural 
Network (BPNN) and used the extracted features as input.  With 
the proposed RFW estimation model, the relationship between 
RFW and the mortality probability of the rabbit had been explored 
in the breeding farms to prove the practicability and feasibility of 
the model. 

2  RFW estimation model construction principles 
The overall flow of the proposed method was to extract the 

target features from feed images with a convolution neural network, 
then input the features to a BP neural network as input to estimate 
the RFW.  According to the output of the trained BP neural 
network, the relationship between RFW and the mortality 
probability was verified by experiments.  Thus this study 
established the relationship between feed images and prediction of 
the rabbit death 
2.1  Experiment device 

In order to calculate RFW by feed image, the shape of the feed 
box was analyzed to determine the image capturing method first.  
In this study, the model is designed for the most commonly used 
feed box in China’s standardized meat rabbit farm.  Other types of 
feed boxes can refer to this article for similar analysis.  Figure 1 
shows the structure of the feed box.  The whole feed box consists 
of a feeding inlet and a feeding trough.  The feeding inlet, where 
feed was put in, was similar to the Mitsubishi column and located 
outside the rabbit cage.  The feeding trough, where meat rabbits 
eat feed, was similar to the cuboid and located inside of the rabbit 
cage.  Due to the irregular structure of the feed box, the remaining 
feed (RF) in the feed box may exist both at the feeding inlet and 
feeding trough. 

 
Figure 1  Structure of the feed box 

 

2.2  Feed instance segmentation network   
2.2.1  Architecture of Mask RCNN 

Based on the Faster RCNN[17], Mask RCNN added a 
segmentation mask generating branch and used the RoIAlign 
algorithm instead of the traditional RoIPooling algorithm to 
preserve the accuracy of the spatial positions of targets[18].  As 
shown in Figure 2, feed images were used as the input of Mask 
RCNN, and Mask RCNN outputted the feed instance. 

 
Note: ResNet: Residual Network; Conv: Convolution; FPN: Feature Pyramid Network; RPN: Region Proposal Network; RoI: Region of Interest; FC Layers: Fully 
Connected Layers; BBOX: Bounding Box 

Figure 2  Structure of feed segmentation network based on Mask RCNN 
 

The backbone network provides inputs for Feature Pyramid 
Network (FPN).  Different weight layers make up the backbone 
network.  For complex features, deeper networks may result in 
higher accuracy but the training time of the model will be longer.  

In this study, because the features to be extracted were not complex, 
FPN based on ResNet-50 was used as the backbone network to 
alleviate the difficulties of gradient disappearance and training 
degradation[19]. 
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ResNet-50 consists of five stages, corresponding to five 
different scales of feature map as [C1, C2, C3, C4, C5].  Through a 
bottom-up structure, the stride of these five feature maps gradually 
doubled, and are used to establish the feature pyramid of FPN.  
Specifically, C1 is not used because the large size takes a huge time 
to calculate a new feature map.  The whole process is shown as 
follows: 
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where, Ui represents the feature map obtained by upsampling; Ci 
represents the i-th feature map output at each stage; Pi represents 
the i-th new feature map; Pi' represents the feature map obtained by 
the element-by-element alignment operate; conv represents the 
convolution operation; sum represents the element-by-element 
alignment operation; upsample represents the upsampling operation; 
pooling represents the pooling operation which stride is 2. 

For new feature maps [P2, P3, P4, P5, P6], the Region Proposal 
Network (RPN) uses a sliding window to scan them and find the 
regions of interest (RoI) areas where the feed exists.  The first 
layer of RPN outputs the categories and boundary coordinates of 
the areas, and judges whether these regions are foreground or 
background.  For the foreground, the second layer of RPN uses a 
different size of anchors to correct the bounding box of the target.  
The Non-Maximum Suppression (NMS) is used to remove 
overlapping anchors, and anchors with higher foreground scores 
are sent to the next stage. 

