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Abstract: A fast, non-destructive recognition method for veterinary drug residues in beef was proposed to mitigate the 
laborious sample preparation and long detection times associated with conventional chemical detection techniques.  Control 
beef samples free of veterinary drug residues and four groups of beef sprayed with relevant concentrations of metronidazole, 
ofloxacin, salbutamol, and dexamethasone under ambient conditions were analyzed by 400-1000 nm hyperspectral imaging 
followed by multiplicative scatter correction preprocessing.  Data dimension reduction was performed using Competitive 
Adaptive Reweighted Sampling (CARS), Principal Component Analysis (PCA), and Discrete Wavelet Transform (DWT) based 
on Haar, db3, bior1.5, sym5, and rbio1.3 wavelet basis functions.  Treated data were subjected to Convolutional Neural 
Network (CNN), Multilayer Perceptron (MLP), Random Forest (RF), and Support Vector Machine (SVM) modelling.  CNN, 
MLP, SVM, and RF algorithms achieved overall accuracies of 91.6%, 88.6%, 87.6%, and 86.2%, respectively, when combined 
with DWT (wavelet basis functions and numbers of transform layers being Haar-4, db3-2, bior1.5-4, and sym5-3, respectively).  
The algorithm Kappa coefficients (0.89, 0.86, 0.85, and 0.83, respectively) and time consumption for prediction (140.60 ms, 
57.85 ms, 70.67 ms, and 87.16 ms, respectively) were also superior to models based on CARS and PCA.  DWT combined 
with deep learning can shorten prediction times, considerably improve the accuracy of classification and recognition, and 
alleviate the Hughes phenomenon, thus providing a new method for the fast, non-destructive detection and recognition of 
veterinary drug residues in beef. 
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1  Introduction   

Beef is an indispensable part of the diet of the population and, 
unavoidably, veterinary drugs will be used to prevent and treat 
livestock diseases during the production process.  However, 
non-standard use and abuse of veterinary drugs have become 
increasingly severe due to the pursuit of economic benefits and a 
lack of professional practices among some producers.  
Consequently, veterinary drugs can accumulate in beef for human 
consumption.  Ingesting meat containing drug residues above safe 
limits can lead to drug resistance, poisoning, and alteration of 
intestinal flora in adults, while children can also suffer from 
abnormal physiological precocity, obesity, malformation, and even 
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genetic mutations[1].  Therefore, it is essential to rapidly, 
efficiently, and accurately detect and identify veterinary drug 
residues in beef. 

Physicochemical and immunoassay methods are commonly 
used to detect veterinary drug residues, the former[2-6] involving 
mainly gas chromatography, high-performance liquid 
chromatography, and chromatography-mass spectrometry methods, 
which often require derivatization steps and compound separation 
before the detection of the analytes.  Despite offering high 
accuracy and favorable sensitivity and stability, these processes can 
be complicated and time-consuming.  The latter techniques[7-9] 
include enzyme immunoassay, fluorescence immunoassay, and 
colloidal gold immunoassay which are means of detecting drug 
residues by virtue of specific binding of antigens and antibodies.  
Immunoassays combine the merits of high selectivity and simple 
sample processing but can be subject to background interferences.  
They generally have low sensitivity and accuracy and are prone to 
false-negative or false-positive results[10]. 

Spectroscopic techniques are becoming more common for the 
detection of veterinary drug residues, particularly Raman 
spectroscopy and infrared (IR) spectroscopy.  For example, Tao et 
al.[11] demonstrated the rapid detection of testosterone propionate in 
duck using surface-enhanced Raman spectroscopy with an R2 

coefficient between true and predicted values of 0.9996, root mean 
square error of prediction of 0.45 mg/L, and an average recovery of 
≥91.0%.  Guo[12] determined the structural characteristics of 
molecularly imprinted polymers using IR spectroscopy and 
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established a method of detecting sulfadimethoxine residues in 
pork (standard recovery 65%-85%, relative standard deviation 
5.0%).  However, while Raman and IR spectroscopy are rapid and 
non-destructive techniques, their accuracy and sensitivity can be 
impacted by other light sources. 

