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Abstract: Traditional vine variety identification methods usually rely on the sampling of vine leaves followed by physical, 

physiological, biochemical and molecular measurement, which are destructive, time-consuming, labor-intensive and require 

experienced grape phenotype analysts.  To mitigate these problems, this study aimed to develop an application (App) running 

on Android client to identify the wine grape automatically and in real-time, which can help the growers to quickly obtain the 

variety information.  Experimental results showed that all Convolutional Neural Network (CNN) classification algorithms 

could achieve an accuracy of over 94% for twenty-one categories on validation data, which proves the feasibility of using 

transfer deep learning to identify grape species in field environments.  In particular, the classification model with the highest 

average accuracy was GoogLeNet (99.91%) with a learning rate of 0.001, mini-batch size of 32, and maximum number of 

epochs in 80.  Testing results of the App on Android devices also confirmed these results. 
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1  Introduction

 

To meet the growing needs of the increasingly affluent and 

growing population, plant productivity must be improved, and 

resources must be managed more effectively.  This problem is 

being severer in conditions of climate change and natural resources 

shrinkage in recent years.  Precise breeding by selecting favorable 

genomic variants is helpful to improve plant productivity and 

efficiency.  However, this method depends on a detailed 

understanding of the relationship between genotype and 

phenotype[1].  The framework of the automatic feature (phenotype) 

extraction and classification during the plant growth stage can 

significantly promote precise breeding. 

As the pillar of the wine industry, the grape is receiving 

increasing interest and now has genome sequence from thousands 

of germplasm[2-4].  Conventionally, different germplasms 

(genotypes) were classified according to their working phenotypes 

by designated biologists, where “manual” images were used in 

terms of canopy architecture, leaf area, and other functions[5-8].  
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These functions can be calculated manually or through a 

customized image processing algorithm.  The main disadvantage 

of using hand-made descriptors is that although being easy to 

interpret, they may fail to evaluate the actual characteristics of 

variability between germplasms.  In addition, the customized 

image processing method for extracting manual features may not 

work well in other experiments and may be difficult to generalize 

to more heterogeneous datasets in practical applications[9-11].  

Therefore, more advanced approaches are desirable for automatic 

genotype classification.  

In the past few years, deep neural networks especially 

convolutional neural networks (CNN)[12-18] have been drawing 

increasing interest in both academia and industry due to their 

promising performance over conventional machine learning 

algorithms.  In particular, the improved performance is mainly 

due to the complex structure of CNN, the substantially increased 

volume of the dataset and the significantly improved computation 

power.  Different from conventional machine learning approaches, 

CNN can automatically extract the most descriptive and 

discriminating features from the image dataset in the training stage.  

In these approaches, the feature extraction and training steps are 

performed concurrently, where the algorithms attempt to 

automatically learn the features which can minimize the loss 

criteria for phenotype problems.  As a result, the features for the 

problem of interest can be automatically generated.  It is also 

noted that the training process for CNN approaches is usually 

time-consuming and also requires a large volume of the labelled 

dataset.  

The traditional method of the identification of vine varieties by 

vine leaves is usually needed to do destructive sampling, followed 

by physical, physiological, biochemical and molecular 

measurements[19,20].  Although these methods have been proved to 
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be effective, they are time-consuming, labor-intensive and usually 

require experienced grape phenotype analysts.  To mitigate these 

problems, this study aimed to develop an application (App) running 

on Android client to identify the wine grape automatically and in 

real-time, which can help the growers to quickly obtain the variety 

information.  This was achieved by seamlessly integrating some 

advanced tools and algorithms such as mobile devices for imaging, 

CNN for algorithm design and cloud servers for computing.  

Nowadays, there is a wide range of options offering mobile android 

devices.  And even low-range devices with affordable prices 

provide excellent computing and photographic capabilities, which 

makes it possible to develop specialized applications in many fields.  