RoIAlign aligns the extracted features with the original region 
proposal.  Bilinear interpolation is used in RoIAlign to compute 
the exact values of the input features, then the size of the anchor is 
adjusted to a fixed size.  The obtained features are fed to the Fully 
Connected (FC) layer and the segmentation convolution layer.  

The loss function of Mask RCNN is used to train bounding 
box regression, classification, and mask prediction branches, which 
can be described as follows: 
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where, Lcls represents the classification error; Lbox represents the 
bounding box regression error; Lmask represents the mask error; Ncls 
represents the number of categories; Lcls(pi, pi

*) represents the 
logarithmic loss of RoIs; pi represents the probability that the 
anchor is predicted to be positive samples; pi

* represents the 
probability that the anchor is predicted to be negative samples; Nreg 

is the pixel number in the feature map, Lreg(·) is a smooth function; 
ti is the predicted offset of anchors in RPN; ti

* is the true offset of 
anchors in RPN; Sm is the size of the mask; mi

* is the label value of 
mask; p(mi) is the probability that mi

* is predicted to be right label 
value. 
2.2.2  Optimized boundary feature based on PointRend technique 

Image segmentation tasks of Mask RCNN focus on regular 
grids of the input feed image and make excessive predictions over 
all points on the output grid.  Paying less attention to boundary 

segmentation smoothness increases the loss of prediction, which 
makes the boundary of the feed mask not clear.  To solve this 
problem, PointRend uses a subdivision strategy to adaptively select 
a non-uniform set of points at which to compute labels[20].  The 
modules in the PointRend consist of point selection, point-wise 
feature extraction, and point head. 

The point selection module selects points for predicting 
segmentation labels flexibly and adaptively and focuses on the 
points located near high-frequency ports such as object boundaries.  
For inference, the strategy of point selection is to render the output 
image in a coarse-to-fine manner.  In each iteration, the points on 
a regular grid will be predicted coarsest first.  Based on bilinear 
interpolation, the low spatial resolution feature map is up-sampled 
and achieved the desired spatial resolution, as shown in Figure 3.  
Then on the denser grid, the most uncertain points whose degree of 
confidence is less than 0.5 (e.g., Confidence Interval) are selected.  
The points are selected as follows: 

* arg min ( ) 0.5
i
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n
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where, p(ni) is the probability for point ni belonging to the binary 
mask; ni

* is the selected point. 

 
Note: Grey grids and black grids are the pixel points of different labels on the 
feature map; Black points represent the selected grids on edges; Arrows are the 
process of upsampling and point selection. 

Figure 3  Adaptive subdivision step for one feed image 
 

For training, the point selection strategy is a non-iterative 
strategy based on random sampling.  First, there are kN points 
(k>1) randomly sampled from the feature map.  Then these points 
are sorted according to their uncertainty estimate.  The most 
uncertain βN (β∈[0,1]) points are selected, these βN points are 
concentrated in the most uncertain area and their distribution is 
relatively uniform. 

The point-wise feature extraction module is constructed by 
concatenating fine-grained features and coarse prediction features 
on selected βN points.  The fine-grained feature is computed by 
bilinear interpolation on the feature maps, which contains the finely 
detailed segmentations.  The coarse predicted feature is a 2D 
vector with more contextual and semantic information that provides 
a more globalized context and helps convey the semantic classes.  
Features can be extracted from a single feature map and multiple 
feature maps. 

The point head module is a Multilayer Perceptron (MLP) with 
three hidden layers and 256 channels, which predict labels based on 
the above point-wise features.  MLP shares weights across all 
points and regions.  This point head concatenates coarse 
prediction and fine-grained feature vectors.  Rectified Linear Unit 
(ReLU)[21] is used on the hidden layers of MLP, and the sigmoid 
activation function is applied to its outputs. 
2.3  Parameter extraction method of the feed 

The retrieved features parameters must be representative to 
estimate RFW.  As mentioned in Section 2.1, the parameters of 
feed contour in feeding inlet and feeding trough needed to be 
extracted separately.  Figure 4 shows the segmentation result of 
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the feed instance segmentation network described in Section 2.2.  
For a briefer description, the feed at the feeding trough was named 
‘feed1’, and the feed at the feeding inlet was named ‘feed2’. 