Hyperspectral technologies have been applied frequently in 
recent years to the detection of agricultural products.  They are 
superior to spectral technologies like Raman and IR spectroscopy 
due to their ability to combine images and spectra.  Hyperspectral 
technologies not only generate spatial distribution information from 
spectra but can also accurately identify chemical components of the 
object being observed using continuous and dense spectral signals.  
Sun et al.[13] established a model for lettuce leaves using 
hyperspectral analysis.  Their RF-RFE-SPA-LSSVR model 
identified mixed pesticide residues with a prediction accuracy of 
93.8%.  Ji et al.[14] acquired spectral data (900-1700 nm) from 
spinach leaves using a hyperspectral imager, identified eight 
characteristic wavelengths via the Chi-square test-based feature 
selection algorithm and established a recognition model using 
SVM.  Model prediction accuracy was 99.3%, indicating that 
pesticide residues in leaves could be accurately identified using this 
approach.  Gao et al.[15] used a portable hyperspectral imaging 
system to collect field strawberry sample data in real-time.  After 
dimension reduction by principal component analysis, established a 
maturity recognition model using Convolutional Neural Network 
(CNN).  The results showed that the model prediction accuracy 
was 98.6%. 

Given these advantages of non-destructive and fast 
hyperspectral detection techniques, the limitations of laborious 
sample preparation and the long detection times of existing 
methods for veterinary drug residues, a detection and recognition 
algorithm for such residues in beef is presented based on 
hyperspectral Discrete Wavelet Transform (DWT) and deep 
learning.  This algorithm was applied to hyperspectral datasets 
from control beef samples and samples containing the veterinary 
drug residues metronidazole, ofloxacin, salbutamol, and 
dexamethasone, and the reliability and accuracy of the proposed 
algorithm were verified. 

2  Materials and methods 

2.1  Sample preparation 
All beef used in this study was purchased from a large 

supermarket in Harbin City, Heilongjiang Province, China.   
Stock solutions of the following veterinary drugs were purchased: 
metronidazole (500 mg/L), ofloxacin (300 mg/L), salbutamol 
(150 mg/L), and dexamethasone (500 mg/L).  Working solutions 
of metronidazole (0.75 μg/kg), ofloxacin (100.00 μg/kg), and 
dexamethasone (0.75 μg/kg) were prepared in distilled water in 
accordance with No. 235 Bulletin - Maximum Residue Limit of 
Veterinary Drugs in Animal Foodstuff issued by the Chinese 
Ministry of Agriculture and Rural Affairs.  As a banned drug, 
salbutamol was prepared at a lower concentration (0.30 μg/kg).  
The working solutions were placed in watering cans with a jet 
distance of 8-10 cm.  Each solution was used to evenly spray ten 
beef samples at room temperature (20°C) and relative humidity 
(RH) of 65% and allowed to absorb naturally for 3 h.  Samples 
were then transferred to the preservative layer of a refrigerator for  
9 h (5°C, 40% RH) to allow further diffusion of the drug solutions 
through the beef samples.  Surplus liquid on the surface was then 
removed with absorbent paper containing no chemical additives 
before analysis by hyperspectral imaging (a total of 50 samples, 

including ten controls containing no veterinary drug residues). 
2.2  Hyperspectral imaging system 

The hyperspectral imaging system (American Headwall 
Photonics Inc.) comprised an area array CCD, grating spectrometer, 
hyperspectral imaging camera lens, uniform light source, 1D 
electric displacement platform, USB1394 high-speed image 
acquisition card, high-performance computer, and related 
acquisition control software (Figure 1).  The camera resolution 
was 1000 pixels×164 pixels and the bit depth was 24 bits.  Linear 
array scanning imaging mode was used with the spectral range of 
the grating spectrometer being 40-1000 nm (composed of 800 
wavebands), and the light source consisted of two 200 W bromine 
tungsten lamps.  Light sources were located on two sides of the 
electric displacement platform with an angle of incidence of 45°. 

