
208   January, 2022                        Int J Agric & Biol Eng      Open Access at https://www.ijabe.org                         Vol. 15 No. 1  

 
Analytical bi-level multi-local-world complex network model on fresh 

agricultural products supply chain 
 

Yunqing Liu1,3, Shiwei Xu1,2,4*, Jiajia Liu1,2,4, Jiayu Zhuang1,2,4 
(1. Agricultural Information Institute of Chinese Academy of Agricultural Sciences, Beijing 100081, China; 

2. Key Laboratory of Agricultural Information Service Technology, Ministry of Agriculture and Rural Affairs, Beijing 100081, China; 
3. Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agriculture Science, Beijing 100081, 

China; 4. Research Center of Agricultural Monitoring and Early Warning Engineering Technology, Beijing 100081, China) 
 

Abstract: Lately, in some regions and seasons in China, urban consumers have paid high in buying fresh agricultural products 
while farmers get unreasonable income from producing them.  To seek the reason for the phenomenon and explore ways to 
simulate it, this study constructed and implemented a complex network model named the Bi-Level Multi-Local-World 
(BI-MLW model) with characteristics of an interdependent coupling relationship between its participants.  To verify the 
validity of the model, this study implemented an experimental simulation under Small Decentralized Operation Mode (SDOM) 
and Large Centralized Operation Mode (LCOM) scenarios using Cucurbita pepo and Cucumber in the Tianjin area of China as 
sample empirical products.  Results indicate that nodes do not increase edges rapidly which reflects that even large firms in 
agricultural business cannot occupy markets fleetly.  Furthermore, under the SDOM scenario the BI-MLW model exposes 
scale-free features with a small average degree value and low average clustering coefficient, while under the LCOM scenario, 
the model displays a rising average clustering coefficient and a lowered average path length.  Both of which are consistent 
with the common view in literature and features of reality.  Thus, the BI-MLW model specially designed for fresh agricultural 
products supply chain can improve the descriptive ability than conventional Erdös-Rényi (ER), Barabási-Albert (BA), 
Bianconi-Barabási (BB) network models. 
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1  Introduction  

Many complex systems are directly or indirectly related to 
people, where everyone influences the functioning of the network 
but not anyone controls the global behavior of the whole system, 
this is even truer due to the enormous number of participants in the 
agricultural supplying process.  

With the rapid development of modern Internet and logistics, 
the supply “chain” has gradually evolved into a “network structure”.  
The behavior dependence and coupling between the participants 
become increasingly close, and the characteristics of cooperative 
symbiosis and mutually beneficial coexistence become more and 
more obvious.  Farmers cannot perceive their state in the whole 
supplying system, so they cannot adjust their production scale and 
growth path to fit into the market, they also cannot find the most 
suitable traders to raise their bargaining & risk resistance ability 
effectively.  Moreover, it is also impossible for middleman & 
wholesalers to explore the most profitable upstream & downstream 
dealers.  In short, inspect the dynamics of the supplying system 
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from an overall point of view, improve the upward trading 
efficiency, and stabilize the supply system are in need imperatively. 

Complex Network theory abstracts objects and their 
connections into nodes and edges (connections among them), 
making use of quantitative metrics to depict the internal interaction 
and mutual relationship.  It can also capture the dynamic structure 
of the system[1,2], describe behaviors of evolvements of the network 
as a whole[3,4], which has been widely applied in mathematics[5], 
physics[6], computer[7], biology[8], economics[9], sociology[10,11], and 
other fields.  

In the early studies of complex networks, Erdös and Rényi use 
the stochastic graph Model (Erdös-Rényi-model, ER-Model)[12] to 
describe the relationship between nodes.  Randomly select edges 
between any two nodes with equal probability.  However, 
Barabási and Albert[13] found that connection probability is not 
equal, more than 80% of the nodes have fewer than 4 links, while 
very few nodes have more than 1000 links.  The distribution of 
the number of links follows the “power law distribution”, so they 
add “Network Growth” and “Preferential Attachment” mechanism 
in Barabási-Albert model (BA model)[13], thus resulting in the 
characteristic of scale-free.  However, empirical analysis of the 
World Trade Web (WTW)[14,15] found that a node is not selected 
among all the nodes in the World, global preference connection 
mechanism does not conform to the real situation.  Then Bianconi 
and Barabási proposed Bianconi-Barabási model (BB model)[16], 
which takes into account the fitness of nodes in the growth 
mechanism, and the fitness and degree jointly determine the 
probability of connecting existing nodes in the network with newly 
added nodes.  Caldarelli et al.[17] showed that regardless of the 
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fitness distribution, the network generated according to the fitness 
model has the scale-free feature.  Further empirical research 
shows that the number of edges of nodes not only depends on the 
degree and fitness of existing nodes but also relates to the category 
of new nodes.  Therefore, Chen[18,19] and other scholars suggested 
the concept of Multi-local-world model (MLW), the basic idea is to 
replace the global priority connection mechanism in BA model 
with a local world priority connection mechanism[20], divide the 
growth mechanism into the growth of the local world, growth of 
node, and growth of edges.  On this basis, researchers have further 
extended and deepened the construction.  However, literature 
research shows that related complex network model has not been 
widely used in the field of agriculture.  

