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Abstract: This study was conducted to investigate the potential of hyperspectral imaging technique (900-1700 nm) for 
nondestructive determination of inosinic acid (IMP) in chicken.  Hyperspectral images of chicken flesh samples were acquired, 
and their mean spectra within the images were extracted. The quantitative relationship between the mean spectra and reference 
IMP value was fitted by partial least squares (PLS) regression algorithm.  A PLS model (MAS-PLS) built with moving 
average smoothing (MAS) spectra showed better performance in predicting IMP content, leading to correlation coefficients (RP) 
of 0.951, root mean square error (RMSEP) of 0.046 mg/g, and residual predictive deviation (RPD) of 3.152.  Regression 
coefficient (RC), successive projections algorithm (SPA), stepwise, competitive adaptive reweighted sampling (CARS), and 
uninformative variable elimination (UVE) were used to select the optimal wavelengths to optimize the MAS-PLS model.  
Based on the 18 optimal wavelengths (907.14, 917.02, 918.67, 926.90, 930.20, 936.78, 956.54, 1004.28, 1135.89, 1211.56, 
1302.07, 1367.94, 1397.60, 1488.31, 1680.17, 1683.49, 1686.80 and 1695.10 nm) selected from MAS spectra by SPA, the 
MAS-SPA-PLS model was built with RP of 0.920, RMSEP of 0.056 mg/g and RPD of 3.220, which was similar to the 
MAS-PLS model.  The overall study indicated that hyperspectral imaging in the 900-1700 nm range combined with PLS and 
SPA could be used to predict the IMP content in chicken flesh. 
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1  Introduction  

Compared with pork, beef, and mutton, chicken meat has 
become one of the most popular products for consumption because 
of its high protein content, low content of fat, heat energy, and 
cholesterol[1].  With the continuous improvement of people’s 
living standards, the nutrition, flavor, and safety of chicken have 
become the focus of people's attention[2-4].  Umami is considered 
as the fifth basic taste after sweet, sour, bitter, salty, which not only 
increases the appetite of consumers but also serves as an important 
source of nutrition for the human body[5].  Studies have found that 
the umami taste of meat and its products mainly depends on two 
types of substances, one is amino acids, and the other is nucleotides, 
and the strongest umami taste is inosinic acid (IMP)[6].  IMP, 
named hypoxanthine nucleotide, the main component of the umami 
taste of meat, plays an important role in the water holding capacity, 
physical properties, and sensory properties[7].  Umami can be 
enriched with the accumulation of IMP and other breakdown 
products in meat, and IMP can produce a unique umami flavor 
when heated in water or fat[8,9].  The ability to increase the umami 
taste of food using IMP is 40 times stronger than sodium 
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glutamate[10].  Due to the continuous improvement of living 
standard, consumers have paid more and more attention to pursuing 
chicken with umami flavor.  Compared with other chicken quality 
parameters, IMP is an important basis for evaluating whether the 
superior quality or not.  IMP has always been regarded as an 
important index to measure the umami taste of meat in the world, 
and its content can reflect the pros and cons of the meat flavor.  
Among the existing methods for the determination of IMP, UV 
spectrophotometry can only achieve rough quantification, capillary 
electrophoresis has the problem of low resolution and interference 
from similar substances such as inosine and adenosine 
monophosphate, the operation process of thin layer 
chromatography is complicated and time-consuming, and its 
recovery rate is low[11,12].  Although the high-performance liquid 
chromatography (HPLC) method is accurate, the sample processing 
process of this method is cumbersome and difficult[13].  In 
addition, these methods are destructive to samples, time-consuming 
and laborious, and are not suitable for large-scale and on-site 
non-destructive IMP content detection of chicken products.  New 
technologies or methods should be developed to meet the 
increasing requirements for non-destructive determination. 