 
Figure 1  Schematic of the hyperspectral imaging system 

 

2.3  Calibration of hyperspectral imaging system 
Diffuse reflection of light is caused by the different shapes and 

uneven surfaces on a sample.  Significant image noise is also 
generated under weak light intensity due to dark currents and 
power harmonics in the camera.  It is necessary, therefore, to set 
the scanning parameters and calibrate the imaging system before 
use.  After multiple debugging and effect comparisons, the 
exposure time was set at 0.03 s, the speed of the electric 
displacement platform at 3.0 mm/s, and the lens, which faced 
vertically downward, at 450 mm from the platform.  The built-in 
Hyperspec 2.0 (Headwall Inc., Boston, USA) was used to calibrate 
the blackboard and whiteboard images as in Equation (1). 
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white dark

I I
I

I I
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where, I is the calibrated hyperspectral image; I0 is the original 
hyperspectral image; Idark denotes the calibrated image under 
all-black conditions after the lid of the area array CCD is closed; 
Iwhite is the calibrated image under all-white conditions.  

Data analysis and processing software included ENVI 5.2 (ITT 
Visual Information Solutions, Boulder, Co., USA), OriginPro 8 
(OriginLab Co., MA, USA), Unscrambler X 10.4, Python 3.6, and 
TensorFlow 2.0. 
2.4  Selection of sample regions of interest 

To facilitate data acquisition, each beef sample was cut to 
16 cm×8 cm, and regions of interest (ROIs) were manually selected 
via ENVI software.  To achieve objective and accurate data, 40 
ROIs were selected for each sample (Figure 2), each being 
30 pixels×30 pixels.  As the uneven surface of the samples and 
exudation of the drug solutions caused diffuse reflections, 
preference was given to dark regions with no bright spots during 
this selection.  The mean spectral value of these 900 points was 
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calculated and served as a single spectral record for that sample.  
In total there were 2000 (5×400) spectral records. 

 

 
Figure 2  Schematic of representation of ROI on beef sample 

selection 
 

2.5  Spectra preprocessing and rejection of abnormal data 
Hyperspectral image acquisition can be disturbed by both 

sample characteristics, such as sample flatness, chromatic 
aberrations, and moisture content, and environmental factors.  
Multiple Scattering Correction (MSC) preprocessing was applied to 
the hyperspectral data via Unscrambler.  Figure 3 illustrates 200 
spectra randomly selected from the five sample groups before 
(Figure 3a) and after (Figure 3b) MSC preprocessing. 

As shown in Figure 3b, the fluctuation and noise of the 
marginal spectral regions were large, which influenced subsequent 
modeling classification capability.  Therefore, the marginal 
wavebands 400-414 nm and 924-1000 nm were eliminated and the 
415-923 nm range (corresponding to 680 of the original 800 
wavebands, specifically bands 20-700) was used for modeling. 

 
a. Without preprocessing 

 
b. With MSC preprocessing 

Figure 3  Spectral data preprocessing by Multiple Scattering 
Correction (MSC) 

 

2.6  Dimension reduction of hyperspectral data 
2.6.1  DWT dimension reduction algorithm 

As a signal transform analysis method, wavelet transform 
(WT)[16] provides a time-frequency window that changes with 
frequency, enabling multiscale and multiresolution refinement of 
the signal (function) through the dilation and translation operations 
of wavelet basis function, and can extract precise (high-frequency) 
components and approximate (low-frequency) components 
simultaneously.  The continuous wavelet transform is expressed 
as follows: 
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where, j is the scaling factor; k is the translation factor (both being 
continuous variables); Ψ(λ) is the wavelet basis function. 

DWT[17], a type of wavelet transform, enables signal 
decomposition at the discrete scale, and high- and low-frequency 
signal decomposition via high- and low-pass filters as Equation (3). 

,DWT( , ) ( ), ( )a ba b f λ φ λ= 〈 〉               (3) 
where, a and b are the a-th layer decomposition and the b-th 
wavelet coefficient, respectively; , ( )a bφ λ  is discrete wavelet basis 

function. 
The transformation of wavelength bands in the hyperspectral 

data corresponded to signal transformation in the time domain, and 
dimension reduction was achieved by the multiscale decomposition 
nature of DWT, namely, precise (high-frequency) components 
were omitted in the transformation of each layer and decomposed 
approximate (low-frequency) components were used as the 
modeling data.  Similarly, each layer was re-transformed based on 
the approximate components obtained in the transformation of the 
previous layer, and the data dimension of each layer was 
successfully halved. 
2.6.2  Dimension reduction via principal component analysis and 
competitive adaptive reweighted sampling 

As a multivariate statistical analysis dimension reduction 
algorithm, Principal Component Analysis (PCA)[18] transforms the 
original variables into multiple independent new variables through 
orthogonal transformation, eliminates overlapping parts of the 
original data, and enables maximum characterization of the original 
information through the use of a few new variables. 

