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Nonlinear tracking control of a two link oil palm harvesting
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Abstract: Automated harvesting of oil palm trees requires research and development efforts in several robotics areas, including

manipulator control. The objective of this paper was to apply nonlinear Lyapunov based control method for joint angles

tracking of a two-link oil palm harvesting robot manipulator with uncertain system parameters. Four different controllers,

including exact model knowledge, adaptive, sliding mode control and high gain feedback control were proposed and simulated.

Stability analyses were performed for each case in the absence and presence of bounded disturbances. The controllers were

then compared against each other based on their performance and control effort.
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1 Introduction

Robotic technology is one of the fastest growing

fields in the modern agriculture. Automated methods

for harvesting, collection and transportation of

agricultural products are demanded in leading producing

countries to ensure long-term viability of their production

in the increasing economic pressures. While studies on

the development of robots for agricultural application

such as robotic transplanting of tomato and strawberry in

greenhouse environments are underway, few agricultural

manipulator developments have utilized appropriate

performance measures in configuring robotic

manipulators for specific tasks[1]. This is mainly due to
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the highly variable environments in which agricultural

robots are required to operate and perform dexterous

agricultural task such as tree fruit removal.

Robots for harvesting of citrus fruits, cucumber,

tomato and grape have been used in fields and

greenhouse productions[2-7]. Researchers in the area of

agricultural robotics are now challenged to develop

electromechanical systems that allow for the exact

placement of robot end-effectors. An important problem

with most of the proposed controllers is that they do not

consider the fact that the input command may require

more torque than is physically possible. In the other

words, when the actuator constraints are exceeded, hard

nonlinearities that were not included in the dynamic

model are encountered. Several robotic researchers

have focused on the development of controllers based on

more accurate models in an attempt to increase the

performance of robot manipulator systems. For example,

nonlinear control for adaptive regulation of robot

manipulators with uncertain kinematics and dynamics are

discussed in a number of literatures[8-13].

The objective of this work was to apply nonlinear
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Lyapunov based method to control joint angles in a two

link robot manipulator for harvesting of oil palm. Four

nonlinear controllers, including exact model knowledge

(EMK), adaptive, sliding mode controller (SMC) and

high gain feedback controller were designed and

simulated to track a desired trajectory given by qd =

[cos(t) cos(t)]T with uncertain system parameters (except

the EMK controller, where the system is exactly

described), and in the absence and presence of bounded

disturbances that are assumed to be modeled by

τd =[2sin(t) 0.5sin(t)]T. The Lyapunov stability analysis

for each controller was performed and simulated to show

that how the bounded disturbances affects the stability of

the system. Finally, the controllers were compared

against each other based on their performance and control

effort.

2 Dynamic model and properties of the oil

palm harvesting manipulator

The dynamic model for the tow-link robot system

shown in Figure 1 can be written using the

Euler-Lagrange formulation described by[14] as follows:

( ) ( , ) ( )m d dM q q V q q q f q t       (1)

where, M∈R2×2 is the inertia matrix, vm∈R2×2 denotes

the centripetal-Coriolis matrix, fd∈R2 denotes friction,

τd(t) is a general nonlinear bounded disturbance assumed

to be modeled by τd =[2sin(t) 0.5sin(t)]T, τt represents the

torque input control vector and ( ), ( ), ( )q t q t q t denote

the link position, velocity, and acceleration vectors,

respectively. The robot dynamic model given by (1) has

the following properties (Lewis 2003) that will be used in

the control development and analysis.

o The inertia matrix M(q) is symmetric and positive

definite (PD) and satisfies the inequality in (2)

( ) ny t R 

2 2
1 || || ( ) ( ) || ||Tm y y M q y m q y  (2)

where, m1∈R is a known positive constant, ( )m q R is

a known positive function, and ||.|| denotes the standard

Euclidean norm.

o If ( ), ( )q t q t are bounded ( L ), then the first and

second partial derivative of the elements of M(q) and

( , )mV q q with respect to q and the first and second

partial derivative of the elements ( , )mV q q and fd

with respect to q exist and are also bounded.

o The time derivative of the inertia matrix and the

centripetal Coriolis matrix satisfy the following skew

symmetric relationship:

1
( ) ( , ) 0

2
T n

mr M q V q q r r R
 

    
 

  (3)

Figure 1 (a) Schematic diagram of the oil palm harvesting robot

manipulator, (b) Top view

3 Control design and stability analysis

The control objective is to design controller for the oil

palm robot manipulator model to simulate tracking of a

desired joint space trajectory given by qd = [cos(t) cos(t)]T.