However, application for viticulture is not prolific in this sense yet, 

since there are only a few examples of available applications for 

managing vineyards[21,22].  In particular, mobile phones are first 

used to collect vine leaves of different cultivars to build the training 

datasets.  Then CNNs of various architectures are trained on the 

labelled dataset to derive the suitable classification model.  Then 

mobile App is built to automatically classify new vine leaves by the 

CNN model via cloud server so that different categories of the wine 

grape can be identified in complex field environments.  To be 

more exact, the main contributions of this study are summarized as 

below:  

1) A vine dataset including 5091 leaf images of 21 vine types 

was manually collected in field conditions;  

2) Various CNN based image classification models were 

trained on the dataset to identify the suitable ones in terms of 

accuracy on validation dataset;  

3) An Android App was developed which can automatically 

identify vine varieties by vine leaves via the cloud server.  

2  Materials and methods 

2.1  Vine dataset 

In this study, the vine dataset contains twenty-one varieties 

covering common cultivars in vineyards.  The images in the 

dataset were taken by Canon EOS 70D in different vineyards in 

Ningxia Hui Autonomous Region, China.  As a consumer camera, 

Canon EOS 70D equipped with an approximately 20.2-megapixel 

CMOS sensor has strong adaptability for different scenes.  So it is 

considered to be the representative of most lens of mobile phones 

in this study.  Additionally, images (JPEG) stored on the camera’s 

memory card were transferred and saved to cloud server.  The 

images were taken without control conditions in the field.  The 

image mainly consists of leaves, but also vines, soil and people.  

The sample images for twenty-one cultivars are displayed in Figure 

1 and the details of cultivars are listed in Figure 2.  The data set 

includes 225 images of Aglianico, 223 images of BeiMei, 308 

images of Cabernet Sauvignon, 247 images of Aligote, 212 images 

of Welschriesling, 221 images of Pinot Noir, and 284 images of 

Riesling, 223 images of Malbec, 228 images of Marselan, 305 

 
Figure 1  Example images for twenty-one cultivars vine taken in the field 

 
Figure 2  Twenty-one grapevine cultivars and corresponding numbers in the dataset 
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images of Merlot, 235 images of MeiLi, 232 images of Cabernet 

Franc, 212 images of Sangiovese, 348 images of Vidal, 228 images 

of Viognier, 228 images of Syrah, 218 images of Chardonnay, 221 

images of Petit Manseng, 232 images of Petit Verdot, 235 images 

of Yan 73, and 226 images of Sauvignon Blanc. 

2.2  Data preprocessing and augmentation  

The performance of the vine classification task was improved  

by applying various image pre-processing techniques which can 

automatically obtain the strengthened localized image features 

from the original input image[23].  Firstly, raw images were 

processed into their complement image.  Each color channel of 

the resulting image was the complement of the corresponding color 

channel in the original image[24].  In the original image, the leaves 

appear green because of a mixture of red and green signals.  In the 

complement images, however, the leaves appear purple because the 

red and blue signals are higher than the green signal.  Then, all the 

processed vine leaf images were resized to the same size as the 

input size for various CNN architectures.  

Considering that deep learning algorithms usually have a high 

requirement on the volume of the labelled dataset (although a 

relatively large number of vine leaf images have been collected in 

this study), data augmentation techniques were further deployed to 

augment the labelled dataset so that the learned model can 

generalize well to unseen samples.  In particular, geometric 

transformation techniques such as scaling, transposing, rotation and 

flipping were applied to expand the image dataset.  This type of 

image augmentation technique is generic and computationally 

efficient to train the deep learning models effectively[25].  At the 

same time, Gaussian white noise with a mean and variance of 0.01 

was also added to the image to improve algorithm robustness.  

200 images were randomly selected for data augmentation of each 

variety as raw images.  The total number of samples in the 

augmented dataset was finally 33 600 and 1600 images are 

contained per variety.  70% per variety including 1120 images are 

randomly selected as the training set to train the classifier.  30% 

per variety including 480 images were used as a validation set to 

evaluate the performance of the classifier.  In addition, extra 10 

images per variety that were not used for both training and 

validation were used as a test set to evaluate the performance of the 

App. 

