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Method for the automatic recognition of cropland headland
images based on deep learning
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(1. Information Engineering College, Capital Normal University, Beijing 100048, China;
2. National Engineering Research Center for Information Technology in Agriculture, Beijing 100097, China)

Abstract: For self-driving agricultural vehicles, the sensing of the headland environment based on image recognition is an
important technological aspect. Cropland headland environments are complex and diverse. Traditional image feature extraction
methods have many limitations. This study proposed a method of automatic cropland headland image recognition based on
deep learning. Based on the characteristics of cropland headland environments and practical application needs, a dataset was
constructed containing six categories of annotated cropland headland images and an augmented headland image training set
was used to train the compact network MobileNetV2. Under the same experimental conditions, the model prediction accuracy
for the first ranked category in all the results (Top-1 accuracy) of the MobileNetV2 network on the validation set was 98.5%.
Compared with classic ResNetV2-50, Inception-V3, and backend-compressed Inception-V3, MobileNetV2 has a high accuracy,
high recognition speed, and a small memory footprint. To further test the performance of the model, 250 images were used for
each of the six categories of headland images as the test set for the experiments. The average of the harmonic mean of precision
and recall (F1-score) of the MobileNetV2 network for all the categories of headland images reached 97%. The MobileNetV2
network exhibits good robustness and stability. The results of this study indicate that onboard computers on self-driving
agricultural vehicles are able to employ the MobileNetV2 network for headland image recognition to meet the application
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requirements of headland environment sensing.
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1 Introduction

Agricultural vehicle automatic navigation technology can lead
to significant reductions in overlap and skip in field farming
operations and labor intensity. It is widely welcomed by farmers
and has become the most widely used technology for promoting
precision agriculture'. After nearly 20 years of development, the
automatic navigation technology of agricultural vehicles has
become industrialized. The goal of the next stage of development
will be the ability to automate the entire agricultural vehicle
operation. Although there are differences in terms of plot size and
vehicle types, an operating tractor unit must perform headland
turning. Therefore, the sensing of the headland environment is the
key point in the research of agricultural vehicle self-driving
technology but it has been difficult to determine thus far.

A headland is commonly considered the boundary of a
cropland plot. As early as the 1990s, the concept of digital cropland
management was proposed in the field of precision agriculture
research and was suggested to be used to map cropland plots
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through surveying and mapping or remote sensing imagery™’. In
digital maps of cropland, the boundaries of the plots are abstracted
as a line attribute. However, a headland for agricultural vehicle
turning is an area, not a line. Furthermore, the accuracy of the
current digital maps of cropland cannot meet the requirement of self-
driving of agricultural vehicles. Therefore, it is necessary to explore
more suitable headland environment sensing technology.

As an important research field of artificial intelligence, image
recognition has been widely employed. A fundamental step of
image recognition is image feature extraction. Traditional image
feature extraction methods use manual extractors, such as Speeded
Up Robust Features (SURF)™, Scale Invariant Feature Transform
(SIFT)®, and Histogram of Oriented Gradient (HOG)", to extract
local features such as color, texture, and shape through expert
knowledge and complex parameter adjustments. However, manual
feature extraction methods do not fully represent image semantics,
and extractors are generally application-specific, and are poor in
generalization and robustness.

Over the past decade, “deep learning” has been an important
breakthrough in the field of artificial intelligence. It has achieved
great success in many areas, including speech recognition, natural
language processing, computer image, and video analysis. The
image recognition methods based on deep learning can
automatically learn image features from big data and extract
multiple layers of information from low-level features to abstract
semantic concepts. For a deep learning algorithm, the more features
are used to train the deep learning network, the better the robustness
and generalization ability of the algorithm. In 1998, LeNet5"
became the first large-scale commercial deep-learning network
model. Subsequently, other network models such as AlexNet!,
GoogLeNet”, VGG-Nets!"”, and ResNet!'! have been developed,
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intensifying the research and application of convolutional neural
network automatic image feature extraction methods in different
fields. There have been studies and applications of deep learning
technology in the field of agriculture. The average recognition
accuracy of a wheat kernel image detection system based on
AlexNet is 96.67%""%, and the average recall of recognition of
agricultural vehicle and equipment images based on convolutional
neural network is 98.8%!"". Based on transfer learning, good
recognition results have been achieved in image recognition of
diseases and pests in cotton leaves!! and diseases in maize!”. These
studies can serve as references for crop disease diagnosis. In recent
years, deep learning techniques have been applied to farm area
recognition"” and boundary line detection!'” in the research of self-
driving agricultural vehicles.