So far, due to geographical location, information asymmetry, 
and many other factors, participants in the agricultural supply chain 
can only choose partners within a certain range of scope 
(hereinafter referred to as “local world”), rather than in the entire 
network.  Moreover, fresh agricultural products, with more 
vulnerable storage and limited inventory time, are badly in need of 
a more descriptive model. 

Therefore, based on the classical Multi-Local-World model, a 
Bi-Level Multi-Local-World model for fresh agriculture product 
supply chain (hereinafter referred to as BI-MLW model) was 
constructed, and empirical analysis was carried out based on the 
model.   

Supply Chain Network (SCN)[6] and Supply Chain System 
(SCS) in this study all refer to a relationship between participating 
subjects, rather than “Internet” or “E-commerce”. 

2  Materials and methods  

As mentioned above, the construction of a complex network 
model is the process of abstracting objects as nodes, implementing 
their relations as edges through an analytical mechanism, like 
establishment, retention, and disconnection of the network, then 
“generate” and analyze the network by means of computer 
simulation. 
2.1  Model description and hypothesis 

This study assumes and restricts research objects to supply 
chain participants, leaving aside other factors that influence it.  
Depart from the focal node’s view, the study analyzes the supply 
network as a whole, in addition, state the following hypothesis 
(Figure 1):  

1) Nodes represents different categories of participants, 
including farmers (household peasant, cooperative producers 
collectively referred to as farmers), assemblers (middleman 
assemble agricultural products from producers collectively referred 
to as assemblers), processors and wholesalers (collectively referred 
to as wholesalers), retailers, denoted by wf, wa, ww, and wr, 
respectively.  In addition, this study only involves the above four 
types of participants, excluding prenatal raw material suppliers and 
other participants. 

2) Edges represent the interaction between nodes, such as the 
flow of products, formal (or informal) information, or the presence 
of capital exchange among them, online interaction is considered to 
set up the network edge[21].  The strength of the interaction is 
represented by the weights of edges. 

3) Multi-Local-World (MLW) represents the region where the 
node is located and its optional range.  In the actual supply chain 
network, limited by geographical location, consumption preference, 
and other factors, when adding new nodes to the network, partners 
cannot be selected from all existing nodes, and the addition of new 

nodes has little impact on nodes in other regions, which in turn are 
mainly affected by nodes in the regional network.  For example, 
farmers with a small production scale can only trade with a part of 
assemblers in the region and are influenced by their pricing policies 
and acquisition rules, while internet live broadcasting can sell 
products within a larger circle of friends. 

4)  Level of the local World represents the Level of the 
optional range.  The first level of the local world depends on the 
category of the node itself and the proportion of various nodes in 
the network.  In other words, the category of the node itself 
determines the transaction mode of its first layer of the local 
environment.  The second level depends on three factors as the 
current state of the node, the current position of the local 
environment, and the current remaining freshness.  This study 
further assumes that nodes can also be connected across hierarchies 
and local environments, thus providing the possibility of 
establishing long-term connections across hierarchies. 

5) There are no repeated connections and self-circulation 
(trading with oneself).  These factors are not considered in the 
model.  Any kind of strategic behavior of firms is not included 
either.  

