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Abstract: Gray leaf spot, common rust, and northern leaf blight are three common maize leaf diseases that cause great 

economic losses to the worldwide maize industry.  Timely and accurate disease identification can reduce economic losses, 

pesticide usage, and ensure maize yield and food security.  Deep learning methods, represented by convolutional neural 

networks (CNNs), provide accurate, effective, and automatic diagnosis on server platforms when enormous training data is 

available.  Restricted by dataset scale and application scenarios, CNNs are difficult to identify small-scale data sets on mobile 

terminals, while the lightweight networks, designed for the mobile terminal, achieve a better balance between efficiency and 

accuracy.  This paper proposes a two-staged deep-transfer learning method to identify maize leaf diseases in the field.  

During the deep learning period, 8 deep and 4 lightweight CNN models were trained and compared on the Plant Village dataset, 

and ResNet and MobileNet achieved test accuracy of 99.48% and 98.69% respectively, which were then migrated onto the field 

maize leave disease dataset collected on mobile phones.  By using layer-freezing and fine-tuning strategies on ResNet and 

MobileNet, fine-tuned MobileNet achieved the best accuracy of 99.11%.  Results confirmed that disease identification 

performance from lightweight CNNs was not inferior to that of deep CNNs and transfer learning training efficiency was higher 

when lacking training samples.  Besides, the smaller gaps between source and target domains, the better the identification 

performance for transfer learning.  This study provides an application example for maize disease identification in the field 

using deep-transfer learning and provides a theoretical basis for intelligent maize leaf disease identification from images 

captured with mobile devices. 
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1  Introduction

 

Maize is an important food crop and industrial raw material 

globally, and ensuring maize yield stability is of great importance 

to food security, agricultural development, and the national 

economy.  Over ten kinds of common maize diseases directly 

affect maize yield and quality, including in the leaves, ears, and 

roots.  Although gray leaf spots, common rust, and northern leaf 

blight in the leaves can severely reduce maize yield, timely 

identification and disposal lead to minimum harm caused by the 
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disease.  Traditional identification requires agricultural or forestry 

experts to diagnose in the field or from a distance, which is quite 

subjective, time-consuming, laborious, and inefficient.  Therefore, 

realizing an intelligent, rapid, and accurate automatic identification 

method is of great significance. 

Deep learning methods can be applied in hyperspectral 

images[1] and RGB images.  Identifying crop phenotypic diseases 

with deep learning methods has become a strong research focus in 

precision agriculture[2], especially by using Convolution Neural 

Networks (CNN).  CNN has diverse structures and offers 

outstanding capabilities as a consequence of gradual optimization, 

contributing to being the prevailing disease identification classifier 

for large- or small-scale tasks.  Inchoate researchers considered 

CNNs as feature extractors, followed by machine learning 

classifiers (mostly SVM)[3,4].  After CNNs were gradually used for 

classification directly, small dataset size problem came into view.  

In practice, low disease incidence and high cost of acquisition 

result in only a few training data collected, which limits the 

application of deep learning methods in identification[5].  

Therefore, most studies in plant disease identification and detection 

are based on the prevailing public dataset Plant Village[6], which 

contains 38 categories by species and disease, adding up to 54 303 

images.  Jaiswal et al.[7] sampled 5 diseases of every species in 

Plant Village to carry out their research, which focused on the 

hyperparameters’ effect on GoogLeNet model performance.  
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Sravan et al[8] utilized 20 639 images from Plant Village on 

ResNet50 model, which achieved 99.26% classification accuracy, 

and Agarwal et al[9] selected 10 kinds of tomato diseases with 

image preprocessing and brightness enhancement, reaching an 

accuracy of 98.7% on the proposed simplified CNN model.  