Competitive Adaptive Reweighted Sampling (CARS)[19] 
selects the maximum regression coefficient via adaptive reweighted 
sampling[20], exponential decay function[21], and partial least 
squares (PLS) modelling[22] established through cycling.  It then 
uses the cross-validation method to select the minimum root mean 
square error of cross-validation (RMSECV) subset from n PLS 
subset models as the optimal variable combination. 
2.7  Classification and recognition modelling 
2.7.1  Multilayer perceptron, support vector machine, and random 
forest modelling 

Multilayer Perceptron (MLP)[23], also called fully connected 
network or artificial neural network, is a neural network with 
several layers, where the neurons at different layers are mutually 
fully connected, and the nonlinear activation functions are added 
between layers to strengthen the nonlinear expression capability of 
the neural network so that it can fit any nonlinear function.  
Common activation functions include Rectified Linear Unit 
(ReLU), Sigmoid, Tanh, and Softmax.  In this study, the MLP 
contained five fully connected layers as described in Table 1.  
During the MLP training process, learning_rate (learning rate) was 
set at 0.0001, epochs (number of iterations) at 800, batch_size 
(batch size) at 64, validation_freq (validation frequency of test set) 
at 1, and the Adam algorithm optimizer was used. 

As a supervision model based on the criterion of structural risk 
minimization, Support Vector Machine (SVM)[24] maps the input 
spectral information space into the high-dimensional characteristic 
space via kernel functions and facilitates multiclassification by 
constructing the optimal classification hyperplane.  The common 
kernel functions include linear kernel function, polynomial kernel 
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function, radial basis function, and Sigmoid kernel function 
(Sigmoid Tanh).  In this study, the optimal key parameters of the 
model, kernel (type of kernel function), gamma (kernel function 
coefficient), and C (penalty coefficient), were determined through 
the grid search method. 

 

Table 1  MLP network structure 
Layers Number of neurons Activation function

Fully connected layer FC1 512 ReLU 
Fully connected layer FC2 512 ReLU 
Fully connected layer FC3 256 ReLU 
Fully connected layer FC4 128 ReLU 
Output layer 5 Softmax 

Note: MLP: Multilayer Perceptron; ReLU: Rectified Linear Unit. 
 

As bagging integrated supervised learning method based on 
layered non-parameters, Random Forest (RF)[25] establishes 
multiple weak learning decision trees and determines the 
classification or regression prediction result through voting of the 
decision trees, or the arithmetic mean value.  Its main advantages 
are that standard dataset processing is not needed, model training is 
fast, and it is not easily stuck in overfitting.  The optimal key 
parameters of the model, max_depth (maximum depth of decision 
trees), max_features (number of maximum features), and 
n_estimators (number of decision trees), were determined through 
the grid search method. 

2.7.2  Convolutional neural network 
CNN[26], an MLP-based deep learning network, has been 

extensively applied in the field of computer vision.  It generally 
consists of convolution layer, activation layer, dropout layer, 
pooling layer, and fully connected (FC) layer, where the 
convolution layer, which has powerful feature extraction capability, 
transmits the acquired features layer-by-layer so that the receptive 
field is continuously expanded.  The activation layer generates the 
non-linearity via activation functions, and further improves the 
training speed and robustness of the neural network.  The dropout 
layer alleviates the overfitting phenomenon by randomly removing 
some neurons.  As a classifier with superior network learning 
ability, the FC layer can map the features learned by the 
convolution layer into the sample space.  Through the orderly 
stacking of these layers, the CNN will be suited to the task of 
classification of graph-like samples by virtue of non-deformation in 
translation, finite sparse connection, and local weight sharing. 

The CNN structure applied in this study is shown in Figure 4.  
Hyperspectral beef sample images comprised 2000×1×1×680 after 
extraction of ROI, preprocessing and noise clipping.  To facilitate 
the 2D convolution operation, four points on the extremes of the 
680 wavebands were abandoned, the remaining data were 
transformed to 2000 all_batches×26 width×26 height×1 channel 
and the CNN structural parameters were set (Table 2). 

 
Note: ROI: Regions of interest; MSC: Multiple Scattering Correction. 