 

 
Note: The feed at the feeding trough was named ‘feed1’ and covered with a 
yellow mask; the feed at the feeding inlet was named ‘feed2’ and covered with a 
blue mask; the boxes were the bounding boxes of the instances; the percentage 
numbers were the confidence scoring. 

Figure 4  Segmentation result of the feed 
 

‘Feed1’ is covered with a yellow mask, and ‘feed2’ is covered 
with a blue mask.  Due to the proportional relationship between 
the feed area and RFW, the area of the feed mask provides good 
approximations for the weights.  For each mask, the number of 
pixels was calculated with a given threshold in RGB color space.  

Let Ci (i = 1, 2) the number of pixels per mask, where Ci is the area 
of feed masks. 

The image was a 2D representation of a 3D object.  In this 
study, only Ci was used to estimate RFW may cause great errors.  
Thus the thickness of the feed also needed to be extracted.  In the 
top view, the thickness of the feed cannot be measured directly.  
However, based on the basic principle of perspective, the feed box 
will be filled more with the increase of the feed thickness.  Figure 
5 is an enlarged drawing of the feeding trough captured from the 
whole image, as shown in Figure 5, when the thickness of the feed 
increased, the distance between the edges of the feed mask and the 
feed box will be shortened. 

Since the length and width of the feed box are fixed, the 
distance can be expressed as follows: 
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where, WB represents the length of the feed box; HB represents the 
width of the feed box; WF and HF represent the length and width of 
feed segmentation, respectively; Lx and Ly represent the distance 
between edges of the feed segmentation and the feed box in the 
X-axis and Y-axis, respectively. 

As the feed box’s size is known, the size of the feed mask can 
be obtained from the bounding box of the mask.  For each of the 
images, a feature vector F has the above-mentioned features as its 
elements as follows: 

F = (C1, Lx1, Ly1, C2, Lx2, Ly2)            (8) 
 

  
a. Estimation index with thick feed layer b. Estimation index with thin feed layer 

 

Note: Red lines represent the edges of the feed masks and the feed boxes.  The sum of the distances between the vertical lines represents 
the distance between the feed and the magazine in the X direction, and the sum of the distances between the horizontal lines represents 
the distance between the feed and the magazine in the Y direction. 

Figure 5  Schematic diagram of the feed thickness estimation index 
 

2.4  Feed weight estimation network 
Based on the error BP algorithm, BPNN can store and learn a 

large number of input and output patterns without determining the 
mathematical equations to describe the relationship[22].  This study 
aimed to predict RFW with the feature of 2D images.  Based on 
the premise that the linear relationship between input and output is 
distorted, BP neural network is used to fit the data.  The nonlinear 
mapping and generalization characteristics of the BP neural 
network are helpful to building an appropriate estimation model[23]. 

The feature vector F which was obtained in Section 2.2, 
provided neural units of the input layer of the BPNN, used the 
weight weighed in advance as neural units of the output layer.  
Then the number of neural units of the hidden layer can be 
calculated as follows[24]: 
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where, n is the number of neural units of inputting layer; m is the 
number of neural units of the output layer; l is the number of neural 
units of the hidden layer; a is a constant range from 1 to 10.  
Therefore, l∈[3,12]. 

The structure of BPNN in this study is shown in Figure 6.  
Due to the linear relationship between the input and output being 
distorted, there is no nonlinear activation function, such as ReLU or 
softmax, used in the network[25,26]. 

