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Abstract: Rice variety selection and quality inspection are key links in rice planting.  Compared with two-dimensional images, 

three-dimensional information on rice seeds shows the appearance characteristics of rice seeds more comprehensively and 

accurately.  This study proposed a rice variety classification method using three-dimensional point cloud data of the surface of 

rice seeds combined with a deep learning network to achieve the rapid and accurate identification of rice varieties.  First, a 

point cloud collection platform was set up with a Raytrix light field camera as the core to collect three-dimensional point cloud 

data on the surface of rice seeds; then, the collected point cloud was filled, filtered and smoothed; after that, the point cloud 

segmentation is based on the RANSAC algorithm, and the point cloud downsampling is based on a combination of random 

sampling algorithm and voxel grid filtering algorithm.  Finally, the processed point cloud was input to the improved PointNet 

network for feature extraction and species classification.  The improved PointNet network added a cross-level feature 

connection structure, made full use of features at different levels, and better extracted the surface structure features of rice seeds.  

After testing, the improved PointNet model had an average classification accuracy of 89.4% for eight varieties of rice, which 

was 1.2% higher than that of the PointNet model.  The method proposed in this study combined deep learning and point cloud 

data to achieve the efficient classification of rice varieties. 
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1  Introduction

 

Rice is a major staple food in China and many other countries 

and is widely grown.  The inspection and classification of seed 

varieties is an important link in the planting process, and it 

determines the yield and quality of rice.  However, the continuous 

development of breeding technology has enabled an increasing 

number of rice varieties to be developed and put on the market to 

adapt to the planting environment and the tastes of people in 

different regions, increasing the difficulty of identifying rice 

varieties during the planting process[1].  The development of 

machine vision technology and its application in agricultural product 

detection and identification can not only overcome the various 

shortcomings of traditional manual detection methods but also have 

the advantages of being noncontact, non-damaging, fast and 

accurate[2].  Different varieties of rice seeds often show different 

external morphological characteristics, such as shape, color, and 

size[3].  By inspecting the appearance characteristics of rice seeds, 

                                                 
Received date: 2020-05-13    Accepted date: 2021-06-13     

Biographies: Qianjin Xu, Bachelor, research interest: agricultural engineering, 

Email: xuqianjinnjau@163.com; Yingying Yang, Bachelor, research interest: 

agricultural engineering, Email: YangYingYingNJAU@163.com; Hu Lu, 

Bachelor, research interest: agricultural engineering, Email: luhu849765459@ 

163.com; Hua Li, PhD, Professor, research interest: agricultural engineering, 

Email: lihua@njau.edu.cn; Xuebin Feng, PhD, Associate Professor, research 

interest: agricultural engineering, Email: fxb9510@njau.edu.cn; Wenqing Yin, 

PhD, Professor, research interest: agricultural engineering, Email: yinwq@ 

njau.edu.cn. 

*Corresponding author: Yan Qian, PhD, Associate Professor, research interest: 

agricultural engineering, machine vision and three-dimensional reconstruction. 

College of Artificial Intelligence, Nanjing Agriculture University, Nanjing 

210031, China.  Tel: +86-25-58606585, Email: qianyan@njau.edu.cn. 

the rice seed varieties can be classified.  Kuo et al.[4] used an optical 

microscope to obtain clear two-dimensional images of rice grains of 

thirty varieties, proposed a classification method based on image 

processing and sparse-representation-based classification (SRC), 

and finally achieved a recognition rate of 89.1%.  Golpour et al.[5] 

extracted thirty-six color features from the RGB, HIS, and HSV 

color spaces of rice grain images, and used a neural network with 

two hidden layers to classify rice varieties.  Mittal et al.[6] extracted 

geometric feature parameters from two-dimensional images of rice 

seeds based on image processing technology, and used support 

vector machines (SVM) to classify and evaluate rice varieties, the 

system achieved recognition accuracy of 93%.  Fabiyi et al.[7] 

extract the spatial and spectral feature values of rice seeds based on 

high-resolution RGB images and hyperspectral images, and use 

random forest classifiers for classification, which can effectively 

improve the purity of seeds.  The two-dimensional image loses the 

high-dimensional information in the space during the imaging 

process, and the characteristics of rice seeds that can be extracted 

from it are limited, so the final recognition rate was not high.  