Figure 4  Convolutional neural network structure applied in this study 
 

Table 2  Parameter settings of the convolutional neural 
network structure 

Number of DWT layers 
Layers 

1-4 5-6 

Convolution layer C1 3×3×32 3×3×32 
Activation layer A1 ReLU ReLU 
Dropout layer D1 0.3 0.3 
Convolution layer C2 5×5×64 3×3×64 
Regularization L21 0.001 0.001 
Activation layer A2 ReLU ReLU 
Dropout layer D2 0.5 0.5 
Pooling layer MaxPooling 2×2×2 2×2×2 
Fully connected layer FC1 256 256 
Fully connected layer FC2 256 256 
Regularization L22 0.001 0.001 
Output layer 5 5 
Activation layer A3 Softmax Softmax 

Note: Convolution layer n×n×m represents m filters with convolution kernel size 
n×n.  Pooling layer n×n×m represents pooling kernel size n×n and step size m. 

 

Classification accuracy of the recognition model was directly 
affected by CNN hyperparameter selection.  To determine the key 
hyperparameters (learning_rate, batch_size, and epochs), 
multi-parameter training was performed multiple times on the 
hyperspectral data (Figure 5).  Training loss remained at 1.6% 

when learning_rate was 0.005, 0.01, and 0.1, indicating that the 
model could not be converged due to the excessive learning_rate 
(Figure 5a).  Model convergence rate was high when learning_rate 
was 0.001.  The decline in training loss value was limited and 
oscillated significantly when batch_size was 40, 60, 100, 120, and 
240, showing that the model was unstable with weak generalization 
ability (Figure 5b).  When batch_size was 80, training loss value 
fell continuously, with minor fluctuations.  The overall accuracy 
(OA) rose with the increasing number of epochs, reaching a peak 
after 1000 epochs (Figure 5c).  Thus, the following hyperparameters 
were selected: learning_rate = 0.001, batch_size = 80, epochs = 1000, 
and the Adam algorithm was adopted as the optimizer.  Since 
smaller sample sizes tend to result in model overfitting, the model’s 
generalization ability was strengthened using dropout and L2 
regularization techniques. 
2.8  Model evaluation 

Confusion matrix (CM)[27], also called error matrix, expresses 
the accuracy of a classification algorithm in N×N matrix form.  
Table 3 presents the typical CM form (N=2), where TP means true 
positive, expressing the number of sample 1 correctly classified, 
FN (false negative) is the number of sample 1 mistakenly classified 
as sample 2, FP (false positive) is the number of sample 2 
mistakenly classified as sample 1, and TN (true negative) is the 
number of sample 2 correctly classified. 
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a. TLA of CNN base on different LR b. TLA of CNN base on different BS c. OA of CNN base on different epochs 

 

Note: TLA: Training loss value; LR: Learning rate; BS: Batch size; OA: Overall accuracy. 
Figure 5  CNN hyperparameter selection process 

 

Table 3  Confusion matrix 

True value/Predicted value Sample 1 Sample 2 

Sample 1 TP FN 
Sample 2 FP TN 

 

Overall accuracy (OA)[28] is the ratio of the number of 
correctly classified samples to the total number of samples tested, 
and indicates the probability that an individual sample will be 
correctly classified by a test: 

TP TNOA
TP FN FP TN

+
=

+ + +
             (4) 

Kappa coefficient is the ratio of classification results to error 
decrement generated by completely random classification.  Used 
to measure classification accuracy, it effectively solves the 
problem that OA cannot distinguish the accuracy unevenness of 
different sample types, the calculation of Kappa coefficient is as 
follows: 
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3  Results and discussion 

3.1  Spectral analysis 
To visualize the spectral differences between the groups of 

samples, the 400 spectra in each group were averaged (Figure 6). 

