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Nonlinear tracking control of a two link oil palm harvesting

robot manipulator
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Abstract: Automated harvesting of oil palm trees requires research and development efforts in several robotics areas, including

manipulator control. The objective of this paper was to apply nonlinear Lyapunov based control method for joint angles

tracking of a two-link oil palm harvesting robot manipulator with uncertain system parameters. Four different controllers,

including exact model knowledge, adaptive, sliding mode control and high gain feedback control were proposed and simulated.

Stability analyses were performed for each case in the absence and presence of bounded disturbance. The controllers were

then compared against each other based on their performances and control efforts.
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1 Introduction

Robotic technology is one of the fastest growing

fields in the modern agriculture. Automated methods

for harvesting, collection and transportation of

agricultural products are demanded in leading producing

countries to ensure long-term viability of their production

under the increasing economic pressures. While studies

on the development of robots for agricultural application

such as robotic transplanting of tomato and strawberry in

greenhouse environments are underway, few agricultural

manipulator developments have utilized appropriate

performance measured in configuring robotic

manipulators for specific tasks[1]. This is mainly due to

the highly variable environments in which agricultural
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robots are required to operate and perform dexterous

agricultural task such as tree fruit removal.

Robots for harvesting of citrus fruits, cucumber,

tomato and grape have been used in fields and

greenhouse productions[2-7]. Researchers in the area of

agricultural robotics are now challenged to develop

electromechanical systems that allow for the exact

placement of robot end-effectors. An important problem

with most of the proposed controllers is that they do not

consider the fact that the input command may require

more torque than its physical possible. In the other

words, when the actuator constraints are exceeded, hard

nonlinearities that are not included in the dynamic model

are encountered. Several robotic researchers have

focused on the development of controllers based on more

accurate models in an attempt to increase the performance

of robot manipulator systems. For example, nonlinear

control for adaptive regulation of robot manipulators with

uncertain kinematics and dynamics are discussed in a

number of literatures[8-13].

The objective of this work was to apply nonlinear

Lyapunov based method to control joint angles in a two
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link robot manipulator for harvesting oil palm. Four

nonlinear controllers, including exact model knowledge

(EMK), adaptive, sliding mode controller (SMC) and

high gain feedback controller were designed and

simulated to track a desired trajectory given by qd = [cos(t)

cos(t)]T with uncertain system parameters (except the

EMK controller whose system was exactly described),

and in the absence and presence of bounded disturbances

that are assumed to be modeled by τd =[2sin(t) 0.5sin(t)]T.

The Lyapunov stability analysis for each controller was

performed and simulated to show how the bounded

disturbances affect the stability of the system. Finally,

the controllers were compared against each other based

on their performances and control efforts.

2 Dynamic model and properties of the oil

palm harvesting manipulator

The dynamic model for the tow-link robot system

shown in Figure 1 can be written using the

Euler-Lagrange formulation described by Spong et al.[14]

as follows:

( ) ( , ) ( )m d dM q q V q q q f q t       (1)

where, M∈R2×2 is the inertia matrix, vm∈R2×2 denotes

the centripetal-Coriolis matrix, fd∈R2 denotes friction,

τd(t) is a general nonlinear bounded disturbance assumed

to be modeled by τd =[2sin(t) 0.5sin(t)]T, τt represents the

torque input control vector and ( ), ( ), ( )q t q t q t denote

the link position, velocity, and acceleration vectors,

respectively. The robot dynamic model given by Equation

(1) has the following properties that will be used in the

control development and analysis.

The inertia matrix M(q) is symmetric and positive

definite (PD) and satisfies the inequality in Equation (2)

( ) ny t R 

2 2
1 || || ( ) ( ) || ||Tm y y M q y m q y  (2)

where, m1∈R is a known positive constant, ( )m q R is

a known positive function, and ||.|| denotes the standard

Euclidean norm.

If ( ), ( )q t q t are bounded ( L ), then the first and

second partial derivative of the elements of M(q) and

( , )mV q q with respect to q and the first and second partial

derivative of the elements ( , )mV q q and fd with respect

to q exist and are also bounded.

The time derivative of the inertia matrix and the

centripetal Coriolis matrix satisfy the following skew

symmetric relationship:

1
( ) ( , ) 0

2
T n

mr M q V q q r r R
 

    
 

  (3)

Figure 1 Dynamic model for the tow-link robot system

3 Control design and stability analysis

The control objective was to design controller for the

oil palm robot manipulator model to simulate tracking of

a desired joint space trajectory given by qd = [cos(t)

cos(t)]T. We quantified the control objectives by defining

the link position tracking error e(t) and filtered tracking

error r(t) as follows.