Compared with the two-dimensional image, the three-dimensional 

information obtained based on the surface of the rice seed could 

describe the appearance characteristics of the rice seed more 

completely and accurately and has more advantages in the task of 

classifying rice seed varieties.  Qian et al.[8] successfully 

constructed a three-dimensional model of rice seeds using the Depth 

from Focus (DFF) method.  Based on a three-dimensional model of 

rice seeds, eight feature values were extracted and input to the BP 

neural network, which ultimately reached a recognition rate of 90%.  

Li et al.[9] proposed a calculation method for the three-dimensional 

features of the surface shape of rice seeds based on the point cloud 

obtained by the three-dimensional laser scanning system to further 

improve the accuracy of the classification of rice varieties.  Based 
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on the team’s previous research, Feng et al.[10] built a 3D laser 

scanning system to collect rice seed point clouds, extracted nine 

three-dimensional morphological surface features and nine 

cross-sectional projection features to input into the BP neural 

network for variety recognition experiments, and the average 

recognition accuracy reached 97%. 

As a branch of machine learning, deep learning has made 

groundbreaking progress in many types of applications in recent 

years.  A deep learning network transforms the features of the input 

signal into a new feature space through layer-by-layer feature 

transformation of the input data, and it can automatically learn a 

hierarchical feature representation, which can effectively classify 

the data[11].  However, the convolutional structure that often 

appears in deep learning networks requires regularized data 

structures as input.  Since point cloud data structure is a type of 

irregular data structure, regularized conversions are required before 

input to the network, and such conversions often cause problems of 

structural loss and resolution de-gradation[12].  The proposal of the 

PointNet[13] network solves this problem well, for the disordered 

point cloud data, the maximum pool function is used in the network 

structure to realize the direct use of the point cloud as the input of the 

network for classification and segmentation tasks.  Ma et al.[14] 

modified the PointNet network structure for the study of 3D hand 

posture estimation, introduced a jump structure to recombine 

features at different levels, and achieved an actual operating speed of 

54 frames/s on the NYU hand posture dataset.  Zhao et al.[15] 

proposed a method of combining local features based on point 

extraction with global features based on original point cloud 

extraction to classify LiDAR point cloud features, which solved the 

problem of weak local feature extraction capabilities of PointNet 

and achieved better results than the classification results of PointNet. 

The existing three-dimensional data-based rice variety 

recognition methods use traditional neural networks as the 

classification model, and the recognition effect is usually limited by 

the number of extracted rice characteristics.  This study proposes a 

rice variety recognition method based on an improved PointNet 

model, eliminating the need for an artificially designed feature 

extraction process to obtain faster recognition speed and higher 

recognition accuracy. 

2  Materials and methods 

2.1  Sample preparation 

Eight varieties of rice seeds and 210 samples of each variety were 

prepared, including Fengkang 30, Huajing 7, Tianyou 673, Zajiaodao, 

Liannuo 1, Nanjing 9108, Guiyu 11 and Liandao 6.  To ensure the 

diversity of sample sources, these rice seed samples came from 

various regions in China.  Liannuo 1, Huajing 7 and Nanjing 9108 

were from Jiangsu Province; Tianyou 673 was from Fujian Province; 

Liandao 6 was from Heilongjiang Province; Guiyu 11 was from 

Guangxi Province.  Some of the samples used in this work are shown 

in Figure 1. 
 

 
a. Fengkang 30     b. Liannuo 1     c. Nanjing 9108    d. Tianyou 673 

 

 
e. Huajing 7      f. Zajiaodao       g. Guiyu 11      h. Liandao 6 

Figure 1  Images of different varieties rice seed samples 

2.2  Point cloud collection system 

The point cloud collection in this study was obtained with a 3D 

point cloud collection system.  The 3D point cloud collection system 

was primarily composed of a light field camera (R42) manufactured 

by Raytrix and a high-speed GPU (NVIDIA GTX 1080).  The light 

field camera was a focused plenoptic camera with 41.5 Megarays and 

a resolution of 7708×5352 pixels.  The imaging lens is a 3D light 

field lens with a focal length of 50 mm and an aperture of f/2.80.  

High-speed GPUs were used for light field processing.  The details of 

the camera model and depth estimation theory can be found in an 

article by Johannsen et al.[16]  The 3D light field camera was installed 

on the vision platform for support, and a ring light source with 

adjustable brightness was installed between the light field camera and 

the base of the vision platform.  The process of point cloud collection 

was performed in a dark room.  The structure of the experimental 

devices is shown in Figure 2. 
 