We quantify the control objectives by defining the link

position tracking error e(t) and filtered tracking error r(t)

as follow.

( ) de t q q  (4)

( )r t e e  (5)

where, α is a positive diagonal gain matrix. The

development of the controllers is based on the

assumptions that ( )q t and ( )q t are measurable, M(q),

( , ),m dV q q f and ( )d t are unknown, , , dq q q and dq

exists and L and , ,d d d L    . Differentiation

of (5) with respect to time and multiplying by M yields
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the following open loop error system:

dMr Mq Mq M e    (6)

Modifying the open loop error system by substituting

for Mq using the dynamic in (1) and then substituting

for q using time differentiation of (4) and (5) yields:

( )m d m m d d dMr V q V e V r f q Mq t M e              

(7)

We let m d m d dV q V e f q Mq M e          and

rewrite the expression in (7) to form the following open

loop error system given by (8). All of the controllers

will be designed based on this error system.

( )m dMr Y V r t      (8)

3.1 EMK controller

Assuming to have exact knowledge about dynamic of

the system, we design a controller to cancel all the

nonlinearities in the system, thus the external disturbance

will be the only term left undefined. Considering the

error system in (8), we can use a control gain constant

matrix (K>0) and design the control torque given by (9)

such that the error goes to zero (e→0). Substituting this

torque in the dynamic yields the closed loop error system

given in (10):

Y Kr    (9)

mMr V r Kr d    (10)

In order to perform the Lyapunov stability analysis,

we considering a positive definite (PD), continuously

differentiable candidate Lyapunov function given by

1

2
TV r Mr . Direct differentiating of this function with

respect to time and substituting with the error system in

(8), yields:

1
( )

2
T T

m dV r Mr r V r Kr       (11)

Using the skew symmetric property, we can simplify

(11) and upper bound it by 2|| || T
dV K r r    . In the

absence of disturbances (τd = 0), this inequality will

reduce to 2|| ||V K r  , which can also be written (by

using the expression of the candidate Lyapunov function)

as a first order differential equation given by 2V KV 

that has the following solution:

max( )

2
( ) (0)exp

M

Kt
V t V



 
   

 
(12)

It can be concluded from (12), that the system will be

globally exponentially stable (GES) by using this

controller. We can also observe that V(t) exponentially

goes to zero and is ∈L∞, also ||r|| and ||e|| exponentially go

to zero and are ∈L∞. Since Yθis a function of e and r, it

is therefore ∈L∞. As a result, the control input torque (τ)

is also ∈L∞. In the presence of disturbances (τd ≠ 0), the

expression for V can be upper bounded by

2( ) || || || |V t K r c r   , where c is a positive constant

such that ||τd||≤ c. In this case, a Globally Uniformly

Ultimately Bounded (GUUB) stability result can be

concluded where the ultimate bound is given by

|| ||
c

r
K

 .

3.2 Adaptive controller

The objective of adaptive control is to achieve a

trajectory tracking task in the presence of unknown

parameters, thus, the controller should be designed based

on an estimate of the system model. We propose the

following design for the control torque:

ˆY Kr    (13)

where, K is again a positive control gain matrix and ̂

represents an estimate of the system parameters.

Substituting (13) in (1), yields the following closed loop

error system.

m dMr Y V r Kr      (14)

where, ˆ    is the difference between the actual

and estimated parameters. Differentiation  with

respect to time gives ˆ  
 (since  is assumed to

be a constant). In order to design ̂ , we consider a

continuously differentiable, positive-definite Lyapunov

function candidate given by 11 1

2 2
T TV r Mr       .

Differentiating this function with respect to time and

substituting for  with ̂


and for Mr with (14)

yields:

11 ˆ( )
2

T T
mV r Mr r Y V r Kr d         

   (15)
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Using the skew symmetric property to simplify (15),

and designing ˆ TY r  


, the expression for ̂ can be

then determined by integrating ˆ ˆ, ( )TY rdt   


.

Substitute ̂


in (15), yields a new expression,

2 T
dV Kr r    , which can be upper bounded by

2|| || T
dV K r r   

. In the absence of external

disturbance, the expression for the upper bound of V

reduces to 2|| ||V K r  . Since V is a positive definite

function and V is negative semi definite, we can

conclude that V L . In addition, since V is a function

of r and  , then r and  are also L . Being r

bounded, we have ,e e L , thus ,q q L which

means Y L . Also since , L   , then ˆ L  ,

thus r L . Therefore, r is continuously differentiable.