Hyperspectral imaging (HSI) combined spectroscopy and 
computer vision technology can capture both spectral and spatial 
information of the tested samples, and has high resolution, 
non-destructive, easy to operate, and other characteristics[14,15].  
HSI not only makes up for the shortcomings that traditional 
spectral technology cannot provide the spatial information of the 
tested samples, but also breaks the limitation that image techniques 
cannot provide spectral information[16-18].  At present, HSI 
technology has obtained a great deal of research on nondestructive 
testing of agricultural products, and has produced many 
achievements.  The technology has been widely used for the 
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quality evaluation in livestock meat, such as chemical 
properties[19-21] (fat, protein, moisture, biogenic amine index, the 
total volatile basic nitrogen), physical properties[22-25] (color, 
tenderness and water-holding capacity, pH) and microorganism[26]. 

It has been reported that a variety of acidic components in 
meats were detected by means of HSI, such as thiobarbituric acid, 
fatty acid, palmitic acid and oleic acid.  Xiong et al.[27] 
demonstrated that 400-1000 nm HSI was suitable for the 
determination of 2-thiobarbituric acid reactive substances (TBARS) 
values for freshness evaluation in chicken meat with Rp of 0.801 
and RMSEP of 0.157.  There was a similar conclusion in 
predicting TBARS of pork muscles via HSI in the spectra range of 
400-1000 nm, combined with Rp

2 of 0.896, RMSEP of 1.034 by 
Aheto et al.[28] Kobayashi et al. researched the contents of total 
saturated fatty acid (SFA) and total unsaturated fatty acid (UFA) in 
intact raw beef cuts based on 1000-2300 nm HSI spectra, and the 
prediction results were good with R2 of 0.87 and 0.89, standard 
error of prediction (SEP) of 1.69% and 3.41%, respectively, 
revealing the applicability and feasibility of HSI[29].  Moreover, 
the feasibility of combining spectral and textural information from 
HSI (900-1700 nm) to improve the prediction of the palmitic acid 
(C16:0) and oleic acid (C18:1 n9) contents for lamb meat was 
explored by Wang et al. and Rp

2, RMSEP was 0.9113 and 0.8854, 
0.1368 g/100 g and 0.3596 g/100 g, respectively[30].  However, 
there were no studies on the determination of IMP in chicken meat 
by HSI.  Given the great potential of HSI in nondestructive 
detection, we attempted to apply NIR hyperspectral imaging 
(900-1700 nm) in predicting IMP content in chicken breasts, which 
will provide the theoretical foundation for further special-purpose 
equipment development. 

2  Materials and methods 

2.1  Sample preparation 
One hundred and twenty-seven fresh raw chicken breasts were 

provided by Zhongpin Food Co., Ltd, China.  The length of each 
chicken breast is (16.0±1.0) cm and the width is (10.0±1.0) cm.  
All samples were vacuum packed, frozen and transported for 
around 3 h (maintain IMP level to the maximum extent) to the 
Meat Processing and Quality Control Laboratory of Henan Institute 
of Science and Technology, Xinxiang, China.  Each fresh raw 
chicken breast was cut into 3 cm length×3 cm width×1 cm 
thickness squares under aseptic conditions, and finally, 127 
samples were obtained.  All the samples were put into sterile 
disposable plastic boxes, labeled and stored in a digital refrigerator 
at 0°C-4°C for 0, 1, 2, 3, 4, 5, and 6 d (slight decrease of IMP).  
Eighteen samples at first six days and nineteen samples at last day 
were taken out from the refrigerator to determine IMP. 
2.2  Hyperspectral image acquisition and calibration 

In this experiment, an advanced NIR hyperspectral reflectance 
imaging system in the range of 900-1700 nm (HSI-eNIR-XC130, 
Isuzu Optics Corp., Taiwan) was used to collect the spectral 
information of chicken samples.  The system is mainly composed 
of a spectrograph, a Charged Couple Device (CCD) camera, zoom 
lens, illumination source, a moving stage, and a computer equipped 
with Spectral Image software and HSI Analyzer software, as shown 
in Figure 1. 

The HSI system was turned on and preheated for 30 min in 
order to stabilize the light source and reduce the error caused by the 
instability of the spectral system.  The sample was taken from the 
refrigerator to reach room temperature, and then put on the moving 
table of the system for scanning.  The parameter settings of the 

hyperspectral system are listed in Table 1.  The dark current of the 
camera will cause a lot of noise in the sample image acquisition 
process.  The original images need to be corrected with black and 
white images to reduce the influence of noise on the hyperspectral 
data.  The calibration can be calculated using Equation (1)[31]. 
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where, R is the calibrated reflectance image; R0 is the raw image; 
RB is the black image (0% reflectance) and RW is the white image 
(99.9% reflectance).  RW was obtained by recording an image of a 
white board; RB was achieved by covering the lens with cap and then 
collecting an image after turning off the light source completely. 