 
Figure 2  Point cloud data collection system 

 

2.3  Dataset generation method 

2.3.1  Collection and preprocessing of rice seed surface point cloud 

data 

Affected by the device accuracy, camera resolution, 

environmental factors, and operator experience, the collected point 

cloud may contain noise and voids.  Preprocessing was performed 

using RxLive4.0 software.  In the experiments, for filter processing, 

a bilateral filter was used, and the filter radius was set to 20 pixels.  

The ‘standard’ fill algorithm was used for fill processing, and the 

number of iterations was set to 16 with a lookup distance of 10 pixels.  

For the smoothing processing, the edge smoothing factor was set to 

0.100. 

The Raytrix R42 light field camera has not only the ability to 

record three-dimensional information but also the ability to record 

color information.  Therefore, the RxLive4.0 processing software 

provided with the camera can export files in multiple formats.  In 

this experiment, the data in point cloud format were selected for 

processing.  Open a file in ply format with Mashlab software to 

display a three-dimensional model of a rice seed after preprocessing.  

This format file records both three-dimensional information and 

color information, as shown in Figure 3. 

 
Figure 3  Preprocessed rice seed model 
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2.3.2  Point cloud segmentation 

In this work, the original point cloud data were collected by a 

focused plenoptic camera, including the platform base and target 

rice seed.  To obtain the target rice seed point cloud, the data of the 

platform base must be removed.  The random sample consensus 

(RANSAC) algorithm[17] was used to calculate the parameters of the 

plain of the platform base.  Then, the calculated parameters were 

used to obtain the point cloud of the plain and remove it.  Then, the 

segmented target rice seed point cloud was stored for further 

processing.  The point cloud segmentation results are shown in 

Figure 4. 
 

  
a. Point cloud before segmentation 

 

 
b. Point cloud after segmentation 

Figure 4  Point cloud segmentation results 
 

2.3.3  Point cloud downsampling 

The focused plenoptic camera has a high resolution and can 

capture very detailed features of objects.  However, for the 

classification of rice seeds, it captures a large amount of redundant 

data.  Storing, processing, and displaying these point cloud data 

will increase the processing load of the computer, occupying more 

computer resources and reducing the amount of point cloud data 

storage and operational efficiency. 
 

  
a. Point cloud before downsampling 

 

 
b. Point cloud after downsampling. 

Figure 5  Downsampling of the point cloud 
 

The voxel-based grid[18] method and random sampling method 

were used to process the downsampling of the point cloud.  First, a 

minimal three-dimensional voxel grid was created based on a point 

cloud bounding box.  Then, the voxel grid was divided into m×n×l 

small grids with side length L.  In each small grid, all the points 

were replaced by their centroids.  The number of point cloud points 

was reduced to nearly, but more than, 2048 points.  Finally, a 

random sampling method was used to reduce the number of point 

clouds to 2048 points specifically.  The downsampled point cloud 

preserves the structural information of rice seeds well and maintains 

a clear edge contour, as shown in Figure 5. 

2.3.4  Point cloud translation and normalization 

To ensure that the similarity measure of the shape is not affected 

by the translation and scaling of the point cloud, point cloud 

translation and normalization are important preprocessing 

steps[19,20]. 

To ensure translation invariance, the center of the mass of the 

rice seed point cloud needs to be translated to the position of the 

coordinate origin.  To ensure the invariance of the scale size, the 

rice seed point cloud after the translation transformation also needs 

to be normalized to the standard cell size. 

1) Translation.  Input the rice seed point set P = {pi|i = 1, 2, 

3, …, n}, where pi is the i-th point of the point cloud P.  The 

number of point sets is n.  First, calculate the center of the rice 

seed by Equation (1). 
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where, xmax, ymax and zmax are the maximum values among all points; 

xmin, ymin and zmin are the minimum values.  Then, move the origin 

of the coordinate system of the point cloud to pcenter(xmid, ymid, zmid) 

to form the new point set P' = {pi| pi = pi − pcenter, piP}. 

2) Point cloud normalization.  First, calculate the scale of the 

transformation 

lscale = xmax – xmin                    (2) 

With the point set P' obtained in the previous step, compress the 

point cloud coordinates to between −1 and 1, forming the last point 

set P'' = {pi| pi = pi/lscale, piP'}. 