3  Materials and methods 

3.1  Data acquisition 
The feed images and RFW were recorded over several days in 

August 2020 in a meat rabbit breeding farm in Henan Province, 
China.  500 randomly selected cages were used to collect images 
of RFW.  As shown in Figure 7, to acquire as many features of the 
RF as possible, the camera was placed directly above the junction 
of the feeding inlet and feeding trough, so the captured image 
contained both regions at the same time. 
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Note: C1 and C2 represent the area of each feed mask.  Lx1 and Lx2 represent the 
distance between edges of the feed segmentation and the feed box in the X-axis; 
Ly1 and Ly2 represent the distance between edges of the feed segmentation and the 
feed box in the Y-axis.  φ(·) and τ(·) stands for activation function in hidden and 
output layers; ωij, ωik; θj, θk represent weights and bias value of each layer; RFW 
represents remaining feed weight. 

Figure 6  Structure of feed weight estimation network 

 
Figure 7  Schematic of the method of image acquisition 

 

When the images were captured, the remaining feed in the feed 
box was weighed and recorded at the same time.  There was not 
only pellet feed, but also rabbit manure, feed powder, and other 
impurities in the feed box, so the pellet feed was separated from 
impurities before weighing.  The model of the camera was 
MV-CA020-10GC (Hikvision, China), the resolution was 
1624 pixels × 1240 pixels, the image size was 1920 pixels ×    
1020 pixels, and the format of images was JPG. 
3.2  Algorithm platform 

The object detection and segmentation algorithms were 
implemented with the Detectron2 platform based on PyTorch deep 
learning framework.  The weight prediction algorithm was 
implemented with MATLAB R2016a.  The model was trained on 
a computer with Intel® CoreTM i7-9700K CPU and NVIDIA 
GeForce RTX 2080 GPU, the system is Ubuntu 20.0. 
3.3  Experiment of feed instance segmentation network 

The size of obtained images was scaled to 1024×1024 to meet 
the input of the feed segmentation network.  To avoid overfitting, 
the images were rotated and horizontally flipped to augment the 
training data.  The training dataset contained 500 different images, 
and the validation set contained 100 different images. 

To construct the training dataset, the preprocessed images were 
annotated by the open-source image annotation tool Labelme.  
There were feed pellet, mash feed (the broken feed pellet that meat 
rabbit does not intake), and rabbit feces in the feed box.  Also, 
meat rabbits may interrupt the feed box.  In order to avoid 
interference, five types of categories were annotated, 1) feed pellet 
at the feeding trough; 2) feed pellet at the feeding inlet; 3) rabbit 
feces; 4) mash feed; 5) rabbit. 

Common Object in Context (COCO) dataset was introduced 
using transfer learning to solve the problem caused by a small 
training set before training.  COCO is a type of large-scale object 

detection, segmentation, and captioning dataset which helps to 
accelerate the training process.  ResNet-50 and PointRend were 
used as the backbone and network head architecture, respectively.  
The whole training process lasted 30 h with a 0.001 learning rate.  
In addition, the original Mask RCNN, which uses ResNet-50 as 
backbone and Faster-RCNN with ResNet as head architecture, was 
trained to compare with the proposed feed segmentation neural 
network. 
3.4  Experiment of feed weight estimation network 

Another dataset was used to train the feed weight estimation 
network.  500 new feed images were predicted by the trained feed 
instance segmentation network, and its outputs were sent to the 
parameter extraction method, then feature vector F was obtained. 

Vector F and the RFW were used as training inputs and 
training output of the BPNN, respectively, and the proportion of 
training set, validation set, and test set was 70%:15%:15%, the 
number of neurons in the hidden layer was 4, 5, and 6, respectively.  
The training function was set as three common functions: Trainlm 
(Levenberg-Marquardt), Trainbr (Bayesian Regulariza-tion), and 
Trainscg (Scaled Conjugate Gradient).  Adaption learning 
function and transfer function were set to Learngdm and Tansig 
according to experience.  The whole training process iterated 1000 
times with a 0.01 learning rate. 
3.5  Performance evaluation methods 

Average Precision (AP) and Mean Pixel Accuracy (MPA) 
were used to evaluate the performance of feed instance 
segmentation network[27].  