Since r is square integrable ( 2r L ) and uniformly

continuous, using the corollary to Barbalat’s lemma[15],

we can conclude that r→ 0 as t→ 0 which means that by

using this controller, and in the absence of external

disturbances, the system is asymptotically stable. In

addition, the designed input control torque in (15) is

bounded because it is a function of bounded terms. In

the presence of a bounded external disturbance, by

assuming that || ||d c  , we will have

2|| || || |V K r c r   which results in a GUUB stability

result. The ultimate bound can be calculated by setting

0V  , which yields || ||
c

r
K

 .

3.3 Sliding mode controller

Since the parameters in the model are all unknown,

another approach to compensate uncertainties in the

system is by crushing them through fast switching, also

known as nonlinear robust sliding mode control. This

approach comes at the cost of high or even infinite

control effort and requires a fast switching actuators.

For this design, we consider the upper-bounds to the

dynamic expressed in (7). We rewrite the error system

in (8) by letting β= Yθ- τd which can be upper bounded

by 2
1 2 2|| || || ||c c z c z   , ( [ ]T T Tz e r ). Therefore, a

control torque can be designed given by (16) which yields

the closed loop error system in (17). In this design, K is

a positive control gain matrix, ρis a positive constant and

sgn(r) is the sign function of r.

( )Kr sgn r    (16)

( ) mMr Kr sgn r V r      (17)

Considering the continuously differentiable, positive-

definite Lyapunov candidate function introduced in the

EMK design, by differentiating with respect to time and

substituting for Mr from (17), the following expression

for V is obtained.

1
( ( )

2
T T

mV r Mr r Kr sgn r V r        (18)

Using the skew symmetry property, we can upper

bound (18) by 2|| || ( )T TV K r r sgn r r     which

can be simplified as 2|| ||V K r  . Solving this

differential equation yields a solution of the form

max{ }

2
( )

M

K
V V t


  , where max{ }M gives the maximum

eigen value of matrix M. Therefore, we have

max{ }

2
( ) (0)exp

M

Kt
V t V



 
   

 
. From this result, it can be

concluded Global Exponential Stability (GES) result for

the system. Since V(t) exponentially converges to 0, ||r||

also exponentially converges to 0. Therefore, ||e||→0 as

t→ 0. Because the disturbance was included within the

uncertain model, there is no need of any separate stability

analysis for a case with disturbance. The constants chosen

squash all the unknown nonlinearities in the system.

3.4 High gain controller

The objective of the torque control design in this

approach is to crush the uncertainties in the system

through high gain which leads to a high control effort.

Using the error system in (8), we design the control

torque as τ= -Kr where K is a positive control gain

matrix. Substituting this control torque in (8) yields the

following closed loop error system:

mMr Kr V r     (19)
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Considering the same Lyapunov candidate function as

in the EMK design and its time derivative, and by

substitution for Mr using (19) and applying the skew

symmetry property, we can upper bound V by

2|| || || ||V K r r   . It can be seen that 2|| ||K r

dominates || ||r by large K, and as long as this

happens, V(t) will be decreasing. But because we have

2|| ||r , the term 2|| ||K r will eventually be dominated

by || ||r . In the other words, at some point, r will be

small enough that 2|| ||K r will be dominated by

|| ||r , and since V is a positive definite, radially

unbounded and decrescent function, we conclude

uniformly ultimate bound stability result. This can be

shown by letting 1 2K k k  and completing the square

term in 2|| || || ||V K r r   as follow:

2 2
2 2

1 2 2
2 2

|| || (|| || || || )
4 4

V k r k r r
k k

 
     

∴ a bV C V C   (20)

where,
2

1

2

2
and

4
a b

k
C C

M k


  . The solution to (20) is

1

max

( ) (0)exp
{ }

a b

k t
V t C V C

M

 
   

 
, where max{ }M

gives the maximum eigen value of matrix M. Based on

this, we can conclude Uniformly Ultimate Bounded

(UUB) stability result.