In actual cropland environments, the types of headlands are
complex and diverse. The headlands can be the boundaries of
adjacent fields where crops are grown, or they can be non-field
areas, such as ridges, gravel roads, ditches, or bare soil. In addition,
for a self-driving agricultural vehicle to determine whether it is near
a headland area, it needs to recognize the cropland environment in
which the vehicle is operating. Cropland environments are also
diverse due to the growth of different crops and different crop
growth periods. Manual feature extraction methods that use
traditional image recognition have many limitations and are clearly

Dry field operation
environment

unable to adapt well to the complex and varying characteristics of
cropland and headland environments in nature!®. Therefore, this
study proposed an automatic recognition method based on deep
learning to study cropland headland images, for the vehicles to
better adapt to the complex headland environment, and further
promote the development and practical application of self-driving
agricultural vehicle technology.

Based on the
environment and practical application needs, an annotated cropland

characteristics of a cropland headland
headland image dataset was constructed and an augmented headland
image training set was used to train the compact network
MobileNetV2 in this study.

2 Materials and methods

2.1 Classification of headlands

A headland, or a boundary of a field, can be defined as a
transition zone between a cropland field and other areas, and it can
appear as a variety of scene types of natural or man-made
structures. According to the Current Land Use Classification (GB/T
21010-2017)™), croplands can be roughly divided into three
categories: dry fields, irrigated fields, and paddy fields. This study
used agricultural vehicle dry field operations for the research
background and classifies the dry field operation environment
scenes into two categories: field and headland, as shown in Figure 1.

Field Headland
,_LI_| 1
[ 1
Without With crop Headlands AHeadlands
crop . adjacent to non-
coverage adjacent to fields
coverage fields
11
[ T 1
Green crops Vegetation Ridges Manjlnade
— coverage objects
Yellow Green vegetation L Bare soil Grave
1 crops (shrubs, weeds) roadsl
Yellow vegetation Ditch
L Bare soil (shrubs, weeds) [ Dreches
Trees — Fences
Figure 1 Classification of scene elements of cropland headlands

The cropland field environment was categorized as either fields
with crop covering or fields without corps covering. According to
the neighboring environment, the headland environment, as a
transition zone of the fields, was categorized as either headlands
adjacent to fields or headlands adjacent to non-fields. The headlands
adjacent to the fields category, according to the difference in field
covering, were further categorized into three categories: covering by
immature green crops, covering by mature yellow crops, and bare
soil without crop covering. The headlands adjacent to non-fields are
complex. According to the landscape element structures, they are
divided into vegetation covering (weeds, shrubs, trees), ridges (bare
soil), and man-made objects.

2.2 Creation of cropland headland image dataset
The classification and analysis of cropland headlands showed

that although some headland environments have different field
covering types, such as green crop covering adjacent to fields and
these
environments can be classified in terms of image recognition.

green vegetation covering adjacent to non-fields,
According to the characteristics of the images such as color and
texture and using a visualization interpretation method™” this study
assigned a total of six categories of the dry field operating
environments in the automatic image recognition test. As shown in
Figure 2, the six categories of images are the following: 1) images
of fields without crops; 2) images of fields with crops; 3) images of
headlands with green vegetation, including images of headlands
adjacent to green crops, and images of headlands with bushes and
weeds green vegetations; 4) images of headlands with yellow

vegetation, including images of headlands with mature crops and
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Figure 2 Illustrations of six classes of cropland headland images

images of headlands with yellow weeds and bushes; 5) images of
headlands with bare soils. Including images of headlands adjacent
to fields with bare soils and images of headlands adjacent to ridges;
6) images of headlands with man-made objects, such as gravel
roads, ditches, and fences.