 
Figure 6  Averaged spectra of beef samples 

 

Figure 6 shows that spectral reflectance was low in the visible 
light range (415-570 nm) and high in the shortwave NIR range 
(610-750 nm).  As the beef sample surface was red due to the 
presence of myoglobin and hemoglobin, spectral absorption was 
high and reflectance was low in the complementary blue-green 
region.  In the NIR region, spectral absorption was associated with 
energy absorption and the transition of groups between energy 

levels in the drug molecules.  The reflectance spectrum of 
metronidazole-treated beef was different from the salbutamol 
spectrum between 415 and 600 nm but they overlapped in the range 
640-700 nm, probably due to the -OH and -CH groups present in 
both drug compounds.  The pattern of the curves for the 
residue-free, ofloxacin-treated and dexamethasone-treated samples 
differed in the 600-650 nm and 690-720 nm ranges, probably due 
to the different effects of ofloxacin and dexamethasone on the 
conformation of bovine serum albumin, resulting in a large 
difference in spectral absorption rates.  In conclusion, these 
provided a technical basis for identifying these veterinary drug 
residues in beef by spectral means. 
3.2  Analysis of dimension reduction algorithms 
3.2.1  Dimension reduction via DWT 

The Haar wavelet was used to compare dimension reduction 
effects.  DWT was applied to the averaged spectra, after which 
high-frequency noise components were excised and low-frequency 
components retained.  The data dimensions obtained through six 
layers of DWT dimension reduction are shown in Table 4.  Data 
dimensions progressively decreased by 2−m (m=number of DWT 
layers) with each DWT layer. 

 

Table 4  DWT data dimensions 

DWT layers Data dimensions 

Original data 680 

One-layer DWT 340 

Two-layer DWT 170 

Three-layer DWT 85 

Four-layer DWT 43 

Five-layer DWT 22 

Six-layer DWT 11 
Note: DWT: Discrete Wavelet Transform. 
 

Figure 7 illustrates the gradually increasing differences 
between the original spectra and spectra following successive DWT 
layers.  Figure 7a shows the low-frequency component spectra 
after one-layer DWT.  These transformed spectra were very 
similar to the untreated spectra in Figure 6 even though only half 
the original data were utilized.  The spectra following six-layer 
DWT (Figure 7f) used only eleven data dimensions but the relative 
positional relationships of the spectra at key nodes were still 
evident. 
3.2.2  Dimension reduction via PCA and CARS 

PCA was also used for dimension reduction of the 
hyperspectral data.  The cumulative contribution of the first 11,  
22, 43, 85, 170, and 340 principal components are displayed in   
Table 5. 
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a. One-layer DWT b. Two-layer DWT c. Three-layer DWT 

 
d. Four-layer DWT e. Five-layer DWT f. Six-layer DWT 

 

Figure 7  Low-frequency component spectra after DWT based on Haar wavelet basis function 
 

Table 5  Cumulative contribution rates of PCA 
Total principal components Cumulative contribution rate/% 

PC11 77.05 
PC22 79.78 
PC43 83.66 
PC85 88.75 
PC170 94.24 
PC340 98.23 

 

Full-sample dimension reduction was implemented using 
CARS with sampling frequency, threshold value, number of Monte 
Carlo sampling times, and number of cross-validation groups being 
0.8, 0.8, 100, and 10, respectively.  Data were centralized and the 
screening process is shown in Figure 8.  As the number of 
sampling runs increased, the number of characteristic wavelengths 
identified reduced until the curve plateaued (Figure 8a).  As 
sampling runs increased, RMSECV declined before increasing 
sharply, indicating that irrelevant variables were eliminated in the 
early runs with the lowest error achieved after 35 runs (Figure 8b).  
Figure 8c illustrates the changing regression coefficients of the 
characteristic wavelengths, the vertical line indicating the run with 
the minimum RMSECV.  A total of 89 characteristic wavelengths 
were identified by CARS, accounting for 1.12% of all the 
wavebands. 
3.3  Evaluation of recognition models 
3.3.1  Evaluation of DWT-based dimension reduction models 
using various wavelet bases 

The dimension reduction effect varies depending on the 
wavelet basis function.  To achieve optimum classification and 
recognition performance, Haar wavelet, db3 in Daubechies wavelet 
family, bior1.5 in Biorthogonal wavelet family, sym5 in Symlets 
wavelet family, and rbio1.3 in ReverseBior wavelet family were 
evaluated for the wavelet transform of data from 1 to 6 layers, 
before recognition models were constructed.  The recognition and 
classification modeling process is illustrated in Figure 9.  The 
model training set comprised 75% of the total beef samples while 
25% acted as the prediction set. 