4 Simulation results

The performances of the four designed controller

were simulated in the presence and absence of external

disturbance. To this aim, each robot link was first

modeled as a homogeneous rectangular bar with mass mi,

length li, and moment of inertia tensor

[ 0 0; 0 ; 0 0 0 ]xi yi ziJ I L I relative to a frame attached

at the center of mass of the link and aligned with the

principle axes of the bar. The expressions for the inertia

matrix, and the centripetal-Coriolis matrix, 2 2M R  in

the dynamic model given by (1) were derived by applying

the Lagrange’s equation known as ( i

i i

d L L
F

dt q q

 
 

 
,

where Fi is the external force acting on the i-th

generalized coordinate) to the two-link manipulator

shown in Figure (1) and by calculating the kinetic energy

of the manipulator. Letting (xi, yi, 0) denote the position

of the i-th center of mass and r1 and r2 to be the distance

from the joints to the center of mass for each link, as

shown in Figure (1), the kinetic energy is calculated as

follow:

2 2 2 2 2 2
1 1 1 1 1 2 2 2 2 1 2

1 11 3 2 2 3 2

2 3 2 22 2

1 1 1
( , ) ( ) ( ) ( )

2 2 2

21

2

z z

T

T q q m x y I q m x y I q q

q qp p c p p c

p p c pq q

      

     
         

      

 

 

(21)

where, 1 1 1 1x r s q   , 1 1 1 1y r s q   , 2 1 1 2 12 1( )x l s r s q    

2 12 2r s zq , 2 1 1 2 12 1 2 12 2( )y l c r c q r t zq     , sin( )i is q ,

sin( )ij i js q q  , cos( )i ic q and cos( )ij ijc q .

Substituting the Lagrangian L = T into Lagrange’s

equation, the parameters of the M and Vm matrices in the

dynamic model (1) become:

1 3 2 2 3 2

2 3 2 2

2p p c p p c
M

p p c p

  
   

3 2 2 3 2 1 2

3 2 1

( )

0m

p s q p s q q
V

p s q

   
  
 

  



1

2

0

0
d

d

d

f
f

f

 
  
 

where, 2 2 2
1 1 2 1 1 2 1 2( )z zp I I m r m l l     , 2

2 2 2 2zp I m r  ,

p3 = m2l1r2. The calculated numerical values are, p1 =

3.473 kg·m2, p2 = 0.196 kg·m2, p3 = 0.242 kg·m2

corresponding to the link length and weight of the robot,

l1 = 0.024 m, l2 = 0.16 m and m1 = m2 = 1.1 kg. In the

dynamic model 1, τ1 and τ2 represents torque control

inputs and q1, q2 denotes the angular position of the robot

links. The friction term for the simulation was proposed

fd1= 5.3 Nm·sec and fd2 = 1.1 Nm·sec. The simulation

was performed in MATLAB© with the corresponding

diagram shown in Figure 2. In order to evaluate the

performance of the system, the error and torque in the

joint angles in the presence and absence of the bounded

disturbance for each designed controller as well as the

adaptive parameters estimation were simulated and are

plotted through Figure 3 to 22.
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Figure 2 Control simulation diagram with external disturbance

Figure 3 Error plots, EMK controller without disturbances

Figure 5 Error plots, EMK controller with external disturbances

Figure 4 Torque plots, EMK controller without disturbances

Figure 6 Torque plots, EMK controller withoutdisturbances
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Figure 7 Error plots, adaptive controller without disturbances

Figure 9 Torque plots, adaptive controller without disturbances

Figure 11 Adaptive estimated parameters, p1, p2 and p3, without

disturbances

Figure 8 Error plots, adaptive controller with disturbances

Figure 10 Torque plots, adaptive controller with disturbances

Figure 12 Adaptive estimated parameters, p1, p2 and p3, with

disturbance
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Figure 13 Adaptive estimated parameters, fd1 and fd2, without

disturbance

Figure 15 Error plots, SMC, without disturbances

Figure 17 Torque plots, SMC, without disturbances

Figure 14 Adaptive estimated parameters, fd1 and fd3, with

disturbance

Figure 16 Error plots, SMC, with external disturbances

Figure 18 Torque plots, SMC, with external disturbances
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Figure 19 Error plots, high gain controller, without disturbances,

(K=1, 10, 50, 500)