6) Dealings are roughly divided into two scenarios: a) Small 
Decentralized Operation Mode (SDOM).  In this mode, most 
farmers barely develop new channels, buyers, wholesalers, and 
retailers transport products in a certain downstream path to the final 
customer.  Deals can only be done by the established marketing 
channel, where each firm trades exclusively with partners located 
in the previous or next level.  The characteristics of most nodes 
are around a certain mean value, which conforms to the 
characteristics of normal distribution.  b) Large Centralized 
Operation Mode (LCOM).  With the rapid development of 
modern Internet and logistics, farmers, consumers, wholesalers, 
retailers and service providers, etc., no longer deal only with local 
firms but relate to each other freely, representing a typical 
power-law feature[22], which has been verified in industrial supply 
chain network.  

 
Note: Red block denotes emerging supplying relations. 
Figure 1  Description of agri-supply chain and multi-local-world 

 

2.2  Edge connection mechanism 
Under the model setting of a two-level local environment, 

adding a new node should go through two basic steps: selecting the 
first-layer connection environment and selecting the second-layer 
connection environment within the selected first-layer connection 
environment.  The connection mechanism is as follows: 

1) First Level local world  
Under the SDOM and LCOM scenarios, the trading 

probability in the first-level local world is listed in Table 1. 
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Table 1  Table of connection probability first level 

Mode Local-world wf wa ww wr 

wf Pff Pfa 0 0 
wa Paf 0 Paw 0 
ww 0 Pwa 0 Pwr 

SDOM 

wr 0 0 Pwr 0 
wf 0 Pfa Pfw Pfr 
wa Paf 0 Par Par 
ww Pwf Pwa 0 Pwr 

LCOM 

wr Prf Pra Prw 0 
Note: Pjk represents the connection probability from j to k; ΣPjk = 1.  SDOM: 
Small Decentralized Operation Mode; LCOM: Large Centralized Operation 
Mode; wf, wa, ww, and wr represents different categories of participants, including 
farmers, assemblers, processors and wholesalers, retailers, respectively. 

 

Probability (Table 1) is set under the following consideration:  
First, in many developing countries (including most of the 

region), like China, where small-scale producers have low output, 
limited trading skills, lack of basic transportation facilities, low 
education, and isolated geographical conditions, such as Ethiopia’s 
grain[25] market and Philippines rice products[23].  In these 
economies, direct trading between wholesalers and producers is 
mostly absent, so assembler exercises a coordination role 
facilitating product transmission, the process of gathering and 
collecting products is an important link affecting the effective 
establishment of sales networks.  Small-scale producers and 
intermediaries’ cooperation mode is the best choice to reduce 
transaction costs and improve transaction efficiency[24,25]. 

Second, farmers and rural market (Da Ji) is common in many 
counties in rural areas in China[26], where farmers can sell 
agricultural products to other farmers or local residents on a regular 
date (such as every sixth day of each lunar month), its trading 
probability (Pff) is denoted in Table 1.  Similarly, the trading 
probabilities of the farmers’ products to assemblers and 
wholesalers are denoted by Pfa and Pfw, respectively. 

Third, many previous models assume that the nodes are not 
allowed to trade cross-level, namely each level of the node must be 
provided by the node at the next higher level[27,28]. 

As recreated in the SDOM scenario (Figure 2), a wholesaler is 
supplied exclusively by intermediaries, while an intermediary is 
only supplied by producers.  These restrictions determine a 
specific supply network structure, where every firm is supplied 
only by firms in the precedent level.  While under the LCOM 
scenario, nodes can trade across layers and establish links, and the 
optional range of connections at the local world of the first level 
also increases accordingly, which greatly expands the range of their 
options.  

 
Note: The solid line arrow represents supply, and the dotted line represents 
procurement. 
Figure 2  Local environment connection diagram of the first layer 

of agricultural product supply chain 
 

2) Second level local world 
After a new node is selected by its first level of local world, 

they then are selected by its second level local world.  
BA-Model’s “preference growth” makes the “older” node in the 
network are more likely to become the “core” node, while 

BB-Model through fitness in describing the connection 
probability[16].  Knoar et al.[29] used gravitational mechanism to 
simulate the selection process of node edges, and local 
environment. 

To assume that three influence factors are affecting its 
connection.  The new node’s product competitiveness, as well as 
the perishability of the product, are the current state of the nodes in 
the network.  A node in this local-world is chosen with probability 
given by Equation (1). 

local status weight perish

( )j i r q u→ = + +∏ ∏ ∏ ∏          (1) 

where, j stands for the newly added node; i stands for the node to 
be connected; r, q, and u denote the current state of the node in the 
network, the product competitiveness of the newly added node, and 
the freshness of the product, respectively, in a certain unit of time, 
r+q+u=1.  local∏ , status∏ , weight∏ , perish∏  denote the linking 

probability discussed as follow: 
3) Status of current nodes 
The current state of the node is represented by node degree.  