 
Figure 1  Schematic diagrams of main components of the HSI 

systems 
 

Table 1  Parameters setting of HSI system 
Parameter setting Parameter 

Exposure time 3.6 ms 
Wavelength range 900-1700 nm 
Speed of scanning 6.54 mm/s 
Scanning distance 65-165 mm 
Image size 640×848 dpi 
Object distance 44 cm 
Number of wavelengths 486 

 

2.3  Spectral data extraction 
After the image calibration, the image corresponding to the 

location of the chicken sample was considered as the region of 
interest (ROI)[32].  The spectra within the ROI were extracted and 
averaged by HSI Analyzer software to achieve mean spectral data 
of each sample, which is a critical step in data processing to 
remove the undesired interference such as the background and 
sample platform.  By repeating the identification and extraction 
process, 127 mean spectra corresponding to the 127 samples were 
obtained.  The mean spectra of all samples were saved in a matrix 
where the rows represented the 127 samples and the columns 
represented the 486 wavelengths as the spectroscopic resolution of 
HSI was about 1.6 nm in the range of 900-1700 nm. 
2.4  Determination of IMP 
2.4.1  Sample pretreatment 

After the chicken sample was minced with a meat grinder, 
about 5 g of the samples were weighed.  20 mL perchloric acid of 
6% and the chicken samples weighed were added to the 50 mL 
centrifuge tube and homogenized until well mixed.  After the 
homogenate was centrifuged at 8000 r/min for 15 min, the 
supernatant was filtered into a 100 ml triangulated bottle.  The 
precipitate was homogenized again with 15 mL 6% perchloric acid 
and centrifuged to obtain the second supernatant.  The 
twice-acquired supernatants were combined, adjusted to pH 6.5 
using potassium hydroxide solution, transferred to a 100 mL 
volumetric flask and mixed evenly.  The mixed supernatants were 
filtered with a 0.45 μm filter membrane and then used for HPLC 
analysis. 



January, 2022       Wang Y Y, et al.  Nondestructive determination of IMP content in chilled chicken based on hyperspectral data       Vol. 15 No.1   279 

2.4.2  Chromatographic condition  
In the HPLC analysis, the chromatographic column was 

C18-ST (5 μm, 120 A, 4.6 mm×250 mm, Beijing TechMate 
Technology Corp., China).  The mobile phase was 20% methanol 
solution with a flow velocity of 1 mL/min.  The injection volume 
was 5 μL.  The ultraviolet detection wavelength of refractive 
index detector (2414, Waters Corp., the United States) was 254 nm.  
The chromatographic temperature was 25.0°C.  Both the sample 
extracting solution and the standard substance solution run for 
10 min in the HPLC system (e2695, Waters Corp., the United 
States).  The chromatographic conditions for IMP detection were 
improved on the basis of the research of Zhang et al.[7].  The 
chromatograms of the standard solution and the sample extraction 
solution were shown in Figure 2.  

 
a. Standard solution 

 
b. Sample extraction solution 

Figure 2  Chromatograms of the standard solution and the sample 
extraction solution of IMP 

 

2.4.3  Determination of regression equation of standard curve 
The IMP of 0.02, 0.04, 0.08, 0.10, 0.12 and 0.16 mg/mL 

standard working liquid were prepared from 1 mg/mL IMP 
standard solution, respectively, and analyzed using Section 2.4.2 
chromatographic conditions.  The concentration of IMP standard 
was taken as independent variable X, while the response value of 
chromatographic peak area was taken as dependent variable Y.  
The results showed that there was a good linear relationship 
between IMP concentration and peak area response between 
0.02-0.16 mg/mL.  The calculated standard curve equation of IMP 
was Y=4.81×106X−2.58×104 with the correlation coefficient of 
0.9997.  The standard curve was shown in Figure 3.  