A dataset of 9000 cropland headland images was created in this
study, and it was divided into a training set, a validation set, and a
test set by the “hold-out” method®"with the image number ratio of
4:1:1. The training set of 6000 images was used to train the model,
with 1000 images in each category. The validation set of 1500
images was used to validate the accuracy of the model, with 250
images in each category. The test set of 1500 images, 250 images in
each category, was used to test the performance in practical
applications. The composition of the cropland headland image
dataset is listed in Table 1.

Table1 Composition of the cropland headland image dataset

Training Augmented training Validation Test

Image class set set set set

Fields without crops 1000 5000 250 250

Fields with crops 1000 5000 250 250

Headlands W}th green 1000 5000 250 250
vegetation

Headlands Wth yellow 1000 5000 250 250
vegetation

Headlands with bare soils 1000 5000 250 250

Headlands V\{lth man-made 1000 5000 250 250

objects
Total 6000 30 000 1500 1500

2.3 Image preprocessing

In this study, the acquired images of cropland headlands were
divided, scaled, and augmented.

1) Image division and scaling

The acquired cropland headland images are generally larger
than the input image size of a convolutional neural network;
therefore, the original images need to be resized to the same size.
Because the length and width of the original images are different, if
the images are scaled at an aspect ratio of 1:1, the image contents
are distorted, which will impact the classification and recognition
effectiveness. As shown in Figure 3, the short side of an original
image is taken as the side length, cuts it into an image with an
aspect ratio of 1:1, and then use the nearest neighbor interpolation
method to scale the image to 224x224 pixels or 299%299 pixels to
meet the input requirements of different networks in the experiment
and to ensure that the image information is not lost. In addition, this
method can divide an image into two, which can solve the problem
of imbalanced data caused by an insufficient quantity of images for

Figure 3 Diagram schematic of image division
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specific categories.

2) Image augmentation

A multi-scaling method was used to augment the training set.
Enlarging the original images to different scales makes the field
boundary features more distinctive, and thus benefits the extraction
of useful features. As an agricultural vehicle approaches a headland
area, useful information about the headland first appears from the
top of the images. Therefore, when resizing an image, with the
upper side along the top of the image, and the left side and the right
side being center symmetrical, the original image was resized to the
images at 60%, 70%, and 80%, respectively, of its original size.
Then, they were zoomed to the original size. Next, the original
image was flipped horizontally. This way, the original training set
was expanded by a factor of five. In addition, the brightness,
contrast, and chroma of the images were randomly transformed to
eliminate the disturbances of the light on the images, and they were
combined with the multi-scaling method to form an augmented
training set.
2.4 Image dataset annotation

This study used Google’s TensorFlow deep learning framework
to annotate the image dataset of all categories of the cropland
headland images. The training set, validation set, and test set
respectively contained the six classes of images listed in Table 1.
The original image data was stored in a folder for each image class.
The original image data was converted into TFRecord data format
files using the TensorFlow framework. The beginning part of the
file name indicates the types of datasets (training set, validation set,

or test set). Finally, the complete dataset of annotated cropland
headland images is created and serves as the foundation for
subsequent studies on automatic recognition of the cropland
headland images.