A new node is connected to e1 nodes in the selected local world by 
taking the current degree value of the node as the priority selection 
mechanism.  The connection probability distribution follows 
Equation (2). 
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where, ki represents the degree of node i in the current local world 
LW, the variable parameter α>0�is mainly used to ensure that 
isolated nodes can also be connected to an edge. 

4) Competitive power and weight 
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where, ηj denotes the competitive power of a node; Sj indicates the 
maximum volume of product that the node can produce or 
distribute. 

5) Perishability 
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To sum up, the connection probability of the second level local 
world follows Equation (5): 
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2.3  “Asynchronous continuation” mechanism of connected 
edges 

This section illustrates the “retention” and “disconnection” 
mechanisms of connected edges.  The durability of the trading 
relationship of fresh agricultural products is usually not high than 
that in other industries.  The “long-term & stable” connection 
between nodes will not be established after the transaction, but 
conditional disconnection after a certain period of continuance, 
which is called the “asynchronous continuation” mechanism in this 
study.  Conditions for disconnection include: 

1) Isolated nodes will disappear from the network.  After a ∆T 
time interval, the node with no node connection is established, 
namely node degree ki=0 will be forced to leave from the market 
competition; 

2) Nodes that cannot make profits (income cannot cover its 
costs) will gradually disappear in the network (namely 
∆T=12||&||kin<kout), where kin and kout represent the in-degree and 
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out-degree of that node in the current local world LW, respectively.  
Nodes will leave the network/market after they perish also all edges 
to it will perish at the same time. 

All connection in the simulations is zero-truncated, so every 
node in the network has at least one link with a firm in the 
upper/lower level.  By means of this restriction, set aside the case 
of suppliers or retailers that are not integrated into the supply chain 
or wholesalers without relationships with either producers or 
retailers 

The mechanism of “asynchronous continuation” is 
fundamentally different from the existing MLW model in the 
random deletion of edges, which is helpful to simulate the 
temporality and seasonality of fresh agricultural products supply 
network, avoid the generation of isolated nodes and isolated local 
environment, and improve the network’s ability to depict real 
trading relationships (Figure 3). 

 
Note: Alphabets a-b denotes edge connection mechanism and c-f denotes the 
“Asynchronous Continuation” mechanism of connected edges.  

Figure 3  Illustration of network construction and analysis 
structure 

 

2.4  Main feature of complex network models 
The characteristics of complex models can mainly be described 

based on the following indicators: 
1) Small world feature 
The path length of any two nodes is defined as the minimum 

number of edges connecting them in the network, Average Path 

Length  (APL) defined as the Average Path Length of all nodes, 
2

( 1) iji j
d

N N ≥
=

− ∑ , where dij is the shortest distance between 

any two nodes i and j in the network, N is the number of nodes. 
In actual social, ecological, and other networks, information 

transmission can be accelerated through short paths, network with 
many short paths are small-world featured networks, in which 
adjusting a small number of connections can dramatically change 
the performance of the network.  Such as telephone networks, 
changing a few lines can significantly improve the performance of 
the system.  

2) Scale-free characteristics 
Most real-world networks are not randomly connected, few 

nodes usually have a large number of connections, while most 
nodes have few connections.  The degree distribution of nodes 
conforms to a power-law distribution, which is known as the 
scale-free feature of networks. 

Scale-free feature reflects the heterogeneity of a network, in 
which node connections are unevenly distributed.  The previous 
study revealed that scale-free networks show both robustness 
against random failures and vulnerability to deliberate attacks[30,31], 
it is possible to paralysis the whole network completely only by 
attacking 5%-10% nodes, with degrees higher than 5.  Literatures 
[27, 28, 32] further studied other heterogeneous topologies of the 
network.  The existence of power-law distribution in scale-free 
networks greatly improves the possibility of the existence of 
high-number nodes.  Therefore, this kind of robustness and 
vulnerability has a great influence on fault tolerance and attack 
resistance of the network. 

3) Other features 
Nodes in complex networks also tend to cluster.  For example, 

there is always a circle of acquaintances or a circle of friends in a 
social network where each member knows each other.  The 
clustering degree is the degree of network collectivization, it can 
reflect the relationship between one group of friends and another. 