( ) de t q q  (4)

( )r t e e  (5)

where, α is a positive diagonal gain matrix. The

development of the controllers is based on the

assumptions that ( )q t and ( )q t are measurable, M(q),

( , ),m dV q q f and ( )d t are unknown, , , dq q q and dq

exists and L and , ,d d d L    . Differentiation

of Equation (5) with respect to time and multiplying by M

yields the following open loop error system:

dMr Mq Mq M e    (6)
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Modify the open loop error system by substituting for

Mq using the dynamic in (1) and then substituting for

q using time differentiation of Equation (4) and

Equation (5) yields:

( )m d m m d d dMr V q V e V r f q Mq t M e              

(7)

We let m d m d dV q V e f q Mq M e          and

rewrite the expression in Equation (7) to form the

following open loop error system given by Equation (8).

All of the controllers will be designed based on this error

system.

( )m dMr Y V r t      (8)

3.1 EMK controller

Assuming to have exact knowledge about dynamic of

the system, we designed a controller to cancel all the

nonlinearities in the system, thus the external disturbance

will be the only term left undefined. Considering the

error system in Equation (8), we can use a control gain

constant matrix (K>0) and design the control torque given

by (9) such that the error goes to zero (e → 0).

Substituting this torque in the dynamic yields the closed

loop error system given in Equation (10):

Y Kr    (9)

mMr V r Kr d    (10)

In order to perform the Lyapunov stability analysis,

we considering a positive definite (PD), continuously

differentiable candidate Lyapunov function given by

1

2
TV r Mr . Direct differentiating of this function with

respect to time and substituting with the error system in

Equation (8), yields:

1
( )

2
T T

m dV r Mr r V r Kr       (11)

Using the skew symmetric property, we can simplify

Equation (11) and upper bound it by 2|| || T
dV K r r    .

In the absence of disturbances (τd = 0), this inequality will

reduce to 2|| ||V K r  , which can also be written (by

using the expression of the candidate Lyapunov function)

as a first order differential equation given by 2V KV 

that has the following solution:

max( )

2
( ) (0)exp

M

Kt
V t V



 
   

 
(12)

It can be concluded from Equation (12), that the

system will be globally exponentially stable (GES) by

using this controller. We can also observe that V(t)

exponentially goes to zero and is ∈L∞, also ||r|| and ||e||

exponentially go to zero and are ∈L∞. Since Yθ is a

function of e and r, it is therefore ∈L∞. As a result, the

control input torque (τ) is also ∈L∞. In the presence of

disturbances (τd ≠ 0), the expression for V can be upper

bounded by 2( ) || || || |V t K r c r   , where c is a

positive constant such that ||τd|| ≤ c. In this case, a

Globally Uniformly Ultimately Bounded (GUUB)

stability result can be concluded where the ultimate

bound is given by || ||
c

r
K

 .

3.2 Adaptive controller

The objective of adaptive control was to achieve a

trajectory tracking task in the presence of unknown

parameters, thus, the controller should be designed based

on an estimate of the system model. We proposed the

following design for the control torque:

ˆY Kr    (13)

where, K is again a positive control gain matrix and ̂

represents an estimate of the system parameters.

Substituting Equation (13) in Equation (1) yields the

following closed loop error system:

m dMr Y V r Kr      (14)

where, ˆ    is the difference between the actual

and estimated parameters. Differentiation  with

respect to time gives ˆ  
 (since  is assumed to

be a constant). In order to design ̂ , we considered a

continuously differentiable, positive-definite Lyapunov

function candidate given by 11 1

2 2
T TV r Mr       .

Differentiating this function with respect to time and

substituting for  with ̂


and for Mr with (14)

yields:

11 ˆ( )
2

T T
mV r Mr r Y V r Kr d         

   (15)
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Using the skew symmetric property to simplify

Equation (15) and design ˆ TY r  


, the expression for

̂ can be then determined by integrating

ˆ ˆ, ( )TY rdt   


. Substitute ̂


in Equation (15),

yields a new expression, 2 T
dV Kr r    , which can be

upper bounded by 2|| || T
dV K r r   

. In the absence

of external disturbance, the expression for the upper

bound of V reduces to 2|| ||V K r  . Since V is a

positive definite function and V is negative semi

definite, we can concluded that V L . In addition, V

is a function of r and  , then r and  are also L .