3 Cropland headland image recognition method

3.1 Overall technical roadmap

The trained model of this study needs to be applied to onboard
computers on self-driving agricultural vehicles. The computing
performance and memory size of the onboard computers are lower
than desktop computers in the same price range. The current
popular deep learning models consume a huge amount of computing
resources and are not suitable for direct deployment to onboard
equipment, and thus need to be compressed. Model compression
can be divided into frontend compression and backend compression.
Frontend compression is a technique that does not change the
original network structure. Its major methods include knowledge
distillation™ and compact model structure designs. The backend
compression may change greatly the original network structure. Its
major methods include low-rank approximation!, model pruning®,
and parameter quantization™'. The overall technical roadmap of
cropland headland image recognition is shown in Figure 4. A
frontend compression method and a backend compression method
were used, respectively, on preprocessed data, to train and validate
the headland images. The performance scores were compared using
comparative experiments, and the model that performed the best
was used for cropland headland image recognition.

Data preparation

Data collection

Data augmentation

Backend compression

Choose large, deep
networks
[

Frontend compression

Choose compact
networks
}

*
Pre-train the model with

Transfer learning Pre-train the model with

¥

custlom data

custom data

v
Yes
o Is th? rr.lodel — Model testing
optimized
l No
Adjust hyper-parameters to
optimize the model

+
Yes
Model testing — Is th? n}odel ]
optimized
No l

Adjust hyper-parameters to
optimize the model

|

Model pruning

Remove unused

Compare the performance of’
nodes the two models

Determine the model to use

Cropland headland
environment recognition

Figure 4 Cropland headland recognition algorithm

3.2 Transfer learning

Transfer learning™ is a method to transfer knowledge from one
domain (i.e., the source domain) to another domain (i.e., the target
domain), allowing the target domain to achieve better learning
results. In the transfer learning method employed in this study,

ImageNet?” was used as the source dataset, and the network
models, MobileNetV2, ResNetV2-50, and Inception-V3, which
were used in the experiments of this study described later, were
trained to obtain the pre-trained models. The pre-trained models,
which already have a certain image recognition ability, were trained
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using the headland image dataset as the source data. By fine-tuning
the model parameters, the models are able to complete the task of
headland recognition faster.
3.3 Frontend compression model

Compact network MobileNetV2® was used. This network is a
lightweight deep neural network proposed by Google for embedded
devices such as mobile phones. It uses a large number of depth
separable convolutions® to replace standard convolutions and can
ensure that the number of model parameters is reduced without
losing too much accuracy.
3.3.1 Depth separable convolution

If the size of the input feature map is FxFxN, where F is the
length and width of the input feature map, and N is the number of
channels of the input feature map, assuming that the number of
channels is equal to the convolution kernels for the convolution
operations and that the size of the convolution kernels is KxKxN,
where K represents the length and the width of the convolution
kernel and M convolution kernels are used, then the computational
cost of standard convolutions is

Computational cost = KX KXNX M X F x F (N

Depth separable convolution consists of depthwise convolution
and 1x1 convolution (also called pointwise convolution). If the
depthwise convolution uses a single filter for each input channel,
and then 1x1 convolution is used to control the number of output
channels, the total computational cost is

Total computational cost, , = KXKXMXFXF+MXNXFxXF (2)

1x1

Comparing Equations (1) and (2), Equation (3) was got,

KxKxMxeF+M><N><F><F=l+L 3)
KXKXMXNXFXF N K?

If the size of the input feature map is 28x28x192 and the size

of the depth separable convolution kernel is 3x3, the computational

cost is approximately between 1/9 and 1/8 of the computational
costs of standard convolutions. MobileNetV2 introduced a hyper-

parameter v, to control the thickness of each layer. y was set to 1.4
in this study. The total computational cost is

Total computational cost,; = KX KXyMXFXF+yMXyNXFXxF
“4)

3.3.2 MobileNetV2
MobileNetV2 is an improved network model based on
MobileNet. It references residual blocks in ResNet and designs
inverted residual blocks with linear output to further improve the
accuracy of the model. As shown in Figure 5Sa, the original residual