 
a. Relationship between the number of variables and sampling runs 

 
b. Relationship between RMSECV value and sampling runs 

 
c. Relationship between regression coefficient and sampling runs 

Figure 8  Screening process for characteristic wavelengths using 
competitive adaptive reweighted sampling 

 

The OA of the four algorithms is displayed in Figure 10a-10d.  
The OA curves for CNN and MLP were smoother than for RF and 
SVM, showing the stronger learning and prediction capabilities of 
the CNN and MLP algorithms.  OA fluctuated considerably as the 
number of DWT layers increased, with Haar wavelet-based dimension 
reduction tending to give the highest OA.  Excluding the db3 
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wavelet basis, the OA of CNN-based modeling after dimension 
reduction fluctuated within 81.4%-91.6%, the highest OA being 
reached after the 4th layer transform using Haar (Figure 10a).  
The MLP algorithm reached its highest OA (88.6%) after the 2nd 

layer transform using db3 (Figure 10b).  The RF algorithm 
reached its optimal OA (86.2%) after the 4th layer transform using 
bior1.5 (Figure 10c).  The SVM algorithm reached its optimal OA 
(84.6%) after the 6th layer transform using Haar (Figure 10d). 

 
Note: ROI: Regions of interest; MSC: Multiple Scattering Correction. 

Figure 9  Deep learning classification flowchart based on hyperspectral DWT 

 
a. OA of CNN based on DWT b. OA of MLP based on DWT c. OA of RF based on DWT 

 
d. OA of SVM based on DWT  e. OAs of four models based on PCA 

 

Note: OA: Overall accuracy; RF: Random Forest; SVM: Support Vector Machine; PCA: Principal component analysis. 
Figure 10  Modeling based on DWT and PCA 

 

3.3.2  Evaluation of PCA-based dimension reduction models 
To verify the reliability of the proposed DWT dimension 

reduction algorithm, the first 340, 170, 85, 43, 22, and 11 
principal components (corresponding to the data dimensions  
after one to six layers of DWT) after PCA-based dimension 
reduction were selected for modeling.  The OA of the four 
algorithms is shown in Figure 10e.  As the data dimensions 
decreased, the OA of the algorithms generally increased, 
indicating that interfering factors were gradually excluded and the 
prediction accuracy was significantly improved.  CNN and MLP 
yielded higher OA than RF and SVM, and reached the highest 
OA (85.2% and 87.0%) when the first 11 principal components 
were extracted. 
3.3.3  Transverse evaluation of dimension reduction and modeling 
algorithms  

The OA and Kappa coefficients of the three data dimension 
reduction algorithms and four modeling algorithms are listed in 
Table 6.  Classification models without a dimension reduction 
process had a low OA and a long prediction time.  The CARS 
algorithm yielded the lowest classification OA.  The OA and 
Kappa coefficient of the PCA algorithm were higher than CARS.  
After DWT-based dimension reduction, the OA of the 

classification models using CNN, MLP, SVM, and RF were 91.6%, 
88.6%, 87.6%, and 86.2%, respectively, and the Kappa coefficients 
were 0.89, 0.86, 0.85, and 0.83, respectively. 

The OA values of the various prediction algorithms are shown 
in Table 7.  The OA for ofloxacin prediction was the highest at 
98.0%, which may be the conformation of bovine albumin was 
changed by the drug, leading to the increase in feature 
discrimination of spectral reflection peak-valley shift.  The OA for 
metronidazole and salbutamol prediction was generally low (83.0% 
and 91.0%, respectively), possibly because these drugs contain the 
same hydroxyl group, limiting their spectral discrimination.  
Samples containing metronidazole, ofloxacin, and dexamethasone, 
and those without drug residues all reached their highest OA under 
the DWT algorithm, indicating that during data dimension 
reduction the DWT algorithm not only retains the original spectrum 
shape but can also restore the relative spatial positions of the 
spectra and improve classification and recognition accuracy.  
Highest OA for metronidazole, dexamethasone, and residue-free 
samples was under the DWT (Haar-4)-CNN combination, 
demonstrating that the DWT-CNN algorithm has favorable 
dimension reduction, feature extraction, and classification and 
recognition capabilities. 
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Table 6  Overall accuracy and Kappa coefficients of the various algorithms 