Being r bounded, we have ,e e L , thus ,q q L

which means Y L . Also since , L   , then

ˆ L  , thus r L . Therefore, r is continuously

differentiable. Since r is square integrable ( 2r L ) and

uniformly continuous, using the corollary to Barbalat’s

lemma[15], we can conclude that r→ 0 as t→ 0 which

means that by using this controller, and in the absence of

external disturbances, the system is asymptotically stable.

In addition, the designed input control torque in (15) is

bounded because it is a function of bounded terms. In

the presence of a bounded external disturbance, by

assuming that || ||d c  , we will have

2|| || || |V K r c r   which results in a GUUB stability

result. The ultimate bound can be calculated by setting

0V  , which yields || ||
c

r
K

 .

3.3 Sliding mode controller

Since the parameters in the model are all unknown,

another approach to compensate uncertainties in the

system is by crushing them through fast switching, also

known as nonlinear robust sliding mode control. This

approach comes at the cost of high or even infinite

control effort and requires fast switching actuators. For

this design, we considered the upper-bounds into the

dynamic expressed in Equation (7). We rewrote the

error system in Equation (8) by letting β= Yθ- τd which

can be upper bounded by 2
1 2 2|| || || ||c c z c z   ,

( [ ]T T Tz e r ). Therefore, a control torque can be

designed given by Equation (16), which yields the closed

loop error system in Equation (17). In this design, K is a

positive control gain matrix, ρis a positive constant and

sgn(r) is the sign function of r.

( )Kr sgn r    (16)

( ) mMr Kr sgn r V r      (17)

Considering the continuously differentiable and

positive- definite Lyapunov candidate function

introduced in the EMK design, by differentiating with

respect to time and substituting for Mr from Equation

(17), the following expression for V is obtained.

1
( ( )

2
T T

mV r Mr r Kr sgn r V r        (18)

Using the skew symmetry property, we can upper

bound (18) by 2|| || ( )T TV K r r sgn r r     which

can be simplified as 2|| ||V K r  . Solving this

differential equation yields a solution of the form

max{ }

2
( )

M

K
V V t


  , where max{ }M gives the maximum

eigen value of matrix M. Therefore, we have

max{ }

2
( ) (0)exp

M

Kt
V t V



 
   

 
. From this result, it can be

concluded GES result for the system. Since V(t)

exponentially converges to 0, ||r|| also exponentially

converges to 0. Therefore, ||e||→0 as t→ 0. Because the

disturbance was included within the uncertain model,

there is no need of any separate stability analysis for a

case with disturbance. The constants chosen to squash all

the unknown nonlinearities in the system.

3.4 High gain controller

The objective of the torque control design in this

approach was to crush the uncertainties in the system

through high gain which leads to a high control effort.

Using the error system in Equation (8), we designed the

control torque as τ= -Kr where K is a positive control

gain matrix. Substituting this control torque in Equation

(8) yields the following closed loop error system:

mMr Kr V r     (19)

Considering the same Lyapunov candidate function as
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in the EMK design and its time derivative, and by

substitution for Mr using Equation (19) and applying

the skew symmetry property, we can upper bound V by

2|| || || ||V K r r   . It can be seen that 2|| ||K r

dominates || ||r by large K, and as long as this

happens, V(t) will be decreasing. However, because we

have 2|| ||r , the term 2|| ||K r will eventually be

dominated by || ||r . In the other words, at some point, r

will be small enough that 2|| ||K r will be dominated

by || ||r , and since V is a positive definite, radially

unbounded and decrescent function, we concluded

uniformly ultimate bound stability result. This can be

shown by letting 1 2K k k  and completing the square

term in 2|| || || ||V K r r   as follows:

2 2
2 2

1 2 2
2 2

|| || (|| || || || )
4 4

V k r k r r
k k

 
     

∴ a bV C V C   (20)

where
2

1

2

2
and

4
a b

k
C C

M k


  . The solution to

Equation (20) is 1

max

( ) (0)exp
{ }

a b

k t
V t C V C

M

 
   

 
,

where max{ }M gives the maximum eigen value of

matrix M. Based on this, we can conclude Uniformly

Ultimate Bounded (UUB) stability result.