Inverted residual
block 1
Inverted residual
block_2
Inverted residual
block 3

1

Inverted residual
block 5
Inverted residual
block_6
Inverted residual
block_7

Multiscale image
224x224x3

Original image

Flipped image

1

_2

_3

' 1 ' 4
_5

_6

Input

Conv_block

Inverted residual block  Conv_Block

structure first reduces the channel number using a 1x1 convolution,
next it undergoes a 3x3 standard convolution, and then it restores
the channel number by a 1x1 convolution. The input and output are
added by way of a shortcut. Thus, the residual structure is wide on
both sides and narrow in the middle. MobileNetV2 improves this
design. As shown in Figure 5b, first, the number of channels is
increased by the 1x1 convolution, obtaining more features, next the
depthwise convolution of the 3x3 spatial convolution is conducted,
then the 1x1 convolution is used to reduce the dimensionality. The
structure is narrow on both sides and wide in the middle, which is
referred to as an inverted residual structure®. In addition, to prevent
non-linearity from destroying too many features, the final output
does not go through ReLU™, but is directly linear output.

Shortcut connection
a. Residual block

Shortcut connection
b. Inverted residual block

Figure 5 Comparison of residual block and inverted residual block

The MobileNetV2 network structure used in the cropland
headland image recognition in this study is shown in Figure 6. The
input headland images (224x224) first pass the convolutional
module, which comprises structures,
including convolutional layers, batch normalization, and ReLU.
Then, seven inverted residual blocks were used, where the
convolutional layers of the stride of 2 do not use the shortcut, and
the convolutional layers of the stride of 1 use the shortcut. The
output images from the inverted residual blocks then go through the
convolutional module. The global average pooling layer was used to
replace the fully connected layer to further reduce the number of

standard conventional

Label

A 4

Global average

. Dropout 1x1 Convolution Softmax
pooling

Figure 6 MobileNetV2 network structure diagram
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parameters. Then, the images pass the Dropoutt layer that
prevented overfitting, followed by a 1x1 convolutional layer, and
finally, they passed the Softmax layer for classification output.
Table 2 lists the relevant parameters for the design of the
MobileNetV2 network.

Table 2 Parameters for the design of the MobileNetV2

network

No. Type Convolution kernel size/step size  Output size
1 Input 224x224x%3
2 Conv_Block 3x3/2 112x112x48
3 Inverted residual blockl 1 Inverted residual block 112x112x24
4 Inverted residual block2 2 Inverted residual blocks 56x56%32
5 Inverted residual block3 3 Inverted residual blocks 28x28%48
6  Inverted residual block4 4 Inverted residual blocks 14x14x88
7  Inverted residual block5 3 Inverted residual blocks 14x14x136
8 Inverted residual block6 3 Inverted residual blocks Tx7x224
9 Inverted residual block7 1 Inverted residual block Tx7%448
10 Conv_Block 3x3/2 Tx7x1792
11 Global average pooling 1x1x1792
12 Dropout 1x1x1792
13 Convolution 1x1/1 1x1x6
14 Softmax 6

3.4 Hyper-parameter design of the network model
3.4.1 Learning rate decay

The learning rate decay technique was used to train the
network. Its function is to attenuate the learning rate during the
training process. Not only can it increase the parameter update rate
in the early stage of training, but also it ensures that the network
will not have large fluctuations in the later stage and allows the
optimal solution to be reached. The learning rate decay is calculated
by Equation (5).

global_step
decayed learning_rate=learning_rate x decay_ratedeaysers (5)

where, learning rate is the initial learning rate; global step is the
total number of training iterations; decay steps is the decay step;
decay rate is the decay rate of the learning rate.
3.4.2 Optimization algorithm

Momentum® was used as the optimization algorithm. The
main idea of Momentum is to introduce momentum with
accumulated history gradient information to accelerate stochastic
gradient descent (SGD). It can not only solve the problem of large
oscillation magnitude in updates in SGD optimization algorithms,
but also accelerate the convergence to the optimal solution.
Assuming that the current iteration step is the ¢-th step, the rules of
the Momentum optimization algorithm are expressed as follows:

Viw = BVaw + (1= AW (6)
Vi = BV + (1 - B)db (7)
W=W-aVy (®)
b=b-aV, ©)

where, Vg and Vg, are the gradient momentums that the loss
function accumulates in #—1 iterations; f is an index of gradient
accumulation; dW and db are the gradients obtained when the loss
function is back propagated;  and b are the parameters that need to
be updated. Equations (8) and (9) are the equations for the updates
of the network parameter vector and the bias vector, respectively; a
is the learning rate of the network, which is equivalent to the initial

learning rate learning_rate. MobileNetV2 converges slowly, so the
initial learning rate o is set relatively large.
3.43 Regularization

To reduce overfitting during training, L2 regularization was
added. L2 regularization was used to add a regularization term to
the loss function, and is as follows:

A
c=c0+%2w2 (10)

- . A .
where, C, represents the original loss function; o >, W?is the L2
n

regularization term; # is the number of samples in the training set;
is the coefficient of the regularization term.
3.4.4 Exponential moving average

The exponential moving average was used to enhance the
generalization ability of the model. The exponential moving average
maintains a shadow copy for each variable. The initial value of this
shadow copy is the initial value of the corresponding variable. Each
time a variable is updated, its shadow copy is updated by Equation
1.
shadow_variable = decay x shadow_variable + (1 —decay) X variable

an

where, shadow_variable is the value before the variable update;
variable is the value after the variable update. The decay is
calculated as follows:

decay = min{init decay, (1 + num_update)/(10 + num_update)}
(12)

where, init decay is the set initial decay rate; num_update is the
number of model parameter updates.
3.4.5 Model hyper-parameter setting

After the MobileNetV2 network was trained and adjusted
multiple times, the hyper-parameter values used are listed in Table
3.

Table3 Hyper-parameter settings for training the
MobilenetV2 network

Parameter Value
Initial learning rate (learning_rate) 0.045
Total number of training iterations (global_step) 100 000
Decay step (decay_steps) 2343
Decay rate of the learning rate (decay rate) 0.96
Number of training samples in each batch (batch_size) 32
Index of gradient accumulation (5) 0.9
Coefficient of the regularization term (1) 0.000 04

0.999 9

Initial decay rate (init_decay)

3.5 Backend compression

The backend compression method was adopted to prune the
trained models of the large deep networks to reduce the model
complexity. The Inception-V3 large deep network was selected for
training and model optimization. On this basis, the backend
compression processing was performed with the strategies as
follows: 1) Remove those unused nodes between the input and the
output; 2) Search for the expressions that are always constants in the
model and replace them with the constants; 3) Search for all the
nodes that perform the multiplication operations immediately after
the convolution operation, and perform the multiplication operation
in advance, thus reducing the number of nodes of the original
computational graph and in turn reducing the computational cost for
the entire model. The strategy is shown in Figure 7.
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a. Original calculation graph

b. Optimized calculation graph

Figure 7 Backend compression strategy

4 Experiment and analysis

4.1 Model training and result analysis

With an NVIDIA GeForce GTX 1080 GPU, MobileNetV2 was
trained using a pre-trained model. In the experiment, the original
training set and the augmented training set were used for the
training. The compositions of the original training set and the
enhanced training set are listed in Table 1. As shown in Figure 8,
MobileNetV2 represents the network using the original training set,
and aug_MobileNetV2 represents the network using the augmented
training set. After the network model was trained for 100 000
iterations, the loss values level off at about 0.2, the training time of
MobileNetV2 and aug MobileNetV2 are both 7 h, and the Top-1
accuracy rate, which refers to the accuracy of the first ranked
category in all the results predicted by a model, of the two models
in the validation set is 98.5% and 97.7%, respectively. It can be
seen that when the augmented training set is used for training, the
Top-1 accuracy rate has improved by nearly 1%, indicating that
MobileNetV2, after being trained with the augmented training set,
effectively mitigates overfitting, and has better generalization
capability.

gg -~ MobileNetV2 — aug MobileNetV2
g3
= 25t
> 20} 0.22 7
& 15¢ 0.20 ke L L L
= 10t 9700 0 99000 1000
0.5F

0 20000 40000 60000 80000 100000
Steps

Figure 8 Changes in loss values in training process

To examine the MobileNetV2 network classification results,
ResNetV2-507 and Inception-V3P were included to conduct the
comparative experiment. The corresponding pre-trained models
were obtained by transfer learning. The three networks were
separately trained using the same augmented headland image
datasets and the same set of hyperparameters. After the network
training was completed, the validations were conducted using the
validation set. The recognition results are listed in Table 4.