Dimension reduction algorithm 

None CARS PCA DWT Model 

OA/% Kappa Time/ms OA/% Kappa Time/ms OA/% Kappa Time/ms OA/% Kappa Time/ms

RF 80.4 0.75 157.70 72.0 0.65 48.87 79.8 0.75 247.35 86.2 0.83 140.60 
SVM 78.8 0.73 507.67 72.8 0.66 15.96 85.0 0.81 23.96 87.6 0.85 57.85 
MLP 83.6 0.79 71.59 78.2 0.72 75.77 87.0 0.84 95.75 88.6 0.86 70.67 
CNN 73.6 0.67 180.81 76.6 0.70 364.24 85.2 0.81 99.74 91.6 0.89 87.16 

Note: RF: Random Forest; SVM: Support Vector Machine.  RF reaches optimal values under PCA (11) and DWT (bior1.5-4); SVM under PCA (22) and DWT 
(sym5-3); MLP under PCA (11) and DWT (db3-2); and CNN under PCA (22) and DWT (Haar-4).  PCA (n) denotes the modeling of the first n principal components, 
and DWT (W-g) represents the modeling of the dimension reduction algorithm based on the discrete transform of g-th layer W wavelet basis.  All algorithms were 
independently run on a Dell T3431 tower-type graphic workstation (Intel® Core i7-9700 CPU 3.00 GHz, RAM 2.60 GHz 16 GB, GPU GeForce GTX 1660 Super). 

 

Table 7   Overall accuracy of the various prediction algorithms 

Veterinary drug classification/% Dimension reduction 
algorithm Model 

Metronidazole Ofloxacin Salbutamol Dexamethasone None 

None 62.0 91.0 80.0 93.0 76.0 
CARS 49.0 83.0 77.0 83.0 68.0 
PCA 67.0 83.0 80.0 87.0 81.0 
DWT 

RF 

70.0 92.0 89.0 89.0 91.0 
None 70.0 92.0 76.0 79.0 77.0 
CARS 57.0 80.0 75.0 77.0 75.0 
PCA 71.0 95.0 91.0 87.0 81.0 
DWT 

SVM 

81.0 93.0 84.0 91.0 89.0 
None 63.0 95.0 81.0 89.0 90.0 
CARS 62.0 80.0 87.0 82.0 80.0 
PCA 79.0 97.0 88.0 84.0 87.0 
DWT 

MLP 

77.0 98.0 90.0 93.0 85.0 
None 55.0 79.0 71.0 92.0 71.0 
CARS 68.0 89.0 72.0 78.0 76.0 
PCA 75.0 91.0 87.0 86.0 88.0 
DWT 

CNN 

83.0 96.0 90.0 96.0 93.0 
Note: CARS: Competitive adaptive reweighted sampling; PCA: Principal component analysis; DWT: Discrete Wavelet Transform; RF: Random Forest; SVM: Support 
Vector Machine; MLP: Multilayer Perceptron; CNN: Convolutional Neural Network. 

 

4  Conclusions 

In this study, a hyperspectral DWT algorithm was combined 
with CNN to create a deep learning classification algorithm.  
Classification and recognition were performed on hyperspectral 
datasets from five groups of beef samples containing veterinary 
drug residues. 

1) Hyperspectral data subjected to dimension reduction 
showed improved OA and Kappa coefficients for an independent 
prediction sample set.  The time spent in classification was also 
shortened considerably, demonstrating that dimension reduction 
algorithms can effectively eliminate redundant data, reduce data 
dimensions, alleviate the Hughes phenomenon, and improve the 
accuracy of modeling algorithms. 

2) The DWT algorithm based on the Haar wavelet basis 
function is capable of filtering out high-frequency interference 
information through multilayer low-loss filters and achieving data 
dimension reduction.  Furthermore, compared with PCA and 
CARS, it not only effectively retains the original spectrum shape 
but also restores the relative spatial positions of the spectra and 
improves model classification and recognition accuracy. 

3) CNN has strong feature extraction and learning capabilities.  
The OA of the model based on DWT and CNN was 91.6%, which 
exceeded models based on MLP, SVM, and RF by 3.0%, 4.0%, and 
2.4%, respectively.  The advantages of DWT and deep learning 
have been demonstrated in this study which proposes a new method 

for the fast, non-destructive detection and recognition of veterinary 
drug residues in beef. 
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