 
Figure 3  Response values of chromatographic peak area of IMP 

standard concentration 
 

2.4.4  Calculation of IMP content in samples 
According to Section 2.4.3 chromatographic conditions, the 

sample extraction solution was analyzed, the content of IMP (mg/g)  

in the sample was calculated by Equation (2). 
100CX

m
=                    (2) 

where, X is the content of IMP in the sample, mg/g; C is the 
concentration of IMP in the sample extraction solution, mg/mL; m 
is the weight of the sample, g. 
2.5  Spectral data pre-processing 

In the process of spectral acquisition, the spectra may be 
interfered with by noise interference generated by the instrument 
itself and the external environment, and the influence of light 
scattering.  Therefore, it is necessary to perform spectral 
preprocessing to eliminate negative effects.  This study used eight 
commonly used preprocessing methods to preprocess the original 
spectra of the sample, including moving average smoothing (MAS), 
Gaussian filter smoothing (GFS), Savitzky-Golay smoothing (SGS), 
normalize (NOR), multiplicative scatter correction (MSC), standard 
normal variate (SNV), Gap-Segment derivatives (GSD) spectra and 
Norris gap derivatives (NGD).  MAS, GFS, and SGS are 
smoothing processing to remove random noise[20,33].  NOR can 
eliminate the effect of optical path change or sample dilution on the 
spectrum [34].  MSC and SNV are mainly used for light scattering 
correction to improve the accuracy of spectral data[35,36].  Both 
GSD and NGD belong to derivatives that have the capability to 
remove both additive and multiplicative effects in the spectra and 
have been used in analytical spectroscopy for many years[37]. 
2.6  Establishment of IMP prediction model   

Partial least squares (PLS) is a high-efficiency multivariate 
data analysis method that combines the functions of multiple linear 
regression (MLR) and principal component regression (PCR), and 
has a wide range of applications and predictability[38,39].  In this 
experiment, PLS was used to mine the quantitative relationship 
between the spectral data and IMP content of chicken samples.  
The reflectance spectra of 900-1700 nm were used as the 
independent variable, the reference value of IMP was used as the 
dependent variable, PLS prediction model was established with the 
two variables to predict IMP content in chicken. 

The performance of the PLS models was assessed by 
correlation coefficient (R) of calibration set (RC) and prediction set 
(RP) and root mean square error (RMSE) of calibration set 
(RMSEC) and prediction set (RMSEP).  In general, the closer 
R-value to 1 and the smaller RMSE value represent the model is 
more stable and predictable.  Robustness and residual prediction 
deviation (RPD) can also be used to evaluate the performance of 
the model.  Robustness is expressed by |RMSEC-RMSEP| (ΔE), 
the smaller the ΔE value, the more stable the model[24].  RPD is 
the ratio of the standard deviation of the reference value of all 
samples in the prediction set to the standard deviation of the 
prediction set[40].  The higher R and RPD values and the smaller 
RMSE and ΔE values indicate that the PLS model has better 
predictive ability and stronger stability.  The above evaluation 
parameters are calculated according to Equations (3)-(7). 
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where, xi is the actual measured IMP content of the sample, i.e., i=1, 
2, 3,…, n and n is the total number of samples; x  is the average 
value of xi, yi is the predictive value of the IMP content of the 
sample; y  is the average value of yi; SEP is the prediction 
standard deviation of the prediction set; Bias is the systematic 
deviation; k is the number of regression factors; SD is the standard 
deviation of IMP content of all samples in the prediction set. 
2.7  Optimal wavelength selection and model optimization 

There were a total of 486 wavelengths in the 900-1700 nm 
range used in this experiment.  Using all wavelengths as input 
variables for modeling can achieve a good prediction effect, but a 
large amount of data in the whole band contains more redundant 
information which will reduce the efficiency of model performance 
and affect the predictive ability of the model.  Although the use of 
different preprocessing methods to process the original data can 
remove the negative effects of the system, the preprocessing cannot 
eliminate redundant information and retain useful information that 
contributes to the IMP content model.  Therefore, it is necessary 
to select optimal wavelengths for modeling by eliminating 
irrelevant information and keeping useful information. 