Besides, it is common to reassemble dataset with Plant Village and 

real field images on specific species, with data amplification, 

synthesis and generation followed.  Liu et al.[10] used 4023 field 

images and 3646 Plant Village images to generate 107 366 grape 

leaf images for training the proposed DICNN model, with an 

overall accuracy of 97.22%.  Furthermore, investigated 

approaches like structure modification, module enhancement and 

data preprocessing (augmentation, segmentation or background 

removal) have been validated to enhance the performances[11-14], 

which can be seen as the solution to dataset size problem. 

Although deep learning method mitigates manual 

misjudgments, reliance on expert experience, and reduces 

workforce and material resource requirements, the performances of 

CNN models are based on intensive image computing processing, 

which indicates a large amount of manual labeling work.  Besides, 

recent researches[15-17] showed that CNN methods lack robustness 

to environmental conditions.  Training datasets are mostly 

collected under controlled conditions like laboratory background or 

public datasets, which causes problems with generalization, 

adaptability, and anti-interference capability[18].  Another 

application issue of CNN in disease identification is the limited 

amount of existing data for specific species, bringing about 

unstable training processes and overfitting models.  Therefore, 

transfer learning methods are introduced to solve the above 

challenges.  Transfer learning leverages knowledge from the 

source domain to offer solutions to the target domain, and stronger 

similarity between source and target domains improves accuracy, 

indicating better transferability[19].  The heavy workload of 

manual annotation is reduced greatly on account of source domain 

training, denoting high resource utilization.  And the overfitting 

problem caused by limited existing data is solved simultaneously, 

since a fully trained CNN model on source dataset provides good 

feature extraction capacity which satisfies requirements on smaller 

targeted datasets.  Xu et al.[20] adopted transfer learning to solve 

overfitting as well as a replacement of fully-connected layer into 

global pooling layer, which achieved 93.28% accuracy on a maize 

disease identification dataset, superior to four previous states of the 

art models.  

Pre-trained CNN models based on the ImageNet dataset are 

commonly employed in transfer learning, making full use of their 

feature extracting or fine-tuning in follow-up processing on another 

public or local disease dataset.  Chen et al.[21] selected a CNN 

model pre-trained on ImageNet with initialized weights to achieve 

at least 91.83% validation accuracy on a public dataset.  Average 

accuracy reached 92.00% on rice plant images with complex 

backgrounds.  Yin et al.[22] extracted deep features for pepper 

disease and insect pest dataset using 8 CNN models pre-trained on 

ImageNet for identification, achieving 85.6% and 93.62% accuracy 

for disease and insect pest identification, respectively, using 

ResNet depth features.  However, still unresolved are the lacking 

robustness to environmental conditions, which is more of dataset 

problem, and the less similarity between domains, indicating a 

more similar source dataset.  Besides, high CNN model accuracy 

depends on computing power supported by high-performance 

hardware, whereas the general trend is toward lightweight and 

mobile agricultural equipment.  Several recent studies have 

imported lightweight CNNs, such as MobileNet[23,24] and 

EfficientNet[25], for crop disease identification.  Concessions must 

be made by accuracy against the network scale. 

Therefore, a more feasible deep-transfer learning method is 

proposed in this paper.  By training and comparing deep and 

lightweight CNNs on the Plant Village public dataset, optimal 

pre-trained models are transferred onto a maize leaf diseases 

dataset collected in a real field and optimized by fine-tuning, which 

solves the challenges mentioned above: manual annotation, model 

robustness, small dataset, domain similarity, and mobile simulation.  

In summary, this study provides an application example for maize 

disease identification under complex (field) background with deep 

transfer learning, which provides a theoretical basis for intelligent 

in-field identification using mobile terminal devices. 