2.3  Transfer learning of deep networks 

Deep learning is currently one of the most popular methods 

and has shown great performance on many image classification 

problems in the field of plant phenotyping.  The concept of 

sharing weights in deep learning makes an effective image 

classification by discovering robust features in the images and 

reducing the vanishing gradient problem.  The structure of CNN 

generally includes convolution layer, pooling layer, and fully 

connected layer.  The convolutional layer acts as a filter, which 

aims to automatically extract image features.  The convolutional 

layer is usually followed by the pooling layer, which performs 

downsampling and retains the most important information in the 

images.  This layer reduces the spatial size of representation as 

well as the number of parameters and therefore prevents the 

problem of overfitting, making the model more effective.  The last 

layer is the fully connected layer, which uses a softmax activation 

function and takes the high-level features from the images for 

classifying them into various categories[26]. 

In consideration of the limited number of labelled datasets, the 

concept of transfer learning was applied to retrain the deep learning 

classifier.  This concept is not new and has been previously 

applied in a number of studies[27-29].  The vine classification tasks 

are evaluated in terms of accuracy and efficiency.  In transfer 

learning, the layered architecture of the pre-trained models such as 

AlexNet, ResNet and VGG (without its final classification layer) 

can be used as a fixed feature extractor to achieve better vine 

classification performance with a shorter training time[30].  In this 

study, five deep learning networks were explored for vine leaf 

classification via transfer learning, which include AlexNet, ResNet, 

GoogLeNet, DenseNet and VGG that are pre-trained networks 

trained on images from the ImageNet database[31-35].  The concept 

of fine-tuning was adopted in this study, where the last fully 

connected layer was replaced and initialized with the target task 

class.  The selection of all training parameters was based on the 

empirical observation of network training convergence and training 

effect.  

In this study, the performance of the model was evaluated by 

comparing the classification results of the model with the actual 

tags.  The two commonly used performance indicators included 

accuracy (ACC; Equation (1)), recall rate (RECALL; Equation 

(2))[36].  The data processing involved in the model construction 

was run in Matlab®2019b (The MathWorks, Inc., Natick, 

Massachusetts, USA).  All experiments were carried out on a 

Linux machine with Ubuntu 16.04 preinstalled.  It has a GTX 

2080ti GPU, an Intel® core i7-5930k processor and 16 GB DDR4 

RAM.  
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2.4  APP development 

An App named VitisView was developed as a tool to 

accelerate the precise management of vineyards in the study.  In 

particular, CNN based on object classification model was deployed 

on Android devices via cloud server, which can identify the leaf 

phenotype of wine grape in field environments and also in real-time.  

This app can be downloaded from http://175.27.144.115:8080/ 

VitisView.apk.  The VitisView was developed in the Android 

studio, and the main development tool JDK version is 11.0.7.  It 

can call the camera of mobile phone to take images, then the app 

sends or receives data through socket.  It can upload the image of 

the mobile library to the server and then receive the detection result 

of this image transmitted back by the server. 

Two typical mobile phones were used to test the performance 

of the app.  One is Vivo X9 with Android 7, 4GB RAM and 

Qualcomm® snapdragon 625 processor, the other one is Mi 9 with 

Android 10, 6GB RAM and Qualcomm® snapdragon 855 

processor.  The test set contains 210 images that were not used for 

training or validation and each category has 10 images.  The 

performance evaluation was carried out in respect of the speed, the 

time from uploading images to getting classification results and the 

accuracy. 