The regression coefficient method (RC)[41], stepwise[42], 
successive projection algorithm (SPA)[43], competitive adaptive 
reweighted sampling (CARS)[44], and uninformative variable 
elimination (UVE)[45] were used to select the optimal wavelengths.  
These five methods are widely used in the selection of spectral 
model variables, which can achieve variable dimensionality 
reduction during the modeling process, thereby reducing the 
singularity and instability of the original spectral data.  By 
comparing the performance of the optimized model, the best 
method for selecting the optimal wavelengths was confirmed.  
The wavelength selection by RC method and the PLS model 
construction was implemented by using software Unscrambler 9.7 
(CAMO, Oslo, Norway).  The Stepwise, SPA, and CARS 
processes were implemented by Matlab R2016a software (The 
Mathworks, Inc., Natick, MA, USA). 

3  Results and discussion 

3.1  Spectral profiles of chicken breast 
As can be seen from Figure 4, although the trends of all the 

spectral curves of 127 chicken samples were similar for raw spectra, 
the high and low positions were different, which is probably due to 
the different chemical composition content of the 127 chicken  

 
a. Raw spectra b. MAS pretreatment spectra c. GFS pretreatment spectra 

 
d. SGS pretreatment spectra e. NOR pretreatment spectra f. MSC pretreatment spectra 

 
g. SNV pretreatment spectra h. GSD pretreatment spectra i. NGD pretreatment spectra 

 

Figure 4  NIR characteristics of chicken samples under different pretreatment 
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samples corresponding to diverse spectral characteristics.  In 
specific, the absorption peak at around 980 nm and 1450 nm are 
related to water content (O-H stretching vibration), while the peak 
around 1200 nm is attributed to fat (C-H stretching vibration)[46].  
No typical protein absorption was found as it was masked by water 
absorption, resulting from the more than 70% water content in 
chicken flesh.  Although no absorption peak was found related to 
IMP, appropriate chemometric algorithms could be adopted to 
mine the spectral information from the full 900-1700 nm range to 
relate to IMP.  After different pretreatments, the original spectrum 
curves had different changes in shape, which indicated the different 
noise elimination effects. 
3.2  Reference IMP values 

The reference IMP values of the 127 chicken samples 
measured by HPLC were obtained and shown in Table 2.  All the 
values were then sorted from smallest to largest, and one in four 
was taken into prediction set and the remaining was put into 
calibration set[47].  Figure 5 vividly illustrated that the reference 
IMP values of 127 chicken samples obeyed the normal distribution, 
which demonstrated it was reasonable to establish a prediction 
model for chicken IMP. 

 

Table 2  Reference values of IMP (mg/g) measured by HPLC 
method 

Sample set Numer of 
samples 

Minimum   
/mg·g−1 

Maximum 
/mg·g−1 

Mean 
/mg·g−1 

SD 
/mg·g−1

Calibration set 95 0.710 1.479 0.989 0.138 
Prediction set 32 0.767 1.429 0.992 0.145 

Note: SD: Standard Deviation. 

 
Figure 5  Normal distribution of reference IMP values 

 

3.3  PLS model for predicting IMP values using full wavelength 
PLS algorithm was implemented by inputting a matrix with 

127 samples × 486 wavelengths to find the quantitative relationship 
between spectra and reference IMP values.  Among, the 
sub-matrix of 95 samples × 486 wavelengths was used for 

calibration and the rest sub-matrix of 32 samples × 486 wavelengths 
was for prediction.  With Raw, MAS, GFS, SGS, NOR, MSC, 
SNV, GSD and NGD spectra, nine full wavelengths PLS models 
were established and their performances are listed in Table 3.  