2  Materials and methods 

2.1  Dataset 

This experiment was divided into two parts: training on the 

Plant Village public dataset and transfer learning on the local maize 

leaf diseases dataset using pre-trained models in part one.  The 

Plant Village dataset contains 39 classes which are composed of 38 

kinds of diseases and 1 background.  The 38 diseases may occur 

in 14 different crops and all categories contain 61 486 images in 

sum.  Each category is stored in an independent folder, 

representing the label.  Images were augmented by image flipping, 

gamma correction, noise injection, PCA color enhancement, 

rotation, and scaling.  Figure 1 shows some sample images of 

Plant Village. 
 

    
  a. Apple leaf with cedar rust b. Corn leaf with gray leaf spot c. Grape leaf with black rot d. Peach leaf with bacterial spot 

    
e. Pepper leaf with bacterial spot f. Potato leaf of health g. Strawberry leaf with scorch h. Tomato leaf with yellow leaf curl virus 

 

Figure 1  Augmented Plant Village dataset sample images 
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The local maize disease dataset was collected from a maize test 

field in Zhaodong City, Heilongjiang Province, China.  Image 

capture was achieved using iPhone 7 Plus rear camera with 

3024×4032 pixel resolution, and shooting times included morning, 

noon, and afternoon.  The camera supported 2× optical zoom, 10× 

digital zoom at most, and optical image stabilization.  Since a 

couple of leaves with several diseases may appear in one 

photograph, a 300×300 pixels clipping frame was predefined for 

separating the principal part of each leaf.  Pictures saved as JPG 

formats were manually clipped into 300×300 pixels images, and 

actual complex backgrounds (from the field) were retained 

wherever possible.  The dataset contained maize leaf health status 

and other three diseases of gray leaf spot, common rust, and 

northern leaf blight, comprising 4 categories and 1189 images in 

total, while approximately 10% of images were acquired from 

search engines to enlarge the dataset.  Table 1 lists the local maize 

dataset details and Figure 2 shows sample images.  
 

Table 1  Local maize dataset details 

No. Name Train Test Total 

1 Gray leaf spot 233 58 291 

2 Common rust 331 83 414 

3 Northern leaf blight 229 57 286 

4 Health 158 40 198 

Total 4 categories 951 238 1189 
 

  
a. Gray leaf spot b. Common rust 

  
c. Northern leaf blight d. Health 

 

Figure 2  Local maize dataset sample images 
 

Each dataset was split training and test sets (ratio 4:1 

respectively)[26].  Training set image resolution was adopted as the 

network entry size (224×224 pixels) or (299×299 pixels) in the 

following entrance of CNNs.  Training images were enhanced 

online through numerical normalization, rotation (20° or 40° 

randomly), translation (horizontal or vertical), scaling, flipping (up 

and down, left and right), and cross-cutting, which can make the 

model more generalizable and robust. 

2.2  Convolutional neural networks  

Convolutional neural networks are pipeline multi-processing 

layer network models, comprising multiple convolutions (C), 

pooling (P), and fully connected (FC) layers generally.  Deeper 

CNN architectures tend to extract better features, reduce loss levels, 

and improve fit, which also require more training data and 

computing resources.  12 different CNN models were trained on 

the Plant Village dataset and their performances for disease 

identification were compared.  VGG16 and VGG19[27], ResNet[28], 

InceptionV3[29], InceptionResNetV2[30], DenseNet121, 

DenseNet169, and DenseNet201[31] were divided into a set of deep 

CNNs; whereas Xception[32], MobileNet[33], MobileNetV2[34], and 

ShuffleNet[35] were divided into a set of lightweight CNNs.  

2.2.1  Dropout 

Complex feedforward neural networks can cause overfitting 

when trained on small datasets.  Dropout[36] helps prevent 

overfitting by reducing joint feature detector actions, improving 

overall CNN performance.  In this study, dropout parameter = 0.5, 

i.e., each training batch ignores 50% of the feature detectors (we set 

50% hidden layer node value=0), reducing interdependence 

between feature detectors (hidden layer nodes) to ensure local 

feature independence and enhance generalization. 

2.2.2  Hyperparameters 

The experiment was accomplished in 2 sections: deep learning 

on Plant Village and transfer learning on maize dataset, thus 

hyperparameters were introduced respectively. 