The AP compares the ground-truth bounding box to the 
detected box and returns a score.  The higher the score, the more 
accurate the model is in its detections. 
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+

                 (10) 

where, P is the precision; TP is the true positive; FP is the false 
negative. 

The MPA reports the percent of pixels in the image which 
were correctly classified: 
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where, k is the total number of categories including the background; 
pii is the total number of pixels whose real pixel class is i and 
predicted as i, and pij is the total number of the pixel whose real 
pixel class is i but predicted as j. 

To evaluate the performance of the feed weight estimation 
network based on BP neural network, Correlation Coefficient (r), 
Mean Squared Error (RMSE), Mean Absolute Error (RMAE) are 
used, respectively. 
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where, R is Correlation Coefficient; RMSE is Mean Squared Error; 
RMAE is Mean Absolute; yi is the predictive value; ˆiy  is the 
actual value; n is the sample capacity. 
3.6  Practical application experiment of the proposed model 

This study aimed at monitoring rabbit mortality probability by 
predicting the RFW with machine vision, so it is necessary to 
explore the relationship between RFW and the mortality probability  
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of the rabbits.  
1273 rabbits that fed in 694 cages were chosen.  Their RFW 

was estimated, and their death was recorded in this experiment.  
Those rabbits were judged in two age categories: 36-75 days old 
and 240 days old, and their Average Daily Feed Intake (ADFI) was 
restricted[28].  Rabbits were divided into four groups according to 
their age at the beginning of the experiment. 

There were two rabbits in each cage for 36 to 75 days old 
rabbits.  For 240 days old rabbits, there was one rabbit in each 
cage.  Before daily feeding (1:00 p.m.), the cages which had RF 
would be marked, and the feed images of these cages were captured.  
Then the pellet feed was separated, weighed, and recorded next.  
After that, the feed box was emptied, all the rabbits would be fed 
by standard and recorded the health condition. 

During the experiment, the experiment would be repeated until 
the rabbit dead, or there was no remaining feed in the feed box, 
which proved that the rabbits were healthy.  At the same time, the 
proposed model was used to estimate the weight of the feed in the 
images. 

4  Results and discussion  

4.1  Results of feed instance segmentation network 
With the same iterations and the same training dataset, the 

comparison of training accuracy and total loss of the proposed feed 
segmentation neural network and the original Mask RCNN is 
shown in Figure 8. 

 
a. Comparison results of training accuracy 

 
b. Comparison results of Total loss 

Figure 8  Comparison results of Mask RCNN and PointRend 
 

According to Figure 8, the accuracy of the proposed feed 
instance segmentation network converges at 0.997, while the 
accuracy of the original Mask RCNN converges at 0.985.  The 
total loss of the proposed feed segmentation network converges at 
0.046, while the total loss of the original Mask RCNN converges at 
0.073.  The results showed that compared with the original Mask 

RCNN, the proposed feed segmentation network has higher 
segmentation accuracy and lower total loss during training. 

For the same image, the segmentation results of the two 
networks are shown in Figure 9, the segmentation results of 
instance contour and scattered feed pellet are shown, respectively. 

 
Figure 9  Segmentation results of two networks for the same 

image 
 

Compared with the ground truth in Figure 9, it could find that 
both of the networks had extracted the feed mask from the original 
image, but the proposed Mask RCNN-PointRend model performed 
better than the Mask RCNN.  For the scattered feed pellet, the 
Mask RCNN recognized fewer feed instances than the proposed 
model.  For the feed instance contour segmentation, the 
boundaries of the feed pellet by the proposed model appeared to be 
much clearer and smoother than the Mask RCNN.  The edge and 
corners of the feed in the mask could match correctly with the 
original image.  Figure 10 shows other results of segmentation by 
the proposed network.  It was clear to find that the network could 
accurately segment the mesh feed or the hollow part of the feed 
regions. 