It can be seen that different pretreatment methods had different 
effects on the PLS models for predicting IMP content in chicken.  
Among, the RC and RP of the Raw-PLS, MAS-PLS, GFS-PLS and 
SGS-PLS models were all reached over 0.940, which indicated the 
good linear correlation between spectra and IMP values.  By 
comparison, the RC and RP values of the MAS-PLS model were the 
highest (0.964 and 0.951, respectively), the RMSEC, RMSEP and 
ΔE values were the smallest (0.036 mg/g, 0.046 mg/g, and    
0.010 mg/g, respectively), indicating the highest accuracy and 
stability.  Besides, the highest RPD value of 3.152 represented 
that the MAS-PLS model was moderately successful and therefore 
considered for the further test with the best performance. 
3.4  Optimal wavelength selected by the chemometric method 

Although the predictive ability of the MAS-PLS model for 
IMP prediction was good, a total of 486 wavelengths in the 
900-1700 nm range would require more time during the modeling, 
which would reduce the efficiency of hyperspectral detection.  
Therefore, the number of full wavelengths should be decreased and 
the optimal wavelengths should be selected to achieve the 
optimization of MAS-PLS model.  In view of this, RC, stepwise, 
SPA, CARS and UVE were used to select the optimal wavelengths 
and the results are listed in Table 4.  The 18-31 optimal 
wavelengths were selected from the 486 full wavelengths, 
indicating that 92.80%-96.30% wavelengths were reduced.  
Within the five methods, the SPA method selected the 18 optimal 
wavelengths with the least number of wavelengths and had the 
highest wavelength reduction rate. 
3.5 PLS model for predicting IMP values using optimal 
wavelengths 

Based on the above selected optimal wavelengths, five 
optimized PLS models were respectively established, and their 
performances in predicting IMP content were shown in Table 5.  
With higher R, RPD and lower RMSE and ΔE, the MAS-SPA-PLS 
model established with 18 optimal wavelengths selected by SPA 
showed better accuracy and stability in predicting IMP content, 
resulting in RP of 0.920, RMSEP of 0.056 mg/g, ΔE of 0.013 and 
RPD of 3.220.  Besides, the MAS-SPA-PLS model showed 
similar performance compared with the MAS-PLS model (RP of 
0.951, RMSEP of 0.046 mg/g, ΔE of 0.010 and RPD of 3.152).  
Hence, the MAS-SPA-PLS model was more suitable to predict 
IMP content in chicken meat with higher efficiency. 

 

Table 3  PLS models for predicting IMP by using the full range spectra 

Calibration set Prediction set Spectral 
preprocessing Model Number of  

wavelengths RC RMSEC/mg·g−1 RP RMSEP/mg·g−1 
ΔE RPD 

Raw Raw-PLS 486 0.959 0.039 0.948 0.047 0.011 3.021 

MAS MAS-PLS 486 0.964 0.036 0.951 0.046 0.010 3.152 

GFS GFS-PLS 486 0.958 0.039 0.941 0.051 0.012 2.959 

SGS SGS-PLS 486 0.960 0.038 0.940 0.051 0.013 2.900 

NOR NOR-PLS 486 0.927 0.051 0.871 0.070 0.019 2.042 

MSC MSC-PLS 486 0.888 0.063 0.849 0.076 0.013 1.908 

SNV SNV-PLS 486 0.888 0.063 0.849 0.076 0.013 1.883 

GSD GSD-PLS 486 0.950 0.043 0.753 0.098 0.055 1.510 

NGD NGD-PLS 486 0.950 0.043 0.753 0.098 0.055 1.510 

Note: RC: Regression Coefficient; RP: Correlation Coefficients; RMSEP: Root Mean Square Error; RPD: Residual Predictive Deviation; RMSEC: Root Mean Square 
Error of Calibration.  ΔE=|RMSEC-RMSEP|. 
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Table 4  Results of optimal wavelengths selected by different methods for IMP content prediction 

Spectra Number of full 
wavelength Method The specific 

optimal wavelengths/nm 
Number of optimal 

wavelengths 
Wavelength 

reduction 

RC 
907.14, 918.67, 921.96, 926.90, 930.20, 935.14, 1020.73, 1027.31, 1132.60, 1165.50, 
1302.07, 1339.94, 1372.89, 1531.24, 1554.37, 1680.17, 1683.49, 1688.46, 1691.78, 
1696.76 

20 95.88% 

Stepwise 
907.14, 925.26, 931.84, 956.54, 958.19, 969.71, 971.36, 994.40, 1134.25, 1341.59, 
1343.24, 1480.05, 1522.98, 1531.24, 1541.15, 1542.80, 1551.06, 1589.09, 1590.75, 
1685.15, 1693.44, 1695.10 