In both sections, “Callback” functions were applied to enhance 

the efficiency of training, namely “Early Stopping” and “Learning 

Rate Scheduler”.  The training began with a relatively big learning 

rate (LR) at first, and a metric (the accuracy or the loss value) was 

monitored at every step of every epoch.  If the training proceeded 

rationally and smoothly, the LR would keep its value.  Otherwise, 

a decay rate would minish the LR, and change the pace of training 

to reach convergence efficiently.  However, the mechanism would 

not run endlessly.  If the training hadn’t improved over a patience 

number of epochs even if the LR reached its least value, the 

training would be faced with a risk of overfitting and fluctuation.  

Then the training would be stopped and the best model weights 

would be saved.  

In the first section, all CNNs trained on the Plant Village 

dataset shared the same hyperparameters: Learning rate (LR)= 

0.001 with 0.000001 threshold.  LR decay was set within 5 epoch 

patience, then LR would become half of the original when 

cross-entropy loss reduced slowly.  Early stopping was 

implemented, and the epoch where loss converged to the minimum 

was recorded (Epoch convergent).  Maximum epochs = 100 

epochs.  Preliminary trials determined maximum batch size for a 

single training = 32.  Therefore, one epoch was completed after 

1538 steps if all 49 193 images in the training set were included.  

The training process in every batch is not used as a reference, but 

the recording of accuracy and loss value after each round of epoch.  

We used the RMSprop optimizer. 

In the second section, LR would begin at a smaller value, that 

is 0.0001 with 0.000001 threshold.  LR decay was set within 3 

epoch patience, other parameters remained unchanged.  Therefore, 

one epoch was completed after 30 steps if all 951 images in the 

training set were included.  

2.3  Transfer learning 

A two-staged model-based transfer learning approach was 

applied in this study.  Conventional transfer learning trains the 

CNN in the source domain and fine-tunes it in the target domain, 

solving overfitting and instability due to insufficient training data.  

In this paper, a closer source domain to the target domain was 

applied to obtain better performance.  Challenges lay in that the 

source domain dataset was collected under lab conditions while the 

target domain dataset was shot in the field, indicating an impact on 

performance.  Besides, in order not to destroy the ability of the 

previous layers of the network to extract features, pre-trained 

models needed to be fine-tuned temperately.  And the target 

domain was a small-scale dataset thus overfitting could easily 
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occur.  Therefore, the transfer learning employed two training 

strategies: layer-freezing (LF), freezing all layers’ parameters and 

initializing the classifier layer randomly; or fine-tuning (FT), 

defrosting part of the intermediate layer close to the classifier layer 

gradually and initializing them all.  Moreover, training set images 

in the self-built maize disease dataset were enhanced online.  The 

current applied both strategies to verify identification efficiency 

and accuracy.  Figure 3 shows the proposed process. 

 
Figure 3  Leaf disease identification process 

 

2.4  Hardware and software  

The platform employed for this study was a deep learning 

workstation equipped with Intel® Core™ i9-9900K 16 CPU @ 

3.6 GHz processor, RTX 3090 24G memory graphics card, 32 GB 

RAM, 2.5 TB HDD, graphics card driver version 455.45.01, 

CUDA version 11.1, and CUDNN version 8005.  The operating 

system was 64 bit Ubuntu 20.04 LTS, and programming was 

implemented using Python 3.7.9 and Keras 2.4.3 under the 

TensorFlow-GPU framework. 

3  Results and discussion 

3.1  Pre-trained model performances 

Table 3 shows pre-trained model performances.  ResNet and 

InceptionResNetV2 test accuracy was superior to other models, 

achieving 99.48% and 99.31% respectively; whereas InceptionV3, 

MobileNet, and MobileNetV2 achieved 98.82%, 98.69%, and 

98.00% respectively, and the remaining rest networks ranged from 

96% to 98%.   
 