4 Simulation results

The performances of the four designed controller

were simulated in the presence and absence of external

disturbance. To achieve this aim, each robot link was

first modeled as a homogeneous rectangular bar with

mass mi, length li, and moment of inertia tensor

[ 0 0; 0 ; 0 0 0 ]xi yi ziJ I L I relative to a frame attached

at the center of mass of the link and aligned with the

principle axes of the bar. The expressions for the inertia

matrix, and the centripetal-Coriolis matrix, 2 2M R  in

the dynamic model given by Equation (1) were derived

by applying the Lagrange’s equation known as

( i

i i

d L L
F

dt q q

 
 

 
, where Fi is the external force acting

on the i-th generalized coordinate) to the two-link

manipulator shown in Figure 1 and by calculating the

kinetic energy of the manipulator. Letting (xi, yi, 0)

denote the position of the i-th center of mass and r1 and r2

to be the distance from the joints to the center of mass for

each link, as shown in Figure 1, the kinetic energy is

calculated as follows:

2 2 2 2 2
1 1 1 1 1 2 2 2

2
2 1 2

1 11 3 2 2 3 2

2 3 2 22 2

1 1 1
( , ) ( ) ( )

2 2 2

( )

21

2

z

z

T

T q q m x y I q m x y

I q q

q qp p c p p c

p p c pq q

     



     
         

    

 

 

 

(21)

where, 1 1 1 1x r s q   , 1 1 1 1y r s q   , 2 1 1 2 12 1( )x l s r s q    

2 12 2r s zq , 2 1 1 2 12 1 2 12 2( )y l c r c q r t zq     , sin( )i is q ,

sin( )ij i js q q  , cos( )i ic q and cos( )ij ijc q .

Substituting the Lagrangian L = T into Lagrange’s

equation, the parameters of the M and Vm matrices in the

dynamic model (1) become:

1 3 2 2 3 2

2 3 2 2

2p p c p p c
M

p p c p

  
   

3 2 2 3 2 1 2

3 2 1

( )

0m

p s q p s q q
V

p s q

   
  
 

  



1

2

0

0
d

d

d

f
f

f

 
  
 

where, 2 2 2
1 1 2 1 1 2 1 2( )z zp I I m r m l l     , 2

2 2 2 2zp I m r  ,

p3 = m2l1r2. The calculated numerical values are, p1 =

3.473 kg·m2, p2 = 0.196 kg·m2, p3 = 0.242 kg·m2

corresponding to the link length and weight of the robot,

l1 = 0.024 m, l2 = 0.16 m and m1 = m2 = 1.1 kg. In the

dynamic model 1, τ1 and τ2 represents torque control

inputs and q1, q2 denotes the angular position of the robot

links. The friction term for the simulation was proposed

fd1= 5.3 Nm·s and fd2 = 1.1 Nm·s. The simulation was

performed in MATLAB with the corresponding diagram

shown in Figure 2. In order to evaluate the performance

of the system, the error and torque in the joint angles in

the presence and absence of the bounded disturbance for

each designed controller as well as the adaptive

parameters estimation were simulated and were plotted

through Figures 3-22.
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Figure 2 Control simulation diagram with external disturbances

Figure 3 Error plots, EMK controller without disturbances

Figure 5 Error plots, EMK controller with external disturbances

Figure 4 Torque plots, EMK controller without disturbances

Figure 6 Torque plots, EMK controller without disturbances
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Figure 7 Error plots, adaptive controller without disturbances

Figure 9 Torque plots, adaptive controller without disturbances

Figure 11 Adaptive estimated parameters, p1, p2 and p3, without

disturbances

Figure 8 Error plots, adaptive controller with disturbances

Figure 10 Torque plots, adaptive controller with disturbances

Figure 12 Adaptive estimated parameters, p1, p2 and p3, with

disturbances
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Figure 13 Adaptive estimated parameters, fd1 and fd2, without

disturbances

Figure 15 Error plots, SMC, without disturbances

Figure 17 Torque plots, SMC, without disturbances

Figure 14 Adaptive estimated parameters, fd1 and fd3, with

disturbances

Figure 16 Error plots, SMC, with external disturbances

Figure 18 Torque plots, SMC, with external disturbances
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Figure 19 Error plots, high gain controller, without disturbances,

(K=1, 10, 50, 500)

Figure 21 Torque plots, high gain controller, without disturbances,

K=10

Figure 20 Error plots, high gain controller, with disturbances,

K=25

Figure 22 Torque plots, high gain controller, with disturbances,

K=25

5 Discussion

Four nonlinear controllers were designed and

simulated based on Lyapunov analysis for a two link oil

palm harvesting robot manipulator. Exact knowledge of

the robot model was assumed in the EMK design in order

to cancel the nonlinearities in the system through

feedback linearization. A GES result was then obtained.