2.5  Cloud server 

The trained CNN classification model was deployed on the 

cloud server.  The communication between Android client and 

cloud server was realized through HTTP (Hypertext Transfer 

Protocol, HTTP).  A java servlet using Apache Tomcat[37] was 

responsible for processing HTTP messages.  The processing 

pipelines of cloud server are shown in Figure 3.  Programs 

developed based on python provided the functions of 

downloading images and transferring files from Android devices 
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to the cloud server.  Matlab served as the function of running the 

classification model to process images and output recognition 

results.  The cloud server was configured with Windows Server 

2016 Datacenter, Intel® Xeon(R) Platinum 8255C CPU 

@2.5GHz and 8GB DDR4 RAM based on Tencent Cloud 

(Tencent, Inc., Shenzhen, China). 

 
Figure 3  Cloud server working pipelines 

3  Results and discussion 

3.1  Classification model selection 

To enable a fair comparison for all the experimental 

configurations, it was tried to standardize the parameters in 

experiments.  In particular, a set of options was created for training 

a network using stochastic gradient descent with momentum and 

reduced the learning rate by a factor of 0.1 every 60 epochs.  To set 

the maximum number of epochs for training to 80 and used a 

mini-batch of 32 observations at each iteration.  To validate the 

network at regular intervals during training, the Validation 

Frequency value was chosen according to the size of mini-batch so 

that the network could be validated about once per epoch.  The 

training was progressing by plotting various metrics was learned 

during training on Matlab. 

The classification results of different CNN network structures 

were got, including AlexNet, Vgg-16, ResNet101, ResNet18, 

DenseNet and GoogLeNet.  According to the evaluation metric, the 

accuracy of these classification models is shown in Table 1. 
 

Table 1  Accuracy of six classification models 

Network ACC Learning rate Max epochs Mini-batch size 

Alexnet 94.70% 0.0001 80 32 

VGG-16 96.85% 0.0001 80 32 

ResNet101 97.24% 0.0001 80 32 

ResNet18 95.68% 0.0001 80 32 

DenseNet 94.70% 0.0001 80 32 

GoogLeNet 99.66% 0.0001 80 32 
 

The results showed that the accuracy on the validation dataset of 

the CNN detection algorithms can reach over 94% for 21 cultivars, 

which proved the feasibility of using transfer learning to identify 

grape cultivars in the actual growth environment.  The detection 

model with the highest average test accuracy was GoogLeNet 

(97.4%).  In particular, as shown in Figure 4, the prediction 

accuracy of 9 out of 21 categories of GoogLeNet detection model 

was 100%.  It therefore could be drawn from the experimental 

results that the pre-trained models with transfer learning provided 

good results for the dataset with 21 labels of grapes, respectively. 
 

 
Figure 4  Recall rates of the twenty-one cultivars for different 

networks 
 

3.2  Model parameter selection 

Upon selecting GoogLeNet as the classification model in 

Section 2.1, the effects of different training parameters on the 

classification performance were tested.  Particularly, the 

influences of learning rate and minimum batch size on training 

results were considered.  Three experiments were set up with the 

value of learning rate being 0.001, 0.005 and 0.0001 while keeping 

other parameters unchanged.  Table 2 shows the classification 

accuracy under different learning rate values.  The results showed 

that when the learning rate was 0.001, the classification 

performance reached the best. 
 

Table 2  Performance of GoogLeNet under different learning 

rate values 

Model Learning rate Max epochs Mini-batch size ACC 

T1 0.0001 80 32 99.66% 

T2 0.001 80 32 99.91% 

T3 0.005 80 32 99.41% 

Note: Ti represents the i-th trained model (i= 1, 2, 3, …), the same as below. 
 