Table 3  Baseline CNN model performances 

Network 
Epoch  

(Convergent) 

Training Test 

Loss Accuracy Loss Accuracy 

VGG16 33 0.1666 95.79% 0.1767 96.76% 

VGG19 41 0.0798 97.79% 0.1147 97.04% 

ResNet 47 0.0076 99.82% 0.0183 99.48% 

DenseNet121 27 0.0628 98.27% 0.1253 97.47% 

DenseNet169 23 0.0662 98.37% 0.1391 97.67% 

DenseNet201 34 0.0486 98.59% 0.1024 97.99% 

InceptionV3 18 0.0515 98.42% 0.1524 98.82% 

InceptionResNetV2 24 0.0151 99.63% 0.2096 99.31% 

Xception 10 0.0452 98.90% 0.1863 96.81% 

MobileNet 32 0.0178 99.44% 0.0493 98.69% 

MobileNetV2 36 0.0297 99.04% 0.0814 98.04% 

ShuffleNet 24 0.0352 98.82% 0.1473 96.08% 
 

ResNet, MobileNet, and MobileNetV2 losses were also 

smaller, achieving 0.0183, 0.0492, and 0.0814, respectively, 

whereas the other considered other networks were between 0.1 and 

0.21.  All model test accuracies exceeded 96%, indicating the 

excellent CNN performance on a sufficient training dataset.  

Ferentinos et al.[37] trained CNN models on a large self-constructed 

dataset, including 25 plants, 58 categories, and 87 848 images in 

total, achieving the highest accuracy for classic CNN = 99.53%.  

Therefore, sufficient training data is critical for optimal 

performance.  More complex networks can theoretically extract 

features better[38] but require more training data, hence DenseNet 

achieved the best accuracy in contrast to the present study[37]. 

In this study, the Test accuracy for the proposed deep CNN 

ranged from 96.76% to 99.48% and convergence occurred within 

30 epochs on average; whereas test accuracy for lightweight 

CNNs=96.08% to 98.69% and convergence<25 iterations.  This 

small test accuracy difference will ensure the lightweight network 

is easier to train. 

Table 4 shows the model scales and related parameters.  

Under the premise that the accuracy is higher than 98% or the loss 

value is not greater than 0.1, MobileNet and MobileNetV2 

employed relatively small parameter values=28.9 and 34.4, 

respectively, whereas ResNet, InceptionV3, and 

InceptionResNetV2 employed 12.5, 88.9, and 104.7, respectively.  

ResNet and MobileNet network models were relatively small, 144 

and 208 MB, respectively, outperforming all other models.  

Figure 4 shows training accuracy and loss changes for ResNet and 

MobileNet during training. 
 

Table 4  ResNet and MobileNet training accuracy and loss 

Network 
No. parameters 

(million) 
Model size/MB Input size (pixel) 

VGG16 27.6 210 224×224 

VGG19 32.8 251 224×224 

ResNet 12.5 144 224×224 

DenseNet121 49.5 223 224×224 

DenseNet169 54.4 367 224×224 

DenseNet201 66.5 438 224×224 

InceptionV3 88.9 679 299×299 

InceptionResNetV2 104.7 400 299×299 

Xception 125.7 959 299×299 

MobileNet 28.9 208 224×224 

MobileNetV2 34.4 262 224×224 

ShuffleNet 1.9 17.3 224×224 
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Figure 4  ResNet and MobileNet training processes 

 

Consequently, ResNet and MobileNet have relatively small 

parameters and model sizes while providing high identification 

performances, and hence are more suitable to be mounted on 

mobile agricultural equipment.  Therefore, after removing the 

bottom FC layer, these pre-trained models were retained for 

transfer learning in the next stage. 

3.2  Feature extraction 

Transfer learning requires a new FC layer for pre-trained 

models.  Figures 5 and 6 show MobileNet and ResNet network 

structure diagrams for transfer learning training, respectively, with 

the numbers at the bottom in the shape format of the output for 

each layer.  All convolutional layers included batch normalization 

(BN) and ReLU activation layers. 