2.4  Classification models 

2.4.1  Basic PointNet architecture 

Since it is affected by the acquisition facilities and the spatial 

coordinate system, the order of point cloud data should be very 

different when objects are scanned at different facilities or different 

locations[21].  To make a model invariant to the input set in terms of 

the data feeding order, PointNet applies a symmetric equation to the 

transformed elements in the set as follows: 

f({x1, …, xn}) ≈ g(h(x1), …, h(xn))           (3) 

where, f: 2
NR R , h: RN→RK and g: 

nKR R  is a symmetric 

equation. 

The equation h is approximated by a multilayer perceptron 

network, and the function g is approximated by the composition of a 

single-variable function and a max-pooling function.  Through the 

collection of h, the network can learn a number of fs to capture 

different properties of the set. 

The classification network architecture of the basic PointNet is 

shown in Figure 6.  The network input is the 3D coordinates (N×3) 

of a 3D point cloud containing N points.  First, a mini-network 

(T-net) is used to predict the 3×3 affine transformation matrix, and 

this transformation is directly applied to the coordinates of the input 

set to obtain an aligned N×3 input set.  This mini-network consists 
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of the basic modules of point-independent feature extraction, a 

max-pooling layer and a fully connected layer, and its scale is close 

to that of a large network.  The aligned N×3 point set is extracted by 

a shared-parameter Multi-Layer Perceptron (MLP) model (64, 64) 

to obtain N×64 features.  Then, through the feature transformation 

matrix prediction network T-net (64), the 64×64 transformation 

matrix is predicted to act on the extracted N×64 features to achieve 

feature alignment.  Then, three layers of MLP (64, 128, 1024) are 

used to further extract the aligned N×64 features to obtain N×1024 

features.  The max-pooling layer aggregates the extracted feature 

vectors of the N points into 1024-dimensional global feature vectors 

that do not change the arrangement of the input points.  Finally, a 

three-layer MLP network is used to map the 1024-dimensional 

global feature vector to a k-dimensional vector output. 

 
Note: MLP: Multi-Layer Perceptron, the same as below. 

Figure 6  Basic PointNet classification network architecture 
 

2.4.2  Improved PointNet architecture 

This study proposes an improved PointNet network model for 

the task of rice variety recognition.  To improve the feature 

extraction capability of the network, a cross-level feature connection 

structure was added to the original PointNet network structure, the 

features of different levels were merged, and the features of different 

levels were fully utilized to improve the classification performance 

of the network. 

The improved PointNet and the original PointNet model were 

compared as follows: 1) The improved PointNet model retained the 

input transformation and feature transformation structure in the 

original PointNet model.  2) A feature connection structure was 

added to the improved PointNet model.  3) The number of 

convolution channels of some convolution layers in the improved 

PointNet model had been changed.  The improved PointNet 

network architecture is shown in Figure 7. 

 
Figure 7  Improved PointNet network architecture 

 

In addition to the input layer, the network structure has a total of 

9 layers of networks, an input transformation small network T-net (3) 

and a feature alignment network T-net (64).  The input 

transformation network and the feature alignment network are small 

networks in the original PointNet network model.  T-net (3) aligns 

the point cloud by predicting a 3×3 dimensional affine 

transformation matrix and multiplying it with the original input 

point cloud.  T-net (64) predicts the alignment features of the 

64×64-dimensional transform matrix in the same way.  The input of 

the network is an N×3 point cloud, where N is the number of points 

in the point cloud, and each point is composed of three-dimensional 

coordinates (x, y, z). 

The operation process of the improved PointNet network is as 

follows: 

1) The input transformation small network aligns the original 

input point cloud (N×3) to obtain an aligned point cloud (N×3); 

2) Perform feature extraction on the point cloud through the first 

multilayer perceptron MLP1.  MLP1 is composed of two 

convolutional layers with 64 channels, and finally, 

N×64-dimensional point features are obtained; 

3) The feature alignment network aligns the N×64-dimensional 

features extracted in the second step to obtain aligned 

N×64-dimensional point features; 

4) In the second multilayer perceptron MLP2, the first two 

convolutional layers transform the N×64 dimensional features 

obtained in the previous step.  The channel numbers of the first two 

convolutional layers are 64 and 256, that is, N×256-dimensional 

features; 

5) Connect the N×256-dimensional feature obtained in the third 

step with the N×64-dimensional feature obtained in the second step 

through a cross-layer connection structure to obtain an 

N×320-dimensional feature; 

6) The third convolutional layer in MLP2 transforms the 

N×320-dimensional features obtained in the previous step to 

N×1024-dimensional features, and the number of channels is 1024; 

7) The max-pooling layer aggregates the N×1024 dimensional 

features obtained in the previous step into 1024 dimensional global 

features; 

8) The 1024-dimensional global feature vector is reduced layer 

by layer through MLP3.  MLP3 is composed of 3 fully connected 
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layers with nodes 521, 256 and k, and a layer of dropout structure is 

added between each pair of fully connected layers.  The vector k×1 

output by the last fully connected layer is the classification result. 