In consideration of the size of memory, increasing the 

minimum number of mini-batch sizes in a reasonable range can 

improve memory utilization and also increase training speed.  For 

large-scale training, it is necessary to make sure that using larger 

batch size training gets the test accuracy similar to a smaller batch 

size under the same epochs.  The reason why to keep the number 

of epochs unchanged was that from a statistical point of view, an 

epoch means that the algorithm contacts the whole dataset once; 

from a computational point of view, a fixed number of epochs 

means that the number of floating-point operations remains 

unchanged.  Three experiments were set up with the value of 

mini-batch size being 16, 32 and 64 while keeping the learning rate 

as 0.001 and other parameters unchanged.  Table 3 shows the 

classification accuracy under different mini-batch sizes for the 

GoogLeNet detection model.  The results showed that the 

minimum batch size of 32 was enough. 
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Table 3  Performance of GoogLeNet under different 

mini-batch size values 

Model Mini-batch size Learning rate Max epochs ACC 

T4 16 0.001 80 99.84% 

T5 32 0.001 80 99.91% 

T6 64 0.001 80 99.40% 
 

It was discovered in the process of training that the max epoch 

was an important factor that affected the learning progress of the 

model.  Four experiments were set up with the maximum number 

of epochs being 30, 60, 80, 120 while keeping other parameters 

unchanged.  Table 4 shows the accuracy under different maximum 

epoch values.  The results showed that the ideal maximum 

number of epochs was 80. 
 

Table 4  Performance of GoogLeNet under different max 

epoch values 

Model Max epochs Learning rate Mini-batch size ACC 

T7 30 0.001 32 97.88% 

T8 60 0.001 32 99.27% 

T9 80 0.001 32 99.91% 

T10 120 0.001 32 99.75% 
 

Therefore, the optimized parameters for GoogLeNet 

classification model are the learning rate of 0.001, mini-batch size 

of 32 and the maximum number of epochs of 80. 

3.3  App performance 

The training and testing of CNN classification models were 

completed for grapevine identification on Matlab and uploaded to 

the cloud server.  The cloud server performs the functions of caching 

images, detecting images and feedback the classification results.  

The app performance was carried on two Android devices mentioned 

in 2.4.  The test results on Mi 9 showed that the accuracy was 98%.  

The recall rate of 19 categories reached 100%.  The minimum 

recall was 70%.  The average response time from uploading 

images to returning results was 8.25 s.  The average speed of the 

test Internet environment was 1.19 Mb/s.  Similarly, we repeated 

the same experiment on Android 7 mobile phone, and the overall 

accuracy was 98%, of which 19 categories achieved 100% and the 

minimum accuracy was 80%.  The average response time is 8.28 s 

and the average speed was 1.33 Mb/s.  The test results showed 

that the VitisView is stable and robust, which could help grapevine 

cultivar information in the field obtained in real-time. 

 
Figure 5  Screenshot of the VitisView 

 

3.4  Discussion 

Plant leaves show little difference even in different stages so 

that they can be often used as the feature in the case of plant cultivar 

identification.  In this study, it has been shown that even in field 

environments, the images collected by typical smart phones or 

digital cameras can be used to train deep CNN by transfer learning 

for accurate wine grape cultivar identification. 

There was very little literature on accurately identifying the 

phenotype of wine grape by nondestructive methods (e.g. imaging 

based approach) in the past few years.   Carlos et al.[38] evaluated 

the performance of the transfer learning techniques based on 

AlexNet for the grapevine cultivar identification and reached a test 

accuracy of 77.30% on a dataset including six varieties with an 

average of 14 images captured in the field per variety.  The 

accuracy of the trained model reached 99.91%.  Besides a large 

number of images available for training, early dataset augmentation 

plays an important role in achieving performance.  In the case of 

using transfer learning to solve the problem of object recognition, in 

order to improve the accuracy of the detection model, images are 

often acquired in a controlled environment in the laboratory[39].  

The image preprocessing method was used to enhance the object or 

weaken the background on the other hand.  Canny edge detection 

was used to detect the edge in the gray-scale image converted from 

RGB of insect and suppress the noise, which was a method of data 

augmentation to facilitate crop pest recognition using transfer 

learning[29].  Threshold processing, contour detection and 

watershed algorithm were used to eliminate the influence of natural 

background on object detection[28].  