Due to the fluidity of the feed pellet, hollow holes may appear 
in the center of the feed area, where no feed exists.  These hollow 
holes are highlighted as shown in Figure 10b. 

 

 
a. Mash feed instance segmentation 

 

 
b. Hollow part segmentation of feed area 

Figure 10  Other segmentation results by the proposed model 
 

The performance evaluation method described in Section 3.4 
was used in the same validation set to evaluate these two networks.  
The results showed that the AP value of the proposed method, 
which represents the accuracy of object detection, was up to 0.987, 
which was higher than the 0.940 of the Mask RCNN algorithm.  
The MPA value of the proposed method, which represents the 
accuracy of instance segmentation, was up to 0.985, which is 
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higher than the 0.930 of the Mask RCNN algorithm.  The average 
running time on an image of the proposed method was 0.23 s, 
which was lower than the 0.37 s of the Mask RCNN.  In 
conclusion, the accuracy of object detection, the accuracy of 
instance segmentation, and the execution speed of the algorithm 
had increased 4%, 5%, and 37%, respectively. 
4.2  Results of feed weight estimation network 

The feed weight estimation network has been trained with the 
parameter that the hidden layer neurons number was 4, 5, and 6, the 
training function was Trainlm, Trainbr, and Trainscg.  The 
performance evaluation results are shown in Table 1. 

 

Table 1  Evaluation results of feed weight estimation network 

Model type r RMSE RMAE 

4-Trainlm 0.889 758.66 18.25 
4-Trainbr 0.964 255.43 12.24 
4-Trainscg 0.941 418.17 14.87 
5-Trainlm 0.965 263.07 11.89 
5-Trainbr 0.968 229.80 10.89 
5-Trainscg 0.939 433.21 15.17 
6-Trainlm 0.930 456.37 15.94 
6-Trainbr 0.971 208.33 10.51 
6-Trainscg 0.926 522.92 16.15 

 

According to Table 1, the performance of the feed estimation 
network was the best when the number of hidden layer neurons was 
6, and the training function was Bayesian Regularization.  The 
Correlation Coefficient of the network was 0.971, RMSE was 
208.33 and RMAE was 10.51 which was the group's minimum.  
The result proved that the proposed feed estimation network could 
estimate the feed weight with higher precision, and the predicted 
weight of feed was close to the true weight. 
4.3  Results of practical application experiment 
4.3.1  Predict results of the proposed model 

The proposed model was used in all the cages.  There were 86 
cages detected that had remaining feeds, and all the empty feed 
boxes were recognized.  By inspection with artificial observation, 
the proposed model could 100% detect whether RF existed in the 
feed boxes. 

The relationship between the predicted weight and the true 
weight of the 89 cages is shown in Figure 11. 

 
Figure 11  Prediction results of RFW estimation model 

 

According to Figure 11, the relationship between the predicted 
weight and the true weight was linear for the proposed model, the r 
is 0.97. 
4.3.2  Predict results of the proposed model 

For all 1273 rabbits in this experiment, the number of deaths 
was 52, while the number of the cages that existed RF in the feed 
box was 41.  Therefore, the mortality probability of the rabbit was 
4.08%, and the dead rabbit with RF composed 78.8% of all the 
dead rabbits.  It was apparent that for most of the dead rabbits, RF 

existed in their feed boxes before their death.  The reasons might 
be that the disease reduced the appetite and digestive ability of 
meat rabbits, and their feed intake was decreased. 

During the experiment, all cases of RF appearing could be 
divided into three categories: 

1) Case 1: Remaining feed had appeared in the feed box for 
several days before the rabbits died.  The number of this case was 
41; 

2) Case 2: RF had appeared in the feed box constantly, but the 
rabbits always stayed healthy.  The number of this case was 20;  

3) Case 3: RF had appeared in the feed box for several days.  
However, then no remaining feed appeared.  It meant that the 
meat rabbits were finally healthy.  The number of this case was 
25. 