The clustering coefficient of node i is 
( )
edge2

( 1)

q

i
i

n
C

n ni
=

−
, in 

which ki is the degree of node i in the network, ni is the number of 
neighbor nodes of the node, ( )

edge
qn  represents the actual number of 

edges between the ni neighbor nodes, ni(ni−1)/2 is the maximum 
number of edges.  The Average Clustering Coefficient of the 

network (ACC) 
1

1 N
ii

C C
N =

= ∑  reflects the probability of the 

clustering phenomenon occurring at all nodes in the network[6-33], 
that is, the degree of overlap of the circle of friends of nodes.  

In general, for regular networks, the path length between any 
two nodes is large, but the clustering coefficient is high.  For 
random networks, the path length between any two nodes is shorter 
and the clustering coefficient is lower.  However, the path length 
between nodes of the small-world network is small and the 
clustering coefficient is still high.  For this reason, Qian Xuesen 
defined complex networks as those with self-organization, 
self-similarity, attractors, small world, and some or all properties of 
scale-free networks. 

The main input and output parameters of the model are listed 
in Table 2. 

 

Table 2  Parameters in Bi-Level Multi-Local-World model 
Name Parameters description 

Nwf, Nwa, Nww, Nwr The scale of farmers, assemblers, wholesalers, and retailers

f
fa

a

w
R

w
=  The ratio of farmer and assemblers, Raw rest be deduced by 

analogy 

r The ratio of state of current node 
q The ratio of competitive power and weight 
u The ratio of perishability, r+q+u=1 
ηj The competitive power of node j 
Sj The weight of node j 
∆T Network evolve time unit 

 Average path length, APL 
C Average clustering coefficient 

<k> Average degree of nodes 
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2.5  Experimental design 
In order to verify the validity of the model, this article selects 

cucumber and Cucurbita pepo as sample empirical products, since 
Cucumbers and Cucurbita pepo are both mainly domestic varieties, 
the export ratio is low, almost no inventory, possess obvious 
seasonal characteristics. 

To verify the previous findings of the authors by designing a 
simulation experiment conceived for Empirical parameters.  
Through long-term monitoring, online, offline field observation, 
and statistical data of the Tianjin area of China, about its planting 
scale, price, sales channels, product flow, as well as other sources 
of supply and marketing information.  Set each empirical 
parameter as follows: 

1) Initializes the scale of farmer’s local world Nwf in each 
region 

Cucumber likes warmth and is not resistant to cold.  The 
suitable temperature for its growth is 10°C-32°C, and it needs a 
large amount of water.  The suitable soil and air relative humidity 
are both 60%-90%.  According to agricultural statistics, in 2003, 
2004, 2005, and 2006, the average yield of cucumber in Tianjin 
was 51 786 kg/hm2, 51 855 kg/hm2, 45 646.5 kg/hm2, and  
46 492.5 kg/hm2, respectively (Data source: National Bureau of 
Statistics County data and Tianjin Statistical Yearbook).  In recent 
years, under the normal production conditions of greenhouses, the 
average yield is 55 000 kg/hm2 per season. 

Cucurbita pepo has an optimal temperature of 20°C-25°C 
during the growth period, with slow growth below 15°C and no 
growth below 8°C.  According to agricultural statistics, in 2003, 
2004, 2005, and 2006, the average yield of Cucurbita pepo in 
Tianjin was 56 674.5 kg/hm2, 56 749.5 kg/hm2, 49 954.5 kg/hm2, 
and 50 880 kg/hm2, respectively (Data source: National Bureau of 
Statistics county data and Tianjin Statistical Yearbook).  In recent 
years, under the normal production conditions of greenhouses, the 
average yield is about 60 000 kg/hm2 per season. 

According to the investigation and calculation by the Data of 
the National Bureau of Statistics, the cucumber planting area in 
Tianjin accounted for 9.3%-12.7% of the vegetable planting area, 
and the Cucurbita pepo planting area accounted for about 1/5 of the 
cucumber planting area.  To sum up, the values of network nodes 
under the two production and operation modes are in Table 3 and 
Table 4. 