MobileNet and ResNet features were extracted before the 

second stage of transfer learning.  Feature maps from the 

intermediate layer output can be obtained by importing three 

different disease images from the local maize disease dataset into 

the network.  Figure 7 shows feature samples for gray leaf spots, 

northern leaf blight, and common rust in MobileNet.  The number 

of channels selected = 10, 11, 12, 18, 19, and 20. 
 

 
Figure 5  MobileNet internal layer features (a) original image; feature images from (b) convolution, (c) BN,  

and (d) ReLU6 layers; feature images from (e) depthwise convolution, (f) BN, and (g) ReLU6 layers 
 

Figure 6 shows feature graphs from the 23rd channel within 

block 1.  Comparing the original image with the feature image, 

the 23rd feature image can not only resist influence from complex 

backgrounds but can also classify lesion areas more accurately.  

Ahmad et al.[39] concluded performance on laboratory data was 

superior to field data regardless of network type, and complex 

backgrounds can reduce identification accuracy.  Chen et al.[40] 

confirmed these conclusions for maize disease identification.  

Therefore, removing background interference will have significant 

impact on identification accuracy. 
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Figure 7 shows feature maps from the same three images as 

above in ResNet.  The feature maps show sensitivity towards 

northern leaf blight and common rust, and the highlighted area 

indicates the lesion area.  Most blade texture differences are also 

noted.  However, edge outlines and considerable background remains 

in the feature map, which will impact disease identification. 

 
Figure 6  Features from Channel No.23 MobileNet Block 1 

 

 
a. Features in Block0_cnv1 layer                  b. Features in Block0_res_module layer 

Figure 7  ResNet internal layer feature maps 
 

3.3  Transfer learning model performances 

The pre-trained ResNet and MobileNet weights were loaded 

and performed transfer learning training on the local maize disease 

dataset.  Four new models were derived depending on the 

different training strategies, layer-freezing (LF) or fine-tuning (FT): 

R-LF, R-FT, M-LF, and M-FT.  Figure 8 compares accuracy and 
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loss for these four models, and Table 5 lists training and test set 

performances, including early accuracy and loss after the first 

training epoch. 

 
Figure 8  Training process for ResNet and MobileNet models with 

layer-freezing (LF) and fine-tuning (FT) training strategies: R-LF, 

R-FT, M-LF, and M-FT 
 

Table 5  ResNet and MobileNet transfer learning performance 

Strategy Epoch 
Early Training Test 

Loss Accuracy Loss Accuracy Loss Accuracy 

R-LF 28 1.0976 81.91% 0.0904 98.74% 0.1266 97.82% 

R-FT 41 1.0197 84.61% 0.0722 99.23% 0.1368 98.77% 

M-LF 24 1.2255 79.18% 0.0823 98.30% 0.1987 96.92% 

M-FT 30 0.9486 81.38% 0.0918 99.05% 0.109 99.11% 
 

All transfer models achieved test accuracy ≥96%.  

Fine-tuning strategy models performed better than LF models with 

0.95% and 2.19% improvement for ResNet and MobileNet, 

respectively.  Fine-tuning models also reduced losses by 0.0098 

and 0.0893 compared with LF models.  M-LF achieved the best 

test accuracy=99.11%.  Thus, transfer learning provided good 

identification performance.  The general outcome is consistent 

with Too et al.[41], who migrated pre-trained ImageNet models onto 

the Plant Village dataset, achieving accuracy >90% for all models 

except VGG16, whereas DenseNet and ResNet performed better 

and converged more easily.  In contrast, the present study used the 

Plant Village dataset as the source rather than target domain.  

Plant Village is smaller capacity than ImageNet (1.28 million 

images tagged training sets, 1 thousand categories), hence 

deep-CNN fails to show significantly better performance, and Plant 

Village was more similar to the local maize disease dataset, hence 

improving accuracy. 