The raw dataset was tried to test without using the image 

complement processing mentioned in Section 5.2.  Similarly, 

geometric transformation techniques such as scaling, transposing, 

rotation and flipping were applied to expand the number of image 

samples in the datasets.  Datasets without image complement 

processing and datasets with image complement processing were 

trained on GoogLeNet model.  While training, two datasets used 

the same number of images and the same training parameter setting.  

The results of CNN classification models by the two datasets were 

compared.  The results show that the accuracy of the detection 

model is 97.49% for the dataset without image complement 

processing and 99.66% for image pre-processing.  In other words, 

when using the deep learning algorithm to identify grape species in 

the field environment, the complement processing of the raw image 

has a certain impact on the performance.  When using the 

classification model to identify the image obtained from Android 

devices on the cloud server, the image will be first processed by 

complement and then the result will be obtained by the detection 

model, which is not complicated. 

In addition, the Grad-CAM algorithm was introduced to analyze 

the impact of image complement preprocessing on classification 

results.  The purpose of Grad-CAM was to calculate the gradient of 

the final classification score relative to the final convolution layer in 

the network[40].  The gradient of the output of the softmax layer is 

the largest part of the convolution Eigen graph, the final result 

mostly depends on the data.  To this end, an image of Weddell was 

used as an example to assess the effects of image complement 

preprocessing.  In addition to displaying the classification result, 

the gradient thermal image of the weight in the final convolution 

layer was obtained by Grad-CAM algorithm.  The results in Figure 

7 showed that the vein and the main part of leaves had the greatest 

influence on the classification.  After the image complement 

preprocessing, the leaf vein was more easily recognized.  While the 

model without image complement preprocessing does not work well.  

This is because the background of leaves has adverse effects on the 

final classification results.  Therefore, image preprocessing plays 

an important role in achieving a satisfying classification result. 
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a. With image complement preprocessing                                   b. Without image complement preprocessing 

Note: The first data above each image represents the serial number corresponding to the grape cultivar, and the corresponding relationship is shown in the appendix.  

The second data above each image represents the confidence level of the classification results. 

Figure 6  Examples of validation set classification results 
 

 
a. Classification result with image complement preprocessing b. Grad-CAM map for image a 

 
c. Classification result without image complement preprocessing d. Grad-CAM map for image c 

 

Figure 7  Effect of image preprocessing on classification result by Grad-CAM map 
 

In this study, the VitisView on Android devices was developed 

to realize automatic real-time identification of wine grape and help 

grapevine species information obtained in the field.  However, 

this automatic real-time recognition algorithm for wine grapes can 

be applied not only to mobile devices but also to IoT devices, 

making it a part of the construction of unmanned farming.  In 
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addition, although the identification of different genotypes of wine 

grape constructed in this study involves 21 common cultivars in the 

vineyard, it is not enough for the wine industry in the long run.  

The data set can be enlarged and the algorithm can be modified for 

more cultivar identification in the future. 

4  Conclusions 

In this study, an App named VitisView running on Android 

client was developed to identify wine grape cultivars in real-time 

and field conditions, which can help the growers to quickly obtain 

the variety information of wine grapes.  This is achieved by 

seamlessly integrating a number of techniques and algorithms such 

as phone imaging, convolution neural network and cloud server.  In 

particular, a total of 5091 leaf images were first collected in the field 

environment which contain 21 cultivars of typical grapes.  Then 

both image preprocessing and data augmentation were adopted to 

enhance image features and augment training dataset.  On this basis, 

a number of typical CNN models (including VGG-16, DenseNet, 

ResNet101, ResNet18, and GoogLeNet) were compared in transfer 

learning training to identify the suitable one while with model 

parameter tuning.  It is shown that GoogLeNet model outperformed 

other models in terms of accuracy, model complexity, and 

robustness with a fine-tuned accuracy of 99.91%.  The effects of 

image complement preprocessing are also assessed by using 

Grad-CAM algorithm.  
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