Figure 21 Torque plots, high gain controller, without disturbances,

K=10

Figure 20 Error plots, high gain controller, with disturbances,

K=25

Figure 22 Torque plots, high gain controller, with disturbances,

K=25

5 Discussion

Four nonlinear controllers were designed and

simulated based on Lyapunov analysis for a two link oil

palm harvesting robot manipulator. Exact knowledge of

the robot model was assumed in the EMK design in order

to cancel the nonlinearities in the system through

feedback linearization. A globally exponential stability

result was then obtained. It can be observed from

Figure 3 that error exponentially converges to zero when

there is no external disturbances to the system. In the

presence of unknown, bounded disturbances, as seen

from Figure 5, the control torque designed based on the

known parameters is not capable of producing exactly

zero error result. Therefore, errors converge to a small

region and stay within that region. In the other words,

not all nonlinearities are cancelled and we have globally

ultimately bounded result. It can also be seen from

Figure 4 and 6 that torques are bounded and are in the

range of -10 Nm to 30 Nm for the no disturbance case

and within a range of -50 Nm to 150 Nm in the presence

of disturbance.

To take into accounts the uncertain parameters in the

system, it is necessary to use adaptive control to design

control torque. As we can see in Figures 11-14, the

parameter estimates ultimately reach close to the actual
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values given by the problem. It can also be seen from

Figures 7 and 8 that the error asymptotically converges to

zero in the absence of external disturbances. In the case

of having disturbance in the system, the error wiggles

around zero, indicating an ultimately bounded stability

result. It can also be seen from the torque profiles in

Figures 9 and 10 that the torques are within the prescribed

limits.

In the SMC design, we can theoretically achieve a

globally exponentially stability result, however, as shown

in the Figures 15 and 16, it takes a longer time for the

error to approximately converges to zero which is

because of the discontinuous nature of the controller and

since the torque limitations impose constraints on the gain

selection. Having upper bounded the unknown

dynamics and disturbances by functions of states; the

sliding mode controller manages to crush the

nonlinearities, however it is not possible to achieve GES

when the unknown dynamics cannot be modeled as a

function of states, but upper-bounded by a constant. In

this case, we can conclude a globally uniformly

ultimately bounded stability result. From the torque

plots in Figures 17 and 18, we can see that torque has

been switching infinitely fast. In the other words, an

actuator is required to handle such a bandwidth in order

to implement this controller on a real oil palm harvesting

robot.

Plots of error for different gains are shown in Figures

19 and 20 for the high gain control design. It can be

seen that, as we increase the gain, error get closer to zero.

In reality, increasing gain require high control effort.

One advantage of this controller is its simple design

structure which makes it easy to tune and implement.

From Figures 21 and 22, it is straight forward to see that

the torques patterns applied at the two joints are almost

similar to that of the EMK controller, which is because of

the adaptation of the system parameters. It can also be

observed that the oscillations in torques have been

remarkably reduced compared to the two previous

designs; hence less control energy is required. The

controller is robust to the uncertainties in the system,

however it only yields a uniformly ultimately bounded

stability result.

6 Conclusions

With the mechanization of harvesting, the hard and

labor intensive need in picking and harvesting oil palm in

the plantation can be easier, simpler and most importantly,

will reduce the manpower shortage problem due to

decrease in seasonal labor. In order to successfully

achieve this objective, four nonlinear joint angles tracking

controllers based on Lyapunov analysis were designed for

an oil palm harvesting robot manipulator. The exact

model knowledge controller showed the best stability

result (GES), compared with all other controllers. It

also had the lowest control effort. The problem with

this design is the lack of a model that can perfectly

describe the system. In addition to that, when

disturbances are introduced in the system, the controller

will lose its perfect performance and result in a globally

uniformly ultimately bounded stability. Adaptive

control design was used in order to improve performance.

In this design, gains tuning is required to ensure that the

control torques are within the actuator limits while

maintaining a good tracking performance. Using high

gain would come at the cost of increasing control effort,

however it also ensure that any error estimate of the

parameters will be compensated. Simulation result

showed that the adaptive controller is more efficient

especially in the presence of disturbances, which a

globally exponentially stability result was concluded. In

the SMC design, the controller provides fast switching

action to cancel the nonlinearities and disturbances in the

system. This design gave a globally exponentially

stability result, however it comes at a high control effort

and require an actuator to switch infinitely fast in time

which might inject noise and other disturbances in the

system. Because of the discontinuous nature of this

controller, tuning of gains is almost useless to archive

GES result, which theoretically should have been the case.

The high gain controller gave uniformly ultimately

bounded stability result in the presence of uncertain

model dynamics and bounded disturbances. While

EMK controllers cannot handle disturbances at all and

adaptive controllers give a GAS result, high gain

controllers crush the uncertainties at the cost of high
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control effort. One advantage of this design was the

easiness of the control implementation and gain tuning.
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