On the other hand, LF effectively reduced training epochs at 

the expense of accuracy, reducing overall hardware resource 

requirements compared with FT.  Transfer learning accuracy 

≥79% and loss ≤1.3 after the first epoch, with FT achieving better 

initial accuracy and loss than LF.  Thus, transfer learning training 

required less initial learning rate and patience with greater decay 

rate, hence improving training efficiency compared with training 

from scratch. 

Figure 9 shows confusion matrices for the four model’s disease 

identification performances.  Gray leaf spot and northern leaf 

blight slightly misidentify each other, and common rust may be 

misidentified as gray spot, but gray spot does not tend to be 

misclassified as rust.  ResNet and MobileNet were the superior 

pre-trained models on Plant Village, and also achieved outstanding 

performance on the local maize leaf disease dataset collected in the 

field.  MobileNet achieved the best performance after FT (M-FT), 

with test accuracy = 99.11%, 2.19% higher than the original model.  

In contrast, R-FT test accuracy = 98.77%, 0.95% improvement. 

 
a. M-LF  b. M-FT 

 
c. R-LF  d. R-FT 

 

Note: Label 0 to 3 refers to gray leaf spot, common rust, northern leaf blight and healthy leaves respectively; Test set predictions made by  

models are in the 4×4 grid and larger values are assigned darker colors. 

Figure 9  Confusion matrices for R-LF, R-FT, M-LF, and M-FT models 
 

Table 6 lists the comparison with current state-of-the-art 

methods of recent researches on plant disease identification, where 

P.V. is short for “Plant Village” dataset and TL is short for 

“Transfer Learning”. 

Along with the shrinking scale of dataset, more training 

strategies and innovative modifications to models are applied, and 
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transfer learning becomes a common practice.  Large scale dataset 

with conventional deep CNNs promises an extra high accuracy, 

which indicates sufficient samples are of the essence when 

networks have the capacity to extract deep features.  Among the 

studies listed above, this paper proves the effectiveness of transfer 

learning from Plant Village with its high accuracy and supplies the 

solution to the dataset size problem.  Moreover, fine-tuned 

MobileNet is guaranteed to be deployed on mobile terminal devices 

in real field scenario tasks, which is expected to be a direction of 

future development. 
 

Table 6  Comparison with current state-of-the-art methods of diseases identification 

Research Dataset Strategy Model Accuracy 

a
[37]

 (2018) Expanded P.V. (87848) Training from scratch VGG 99.53% 

b
[41]

 (2018) P.V. TL (ImageNet) DenseNets 99.75% 

c
[42]

 (2019) Local (46135) Background removal; Dataset expansion GoogLeNet 94%-96% 

d
[21]

 (2020) 
Maize (3852, P.V.); 

Local (rice&maize, 500 &466 each) 
TL (ImageNet); Augmentation INC-VGGN 92.00% 

e
[43]

 (2020) Local (maize, 466) TL (Plant Village); Attention mechanism Mobile-DANet 95.86% 

f 
[44]

 (2021) Local (coconut, 1564) TL (ImageNet); Segmentation InceptionResNetV2, MobileNet 81.48%, 82.10% 

g Local (maize, 1192) TL (Plant Village); Augmentation MobileNet 99.11% 
 

In this section, transfer learning was an efficient method and 

provided high-precision outcomes.  MobileNet was more robust to 

interference from complex backgrounds than ResNet, which may 

explain why MobileNet achieved better identification performance 

on the local dataset. 

4  Conclusions 

Deep-transfer learning method was validly effective especially 

when the dataset was on small scale, and transfer learning 

improved initial model performance and training efficiency, 

illustrated by fine-tuned MobileNet achieving the best performance.  

This study provides a theoretical foundation for mobile collection 

terminal maize disease identification with deep-transfer learning 

method, which establishes the foundation for further practical 

development of models and enrichment of data set. 
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