22 95.47% 

SPA 907.14, 917.02, 918.67, 926.90, 930.20, 936.78, 956.54, 1004.28, 1135.89, 1211.56, 
1302.07, 1367.94, 1397.60, 1488.31, 1680.17, 1683.49, 1686.80, 1695.10 18 96.30% 

CARS 

907.14, 912.08, 915.38, 918.67, 925.26, 926.90, 930.20, 951.60, 954.90, 956.54, 958.19, 
1025.67, 1028.96, 1030.61, 1037.19, 1043.77, 1129.31, 1130.96, 1132.60, 1134.25, 
1216.50, 1303.72, 1307.01, 1313.60, 1318.54, 1330.06, 1389.36, 1405.84, 1552.72, 
1554.37, 1556.02, 1589.09, 1683.49, 1691.78, 1696.76 

35 92.80% 

MAS 486 

UVE 

907.14, 908.79, 915.38, 920.32, 925.26, 956.54, 968.07, 969.71, 1027.31, 1028.96, 
1030.61, 1043.77, 1045.41, 1102.99, 1144.12, 1267.51, 1298.78, 1300.43, 1302.07, 
1348.18, 1349.82, 1374.53, 1419.03, 1488.31, 1494.91, 1511.42, 1552.72, 1554.37, 
1556.02, 1557.68, 1579.17 

31 93.62% 

 

Table 5  PLS models for predicting IMP by using the optimal wavelengths 

Calibration set Prediction set 
Model Method Number of wavelengths 

RC RMSEC/mg·g−1 RP RMSEP/mg·g−1 
ΔE RPD 

MAS-RC-PLS RC 20 0.944 0.045 0.873 0.071 0.027 2.013 

MAS-Stepwise-PLS Stepwise 22 0.945 0.035 0.895 0.065 0.031 2.196 

MAS-SPA-PLS SPA 18 0.950 0.043 0.920 0.056 0.013 3.220 

MAS-CARS-PLS CARS 35 0.942 0.046 0.890 0.066 0.021 2.163 

MAS-UVE-PLS UVE 31 0.860 0.059 0.860 0.074 0.002 1.932 
 

The F-test on IMP values in the MAS-SPA-PLS model was 
conducted for the sake of statistical soundness[48].  As shown in 
Table 6, the F<''F (one-tailed critical value)” and P (F≤f)>0.05 of 
MAS-SPA-PLS model predicting results, that was to say 1.18<1.82 
and 0.32>0.05, which indicated there was no significant difference 
in precision between the two groups of data (reference value and 
predicted value).  It was appropriate for the MAS-SPA-PLS 
model to detect IMP in chicken breast by HSI and the scatter plot 
of measured and predicted values in the prediction set are shown in 
Figure 6.  The prediction model can be expressed as Equation (8). 
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Table 6  F-test two-sample analysis of variance of optimized 
model 

Optimization model Items Reference value Predicted value

Average 0.99 0.99 

Variance 0.02 0.02 

Observed value 32 32 

df 31 31 

F 1.18 -- 

P(F≤f) 0.32 -- 

MAS-SPA-PLS 

F (one-tailed  
critical value) 1.82 -- 

Note: df: degree of freedom. 

 
Figure 6  Scatter plot of measured and predicted values of 

MAS-SPA-PLS model 

4  Conclusions 

In this experiment, the potential of 900-1700 nm 
high-resolution HSI spectra were investigated for the 
non-destructive prediction of IMP content in chicken breast.  PLS 
algorithm was applied to mine the linear relationship between Raw, 
MAS, GFS, SGS, NOR, MSC, SNV, GSD, NGD spectra and IMP 
values, respectively.  The results showed that the MAS-PLS 
model performed better for predicting IMP content with RP of 
0.951 and RMSEP of 0.046 mg/g.  After simplifying 486 full 
wavelengths of MAS spectra by SPA, the MAS-SPA-PLS model 
built with 18 optimal wavelengths was better in predicting IMP 
content, with RP of 0.920 and RMSEP of 0.056 mg/g.  In 
conclusion, it is promising to predict IMP content in chicken breast 
based on HSI in a non-destructive way. 
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