Table 4 Performance comparison of three convolutional
neural networks

Recognition

Network — Size of input  Top-1 Memory  Training

No. name image  accuracy/% spt?ed/s per footprint/MB  time/h
image

1 ResNetV2 50 224x224 98.4 4.89 505.3 7

2 Inception_V3 299x299 98.8 4.49 483 11

3 MobileNetV2 224x224 98.5 1.30 119.49 7

It can be seen from Table 4 that although three convolutional
neural networks have high recognition accuracies, ResNetV2-50
and Inception-V3 consume a lot of computer resources and have
lower recognition speeds, thus they are not suitable for direct
application to embedded devices. In contrast, the MobileNetV2
classification accuracy was comparable to those two networks, but
it has a greater advantage in memory use, which makes it possible
to be deployed deep on onboard computers.

4.2 Comparative experiment of frontend compression and
backend compression

An experiment was conducted for comparing the model
performance of frontend compression with the performance of
backend compression. According to model training experimental
results listed in Table 4, Inception-V3 which has better performance
was used to perform the backend compression. The model that
resulted from the backend compression was referred to as
Press_Inception-V3. The validation was conducted using the
validation set in an i15-8250U CPU computing platform. The
recognition results are listed in Table 5.

Table S Performance comparison of Inception-V3,
Press_Inception-V3, and MobileNetV2

. . Recognition ~ Memory
No. Network name SIZ? ofinput  Top-1 o speed/ footprint/
image accuracy/% . L
s-image MB
1 Inception_V3 299%299 98.8 4.49 483.00
2 Press Inception V3  299x299 98.8 4.20 469.00
3 MobileNetV2 224x224 98.5 1.30 119.49

After the Inception-V3 model was compressed, the accuracy
remained the same. The recognition speed and memory footprint
were enhanced slightly but were still far below the performance of
MobileNetV2. The comparison of the experimental results of the
two compression methods showed that the MobileNetV2 has better
network performance, and was the deep learning model more
suitable for deployment in mobile or embedded devices.

4.3 Experiment and analysis of network classification
accuracy

To verify the actual classification accuracy of the MobileNetV2
network, a network generalization test experiment with the test set
on MobileNetV2 after the final hyper-parameter training was
conducted in the study. The confusion matrix and F1-score are used
to evaluate the model in the test of the MobileNetV2 network. The
number of samples in the test set is listed in Table 1.

4.3.1 Confusion matrix and F1-score

In evaluating the accuracy of image recognition, the precision,
recall, and F1-score can be calculated using the confusion matrix.
Figure 9 shows the confusion matrix of the six classes of headland
images. Each column in the matrix represents the predicted classes.
The total data number in each column represents the number of data
predicted to be in the class. Each row represents the true class the
data belongs to. The total data number in each row indicates the
number of true classes. Precision refers to the ratio of the number of
positives the model correctly predicted to the total number of the
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Note: The meaning of the values of axes: 0-headlands with bare soils; 1-fields
with crops; 2-headlands with yellow vegetation; 3-headlands with man-made

objects; 4-fields without crops; 5-headlands with green vegetation.