It can be observed from Figure 3 that error exponentially

converges to zero when there is no external disturbances

to the system. In the presence of unknown, bounded

disturbances, as shown in Figure 5, the control torque

designed based on the known parameters is not capable of

producing exactly zero error result. Therefore, errors

converge to a small region and stay within that region.

In the other words, not all nonlinearities are cancelled and

we have globally ultimately bounded result. It can also

be obtained from Figures 4 and 6 that torques are

bounded and are in the range of -10 Nm to 30 Nm for the

no disturbance case and within a range of -50 Nm to

150 Nm in the presence of disturbance.

To take into accounts the uncertain parameters in the

system, it is necessary to use adaptive control to design

control torque. As shown in Figures 11-14, the
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parameter estimates ultimately reach close to the actual

values given by the problem. It can also be obtained

from Figures 7 and 8 that the error asymptotically

converges to zero in the absence of external disturbances.

In the case of having disturbance in the system, the error

wiggles around zero, indicating an ultimately bounded

stability result. It can also be seen from the torque

profiles in Figures 9 and 10 that the torques is within the

prescribed limits.

In the SMC design, we can theoretically achieve a

GES result, however, as shown in the Figures 15 and 16,

it takes a longer time for the error to approximately

converge to zero which is because of the discontinuous

nature of the controller and since the torque limitations

impose constraints on the gain selection. Having upper

bounded the unknown dynamics and disturbances by

functions of states; the sliding mode controller manages

to crush the nonlinearities, however it is not possible to

achieve GES when the unknown dynamics cannot be

modeled as a function of states, but upper-bounded by a

constant. In this case, we can conclude a globally

uniformly ultimately bounded stability result. From the

torque plots in Figures 17 and 18, we can see that torque

has been switching infinitely fast. In the other words, an

actuator is required to handle such a bandwidth in order

to implement this controller on a real oil palm harvesting

robot.

Plots of error for different gains were shown in

Figures 19 and 20 for the high gain control design. It

can be seen that, as we increase the gain, error gets closer

to zero. In reality, increasing gain requires high control

effort. One advantage of this controller is its simple

design structure which makes it easy to tune and

implement. From Figures 21 and 22, it is straight

forward to see that the torques patterns applied at the two

joints are almost similar to that of the EMK controller,

which is because of the adaptation of the system

parameters. It can also be observed that the oscillations

in torques have been remarkably reduced compared to

that in the two previous designs; hence less control

energy is required. The controller is robust to the

uncertainties in the system, however it only yields a

uniformly ultimately bounded stability result.

6 Conclusions

With the mechanization of harvesting, the hard and

labor intensive needed in picking and harvesting oil palm

in the plantation can be easier, simpler and more

important, and it will reduce the manpower shortage

problem due to decrease in seasonal labor. In order to

successfully achieve this objective, four nonlinear joint

angles tracking controllers based on Lyapunov analysis

were designed for an oil palm harvesting robot

manipulator. The exact model knowledge controller

showed the best stability result, compared with all other

controllers. It also had the lowest control effort. The

problem with this design is the lack of a model that can

perfectly describe the system. In addition to that, when

disturbances are introduced into the system, the controller

will lose its perfect performance and result in a globally

uniformly ultimately bounded stability. Adaptive

control design was used in order to improve performance.

In this design, gains tuning is required to ensure that the

control torques are within the actuator limits while

maintaining a good tracking performance. Using high

gain would come at the cost of increasing control effort,

however, it also ensure that any error estimate of the

parameters will be compensated. Simulation result

showed that the adaptive controller is more efficient

especially in the presence of disturbances, in which a

GES result was concluded. In the SMC design, the

controller provides fast switching action to cancel the

nonlinearities and disturbances in the system. This

design gave a GES result, however it comes at a high

control effort and requires an actuator to switch infinitely

fast in time which might inject noise and other

disturbances in the system. Because of the

discontinuous nature of this controller, tuning of gains is

almost useless to archive GES result, which theoretically

should have been the case. The high gain controller

gave uniformly ultimately bounded stability result in the

presence of uncertain model dynamics and bounded

disturbances. While EMK controllers cannot handle

disturbances at all and adaptive controllers give a GES

result, high gain controllers crush the uncertainties at the

cost of high control effort. One advantage of this design



June, 2012 Nonlinear tracking control of a two link oil palm harvesting robot manipulator Vol. 5 No.2 19

was the easiness of the control implementation and gain

tuning.
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