The rectified linear unit (ReLU) function was used as the 

activation function, which solves the problem of vanishing gradients 

during training and decreases the occurrence of overfitting while 

speeding up the convergence process, as shown in Equation (4). 

            
0, 0

Re ( )
, 0

x
LU x

x x


 


                 (4) 

where, x represents the feature values of the neurons.  Two dropout 

layers were added behind the first and second fully connected layers 

to prevent the network from overfitting[22].  The dropout rates were 

both set to 0.7, which represents the probability of dropping neurons.  

The size and parameter calculation of each layer of the seven-layer 

network are shown in Table 1, Conv represents the convolutional 

layer, max-pooling is the max-pooling layer, FC is the fully 

connected layer, and the fully connected layer has no core size or 

step size parameters.  N corresponds to the number of input point 

cloud points, and k is the number of classes. 
 

Table 1  Sizes and parameters of each layer in the network 

model 

No. Layer Kernel size Stride 
Output  

dimension 

Number of  

parameters 

1 Conv1 1×3 1×1 N×64 256 

2 Conv2 1×1 1×1 N×64 4160 

3 Conv3 1×1 1×1 N×64 4160 

4 Conv4 1×1 1×1 N×256 16 640 

5 Conv5 1×1 1×1 N×1024 328 704 

6 Max-pooling N×1 1×1 1024×1 1024 

7 FC1   512×1 524 800 

8 FC2   256×1 131 328 

9 Output   k×1 257k 

Note: Conv represents the convolutional layer; Max-pooling is the max-pooling 

layer; FC is the fully connected layer; the fully connected layer has no core size 

or step size parameters.  N corresponds to the number of input point cloud 

points; k is the number of classes, the same as below. 
 

2.4.3  Network optimization 

The improved PointNet network was optimized from two 

aspects: changing the number of convolutional layer channels and 

network hyperparameters.  The convolution structure calculated 

the original data, learned the characteristics of the input data, and 

combined the multilayer convolutional network to realize the 

layer-by-layer transformation of the features to obtain 

high-dimensional features.  It generally has three parameters: the 

size of the convolution kernel, the step length of the convolution 

and the number of channels.  The number of channels in the 

convolutional layer greatly affects the feature extraction ability of 

the network.  Changing the number of channels in the 

convolutional layer can improve the feature extraction ability of the 

network.  The optimized hyperparameters are batch size and 

learning rate: batch size refers to the number of point clouds trained 

in each learning batch during the network training process; learning 

rate refers to the amplitude of each parameter update during the 

training process. 

2.5  Software tools 

During the dataset generation process, point cloud library 

tools[23] and the Visual Studio 2015 platform were used to 

implement point cloud segmentation, rotation normalization, and 

point cloud downsampling.  Python 3.7 and the TensorFlow 

framework were used to build the network model, which ran in the 

central processing unit (CPU).  All software operations were based 

on a Windows 10 64-bit operating system with an Intel (R) Core(TM) 

i5-7200U CPU and 8 GB RAM. 

3  Results and discussion 

3.1  Experimental environment 

The network training and testing environment configuration: 

Processor: Intel(R) Core(TM) i5-7200U; Memory: 8 GB; 

Operating system: Windows 10 64-bit; Programming platform: 

Python 3.7; Deep learning framework: TensorFlow1.14.0. 

3.2  Dataset 

In the experiment, each type of rice seed point cloud dataset 

was divided into a training set and a test set at a ratio of 5:2, as 

shown in Table 2.  A total of eight varieties of rice seed point 

clouds were collected, there were 210 samples of each variety and 

1680 samples in total.  Among them, 150 point clouds were 

randomly selected from each group of 210 point clouds, and a total 

of 1200 point clouds were used as training samples.  The 

remaining 60 point clouds of each rice seed were used as test 

samples, and there was a total of 480 test samples. 
 