Figure 9 Confusion matrix from MobileNetV2

predicted positives. Recall refers to the ratio of the positives
correctly predicted by the model to the total number of the predicted
positives. Fl-score can be regarded as a harmonic mean of the
precision and recall of the model. Its maximum value is 1 and its

minimum value is 0 and is calculated by

2 X Precision X Recall
F1- = 1
seore Recall + Precision (13)

The results of the precision, recall, and Fl-score of the six
types of headland images are listed in Table 6. The average of the
precisions and the average of the recalls of MobileNetV2 on the test
set are 0.97, respectively, indicating that the network can accurately
recognize each class of the samples. The average of Fl-scores is
0.97, indicating that the MobileNetV2 network can accurately
recognize the six classes of headlands in the natural environment,
and has good robustness and stability.

Table 6 MobileNetV2 network test experimental results
Class of cropland headland 0 1 2 3 4 5

Average value

Precision 0.95 0.96 0.97 0.99 0.99 0.96 0.97
Recall 0.98 0.98 0.97 0.97 0.94 0.98 0.97
Fl-score 0.96 0.97 0.97 0.98 0.96 0.97 0.97

Note: Precision is the proportion of all positive predictions that are correct; Recall
is the proportion of all real positive observations that are correct; F1-score is the
harmonic mean of precision and recall.

4.3.2 Error analysis

In this study, the incorrectly recognized cropland headland
images were sorted and analyzed, as shown in Figure 10. The
primary recognition errors occur for the following reasons:

a. Predicted: headland with green vegetation
actual: headland with bare soils

d. Predicted: headland with bare soils
actual: headland with man-made objects

b. Predicted: field with crops
actual: field without crops

e. Predicted: headland with bare soils
actual: headland with man-made objects

c. Predicted: headland with yellow vegetation
actual: field with crops

f. Predicted: headland with yellow vegetation
actual: headland with green vegetation

Figure 10 Incorrectly recognized images

1) Disturbance from large shadows in the images, as shown in
Figure 10a;

2) Lighting conditions result in a great change in the soil color,
as shown in Figure 10b;

3) Some images in different categories are similar. Figure 10c
shows a field actually with arable crops. Because a clear dividing
line is present in the image, the model mistakes it for a headland
with yellow vegetation. In addition, some man-made objects and
bare soils appear very similar, as shown in Figures 10d and 10e;

4) Because the field environment is quite complex, the color

and texture features of some scenes are not captured, and the model
is not familiar with these features, as shown in Figure 10f.

The error analysis shows that the model still has shortcomings.
The model fails to correctly recognize the images of headlands with
a high degree of similarity, the images with large shadow areas, and
the images with blur field boundaries. Further improvement and
optimization are needed on this model.

5 Conclusions

1) To meet the requirement for self-driving agricultural vehicle
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headland turning, a cropland headland image annotation dataset
covering six types of images was constructed. This dataset
contained a total of 9000 images, 6000 of which were in the training
set and 3000 of which were in the validation set. This dataset could
be intelligently used for the automatic recognition of cropland
headland.

2) The compact network MobileNetV2 was trained using the
training set of augmented headland images. The Top-1 accuracy of
the MobileNetV2 network on the validation set was 98.5%, which
was similar to that of ResNetV2-50 and Inception-V3, but the
recognition speed and memory footprint of the MobileNetV2
network was much better than ResNetV2-50 and Inception-V3.
Compared with the mainstream large-scale deep networks,
MobileNetV2 has remarkable advantages in meeting the
requirement of deployment in onboard computers. In addition,
compared with a backend-compressed network, Press Inception-
V3, MobileNetV2 has better network performance.

3) The test set was used to further test the generalization ability
of the network. The average of the F1 scores of the MobileNetV2
network in recognition of the six classes of headland images was
97%, indicating that the network was robust and can perform the
recognition task well in the natural environment.

In conclusion, a cropland headland image annotation dataset
was constructed according to the headland environment-aware
application requirement. This was followed by training the compact
network MobileNetV2, which is more suitable to be deployed on
embedded devices. The future work will improve the recognition
efficiency, and apply the model to the onboard computer of self-
driving agricultural vehicles to realize automatic recognition of
cropland headland.
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