All rabbits were divided into 4 groups according to their age at 
the beginning of the experiment.  Table 2 showed the RFW of the 
rabbits in three different cases. 

 

Table 2  RFW of different rabbit groups in three cases 

Rabbit 
group

Initial 
Age/d

Initial weight 
of feed Intake

/g·cage−1 

Average weight 
of RF in Case 

1/g 

Average weight 
of RF in Case 

2/g 

Average weight 
of RF in Case 

3/g 

A 240 220 133 86 79 
B 54 220 109 76 28 
C 61 240 120 62 66 
D 68 260 156 96 52 

 

As shown in Table 2, the average weight of RF in Case 1 was 
61.8% heavier than the average weight in Case 2, and 130.2% 
heavier than the average weight in Case 3.  It proved that the 
heavier RFW, the higher the mortality probability.  In other words, 
the feed intake of these unhealthy meat rabbits would decrease 
greatly.  In actual breeding, as the disease aggravated, the feed 
intake would be less and less; namely, RFW would be heavier and 
heavier. 

According to Table 2, in Case 1 where the rabbit finally died, 
the average daily weight of RF in 4 rabbit groups composed 60.5%, 
49.6%, 50.0%, and 60.0% of the feed quantity.  Figure 12 shows 
the mortality probability of the rabbit with different proportions of 
RFW in the feed quantity.  With the increase of the proportion of 
the RFW in the feed quantity, the mortality probability also 
increases.  When the RFW was more than 50% of feed quantity, 
the mortality probability of the rabbit was more than 85%; when 
the RFW was more than 65% of feed quantity, all the rabbits 
finally died in a short time.  Therefore, managers should be on the 
alert and manage rabbits in time if RF was observed. 

 
Figure 12  Relationship between RFW and mortality probability 

5  Conclusions  

In this study, an RFW estimation model based on the feed  
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instance segmentation neural network and feed weight estimation 
network was established.  The feed instance segmentation neural 
network employed the framework of Mask RCNN, in which 
ResNet-50 was used as the backbone, PointRend algorithm was 
used as the network head to extract boundary.  The feed weight 
estimation was based on BP neural network with six inputs and one 
output.  Based on the proposed RFW estimation model, the 
relationship between RFW and the mortality probability of the 
rabbit had been explored.  This technique provides a theoretical 
basis for non-contact rabbit health monitoring in rabbit breeding.  
The conclusions of this paper are shown as follows: 

1) The accuracy of the proposed feed instance segmentation 
network was 0.997, and the total loss was 0.073.  The network 
had a good effect on the segmentation of the mesh feed and the 
hollow part of the feed area.  Compared with Mask RCNN, the 
AP value of the proposed network was 0.987, which was 4% higher; 
the MPA value of the proposed network was 0.985, which was 5% 
higher; the average running time per image of the proposed 
network was 0.23 s, which was 37% faster. 

2) The inputs of the feed weight estimation network were 
extracted from the feature of the image.  The Correlation 
Coefficient of the feed weight estimation network was 0.97, RMSE 
was 208.3 and RMAE was 10.51 g. 

3) The RFW estimation model was used in the actual to predict 
RFW, and the results showed that the accuracy of the model in 
predicting whether RF existed was 100%, the correlation 
coefficient of the relationship between the predicted weight and the 
actual weight was 0.97. 

4) The feed intake of the unhealthy meat rabbits will decrease 
greatly.  The dead rabbit with RF composed 78.8% of all the dead 
rabbits, which meant that most of the unhealthy rabbits would be 
anorexic, and their digestibility would be reduced before they died.  
When the RFW was more than 50% of feed quantity, the mortality 
probability of the rabbit was more than 85%; When RFW was more 
than 65% of feed quantity, all the rabbits finally died in a short time.  
Therefore, it is feasible to predict the risk of the rabbit's health 
status by observing RFW. 
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