 

Table 3  Cucumber SDOM scenario supply-chain network in 
Tianjin, 2004 

Cucumber Cucurbita pepo Supply  
location Nwf Nwa Nww Nwr Nwf Nwa Nww Nwr

Binhai 2377 297 149 743 475 59 30 149

Dongli 3909 489 244 1221 782 98 49 244

Xiqing 6879 860 430 2150 1376 172 86 430

Jinnan 2841 355 178 888 568 71 36 178

Beichen 5182 648 324 1619 1036 130 65 324

Wuqing 31 097 3887 1944 9718 6219 777 389 1944

Baodi 12 786 1598 799 3996 2557 320 160 799

Ninghe 6787 848 424 2121 1357 170 85 424

Jinghai 8447 1056 528 2640 1689 211 106 528

Jixian 12 591 1574 787 3935 2518 315 157 787

Note: Nwr=Acreage/Acreage|per|household, with the real value of planting area 
in Tianjin area in 2004 and set Acreage per household = 0.133 hm2 under 
SDOM scenario. 

Table 4  Cucumber LCOM scenario supply-chain network in 
Tianjin, 2018 

Cucumber Cucurbita pepo Supply 
location Nwf Nwa Nww Nwr Nwf Nwa Nww Nwr

Binhai 174 11 7 121 69 4 3 48 
Dongli 218 14 9 151 87 5 4 61 
Xiqing 1050 66 44 729 420 26 17 292
Jinnan 125 8 5 87 50 3 2 35 
Beichen 480 30 20 333 192 12 8 133
Wuqing 2197 137 92 1525 879 55 37 610
Baodi 985 62 41 684 394 25 16 274
Ninghe 816 51 34 566 326 20 14 227
Jinghai 749 47 31 520 300 19 12 208
Jixian 622 39 26 432 249 16 10 173

Note: Nwf=Acreage/Acreage|per|household, with the forecasted value of planting 
area in Tianjin in 2018, set Acreage|per|household = 1.33 hm2 under LCOM 
scenario. 

 

2) Initializes the scale of other participants Nwa, Nww, Nwr 
Initialize the size Nwa, Nww, Nwr of the assembler, wholesaler, 

and retailer’s local environment.  Values of this study are set as 
Rfa=8, Raw=2, Rwr=0.20 in SDOM scenario, set Rfa=16, Raw=1.5, 
Rwr=0.06 in LCOM scenario.  Assume that the cucumber and 
Cucurbita pepo production and management mode in Tianjin 
gradually evolves from SSOM to LCOM from 2004 to 2018. 

3) Initialize the proportion of factors in the current state of 
nodes r, product competitiveness q and freshness preservation u.  
For simplicity, set r=0.3, q=0.3, u=0.4, respectively, and r+q+u=1. 

4) Initialize ηj and Sj.  Assuming that ηj and Sj follow uniform, 
exponential and normal distribution respectively under the SDOM 
scenario while following power-law distribution under the LCOM 
scenario. 

5) Assuming that the SDOM scenario was adopted mostly in 
2004, and the LCOM scenario gradually was adopted in 2018. 

3  Results 

Results of the scale of nodes in 2004 and 2018 are in Table 4 
and Table 5. 

 

Table 5  Scenario simulation results under the setting of the 
experiment of this study 

Year Product Model Nodes Edges  C <k>

BI-MLW 3 594 130 5.700 0.0013 3.2 
ER-Model 78 225 044 2.823 0.0370 1503.0
BA-Model 3 845 504 3.524 0.0047 3.8 

Cucumber 

BB-Model

139 344 

3 827 530 3.110 0.0364 3.3 
BI-MLW 2 452 940 5.500 0.0010 3.3 
ER-Model 11 649 249 2.670 0.0310 836.0
BA-Model 139 320 3.951 0.0030 3.9 

2004

Cucurbita 
pepo 

BB-Model

27 869 

139 180 3.491 0.0169 3.4 
BI-MLW 57 091 4.210 0.0260 4.8 
ER-Model 2 667 156 3.664 0.0291 400.0
BA-Model 66 650 3.746 0.0053 3.9 

Cucumber 

BB-Model

13 335 

66 310 3.266 0.0306 3.4 
BI-MLW 24 552 4.400 0.0661 4.6 
ER-Model 426 519 1.978 0.0300 159.9
BA-Model 26 645 3.476 0.0117 3.6 

2018

Cucurbita 
pepo 

BB-Model

5334 

26 515 3.021 0.0566 3.5 
Note: Nodes denote the number of nodes; Edges denote total edges of the 

network;  Denotes Average Path Length, APL, 2
( 1) iji j

d
N N ≥

=
− ∑ , dij is 

the shortest distance between node i and j; C denotes average clustering 

coefficient, 
1

1 N
ii

C C
N =

= ∑ , ( )
edge

qn  is the number of edges in ni neighbors; <k> 

denotes average degree,  
1

1 N
ii

k k
N =

< >= ∑ .  
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Figure 4  BI-MLW network under the SDOM Scenario of major 

cucumber producing areas in Tianjin, 2004 

 
Figure 5   BI-MLW simulation Model under LCOM Scenario in 

cucumber production areas in Tianjin, 2018 (partial: screening with 
node degree greater than 30) 

4  Discussion 

This section attempted to evaluate the performance of the 
BI-MLW model from four perspectives: an overview of the 
network structure, node perspective of its degrees, nodes view of its 
average path length, and network clustering view of its average 
clustering coefficient. Empirical simulation and comparison are 
listed in Table 5. 
4.1  Network structure  

Many previous theoretical and empirical contributions proved 
that most real networks reflect the heterogeneity of a network, node 
connections are unevenly distributed with only a small number of 
nodes having a large number of edges, which is known as the 
scale-free feature of a network.  Simulation of BI-MLW model 
also presents scale-free feature as BA, ER, and BB models.  
Suppose the size of circles represents the number of its connections 
(Figure 6).  In BA and BB model, few nodes hold a majority of 
links, showing “the rich get richer”.  While in reality in some 
regions and seasons, farmers cannot accumulate its advantages in 
this manner, many farmers only sell their products to a few buyers.  
Hence BI-MLW model improves node ability with an 
“Asynchronous Continuation” mechanism discussed in Section 2.3, 
the degree of node will not grow unreasonably “richer” (as red dots 
in Figure 6), reflects the reality that even large enterprises in the 

field of agricultural products supply cannot occupy all markets over 
a short time. 

 
Figure 6  Comparison of Cucurbita pepo simulation model in 

Jinnan District, Tianjin, China in 2018 
 

4.2  Degree of network nodes 
Degree k of i represents the number of nodes connected to 

node i, reflecting the nature of each node itself.  Intuitively, the 
larger degree indicates the higher importance of that node among 
all nodes.  Different degree distributions can be used to describe 
the chain, star, or satellite network structures formed between 
network nodes[27,28,34] and also describe some less common 
topologies such as block diagonal patterns.  The average degree of 

the network <k> is the average degree of all nodes <k>
1

1 N
ii

k
N =

= ∑ .  

In general, the feature of degree distribution denotes the overall 
properties of a network, such as fast diffusion and high destruction 
resistance[8]. 

As in Table 5, in 2004 average degree <k> of Cucumber 
dealers were 3.2, 1503.0, 3.8 and 3.3, which increased to 4.8, 400.0, 
3.9 and 3.4 respectively in 2018.  Means in 2004 average 
cucumber dealer only deal with 3.2 buyers, in 2018 trade with 4.8 
on average, one can observe that a higher <k> indicates a stronger 
ability to participate in market competition, which will reduce the 
heterogeneity of the network.  The simulation results of the model 
are consistent with conclusions in other industries[35].  
4.3  Average path length of the network 

APL  can reveal the average shortest path between any two 
nodes in the network.  = ∞  between disconnect nodes and 

1=   in a complete connection diagram.  In supply chain 
networks, attention should be paid to the average of the shortest 
length of the path from farmers to retailers through 
intermediaries[36].  Many actual and random networks have been 
found to have a small-world network characteristic[33,34]. 
Milgram[37] discovered the phenomenon of “six degrees of 
separation”, which proves the widespread existence of small-world 
characteristics.  Networks with small-world network 
characteristics, even sparse networks, all have small average 
shortest path length.  In general, if the average path length is 
proportional to the logarithm of the network size N[38], can be 
considered that the network is small-world characterized[39]. 

Intuitively,  will raise as the network scales up, since 
products will pass through more hands with more dealers.  On the 
contrary, simulation results of BI-MLW model (Table 5) show that 

 does not vary greatly with network size, it stays at 5.5-5.7 in 
2004 and reduced to 4.2-4.4 in 2018 which fits Milgram’s “six 
degrees theory”.  In real mature supply chains as General Mills, 
Kellogg’s, Mondelez whose  were 3.548, 3.625, and 4.323[40].  
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4.4  Average clustering coefficient 
The clustering coefficient represents the clustering situation 

near one node, large values imply a high concentration of flow in a 
few nodes[5,33].  high clustering facilitates coordination among 
firms and thereby agility hence clustering is a sign of resilience in a 
network.  

In SDOM Scenario in 2004, the Average Clustering 
Coefficient (ACC) C of farmers’ market is relatively high, while 
that of the whole network is not which is 0.0013 in Cucumber 
market and 0.0010 in Cucurbita pepo market.  Under LCOM 
scenario in 2018, C increases to 0.0260 in Cucumber market and 
0.0661 in Cucurbita pepo market.  This shows that under SDOM 
farmers mainly sell their agricultural products by means of 
self-supply in small areas, such as village and town fairs.  On the 
contrary, under LCOM farmers expanded their market, hence 
increased the average clustering coefficient of the network. 

According to the previous analysis, a moderately decentralized 
network structure, relatively high average degree, roughly constant 
average path length, a growing cluster coefficient is preferable for 
food supply chains, where restricted relationship SCs are common.  
A comprehensive comparison of these properties indicates that 
BI-MLW model established in this study can improve the 
descriptive ability as network structure, node degree, nodes average 
path length, and network clustering than ER, BA, BB network 
models in simulating the variation of fresh agricultural products 
supply chain. 

5  Conclusions and implications 

A complex network model between participants in the supply 
network under SDOM and LCOM scenarios was discussed in this 
study.  The results showed that: 

1) Network topology and its trading capacity vary under 
different operation scenarios.  First, production scale, standardized 
production capacity, and quality control capacity will bring great 
uncertainty to the yield and quality, production has obvious 
seasonality, in SDOM scenario, the supply network shows 
generalized scale-free characteristics, with large average path 
length, small network clustering coefficient, few clustering 
cooperation between nodes, and low network efficiency and 
stability.  Second, in the LCOM scenario, the average path length 
becomes shorter and the clustering coefficient becomes larger. 

2) The stability of the connection relationship is low, which 
requires the local environment size to be highly matched.  Due to 
the uneven quality specifications and quality of primary fresh 
agricultural products, the small value of single products, and the 
low stability of producers, the transaction links have a high degree 
of promptness, namely, the occurrence and instability.  In addition, 
the freshness will decline continuously and irreversibly since the 
harvest, and the value will decline at different rates with time.  
The operators need to complete the processes of classification, 
primary processing, packaging, and transportation within a limited 
time.  The simulation results also show that the unstable 
connection relationship requires a higher matching degree among 
local worlds, otherwise, it is easy to cause the failure of the 
connection and thus lead to the failure of the sales channel. 

3) The heterogeneity of nodes in the network will not increase 
rapidly, and the cumulative advantage of nodes cannot be 
accumulated permanently.  The model verifies nodes with a high 
degree will not significantly increase the number of edges along 
with the evolution of the network, i.e., the heterogeneity of the 
network is less prominent than that of the conventional network 

model, which proves that the BI-MLW model established in this 
study, to a certain extent, can simulate the feature that nodes with 
high degree value do not increase edges more rapidly.  It better 
reflects the characteristics that even large firms in the field of 
agricultural products supply cannot occupy all markets quickly, but 
fluctuate back and forth with seasons and products. 

Compared with other research, the following aspects are 
explored and innovated: Firstly, node types in the classical model 
are the same, the BI-MLW model endows different types of nodes 
with unique attributes and behavioral characteristics.  Secondly, 
the random transaction of nodes in the classical model is 
inconsistent with reality.  BI-MLW model fully considers the 
interaction between participants in the agricultural supply chain in 
reality and improves the model hypothesis in many ways.  Third, 
the classical model is synchronous, nodes and edges exist 
simultaneously or die synchronously.  BI-MLW innovatively put 
asynchronous mechanisms on the network, which means the 
establishment and die are closely related to the actual transaction 
process.  Empirical results show that improvements in BI-MLW 
model to some extent reduced the uncertainty during the network 
evolvement and improved the modeling performance of the whole 
system.  

This study can be extended in several ways.  Fresh 
agricultural products supply chain network is highly susceptible to 
fluctuations as production mode, matching degree of different 
factors, and unique product perishability features.  To that end, 
seeking even accurate numerical expressions to describe dynamics 
of nodes and edges, improving parameters of simulation scenarios 
through vast real-world data validation are still to be analyzed. 
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