Table 2  Rice seed point cloud dataset 

No. Type Number of training Number of tests 

1 Fengkang 30 150 60 

2 Huajing 7 150 60 

3 Tianyou 673 150 60 

4 Zajiaodao 150 60 

5 Liannuo 1 150 60 

6 Nanjing 9108 150 60 

7 Guiyu11 150 60 

8 Liandao 1 150 60 
 

3.3  Training process 

3.3.1  Effects of batch size on model performance 

When the batch size is set to 8, 16, and 32, the training curve 

of the model is shown in Figure 8.  The abscissa is the number of 

iterations in the model training process, and the ordinate is the loss 

value.  It can be seen from Figure 8 that the training curves of the 

three batch sizes have very obvious differences, indicating that the 

batch size has a greater impact on network performance.  As the 

batch size increases, the loss value convergence speed also 

increases.  When the batch size is 32, the loss value converges 

fastest, and the training loss value is the smallest.  Therefore, the 

improved PointNet model finally selected a batch size of 32 for 

training. 

 
Figure 8  Influence of batch size on the training effect of the 

improved PointNet model 
 

3.3.2  Effects of learning rate on model performance 

When the learning rate is set to 0.01, 0.001, and 0.0001, the  
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training curve of the model is shown in Figure 9.  The abscissa is 

also the number of iterations in the model training process, and the 

ordinate is the loss value.  The convergence speed of the training 

loss value when the learning rate is 0.001 and 0.0001 is faster than 

the speed when the learning rate is 0.01.  As the learning rate 

decreases, the convergence speed of the loss value accelerates, and 

the training rate is 0.001 and 0.0001.  The latter half of the curve 

is closer and has little effect on the further convergence of the loss 

value.  To ensure the performance of the model and make the 

model train faster, the learning rate of the improved PointNet 

model is set to 0.001. 

 
Figure 9  Influence of the learning rate on the training effect of the 

improved PointNet model 
 

3.3.3  Influence of the number of convolutional layer channels on 

model performance 

To study the influence of the number of convolutional layer 

channels on network performance, this study set up 4 combinations 

of different convolutional layer channel numbers for the improved 

PointNet model MLP2, as shown in Table 3.  The number of 

channels of the convolutional layer of the improved PointNet 

model was set according to these four combinations, and the model 

was trained. 

Figure 10 shows the training process that the curves of the 4 

network models are relatively steep in the first 200 iterations, 

indicating that the loss value converges quickly.  After 200 

iterations, the curve gradually stabilizes, and the loss value slowly 

converges and gradually stabilizes.  In comparison, the loss curves 

of the four models with different numbers of convolutional layer 

channels are relatively close, and the network performance gap is 

small. 
 

Table 3  Combinations of the number of channels in the 

convolutional layer of MLP2 of the improved PointNet model 

No. Conv3 Conv4 Conv5 

1 256 512 1024 

2 128 256 1024 

3 64 128 1024 

4 64 256 1024 
 

 
Figure 10  Influence of the number of convolutional layer channels 

on the training effect of the improved PointNet model 
 

The above four models were tested on the test set, and the 

results are shown in Table 4.  The results show that when the 

number of channels of the convolutional layer of MLP2 is set to 64, 

256 and 1024, the improved PointNet model has a recognition rate 

of more than 90% for four rice varieties, three varieties above 80%, 

and only one variety below 80%.  The average recognition rate is 

the highest among the four combinations, and the classification 

effect is the best.  Therefore, the number of channels in the 

convolutional layer in MLP2 of the finally improved PointNet 

model is set according to Combination 4. 
 

Table 4  Variety recognition results of improved PointNet models with different combinations of MLP2 convolutional layer channels 

No. Fengkang 30 Zajiaodao Tianyou 673 Huajing 7 Liannuo 1 Nanjing 9108 Guiyu11 Liandao 1 Average accuracy 

1 98.3% 98.3% 63.3% 90.0% 80.0% 78.3% 91.7% 78.3% 84.8% 

2 98.3% 98.3% 76.7% 76.7% 90.0% 93.3% 93.3% 68.3% 86.9% 

3 98.3% 98.3% 83.3% 70.0% 88.3% 90.0% 93.3% 86.7% 88.5% 

4 98.3% 98.3% 83.3% 86.7% 86.7% 91.7% 95.0% 75.0% 89.4% 
 

3.4  Classification results 

The improved PointNet model is tested for the classification of 

rice varieties.  The test set contains eight varieties of rice, 60 

samples of each variety, and a total of 480 rice seed point cloud 

samples.  The classification results are compared with the PointNet, 

PointNet++[24] and DGCNN[25] models, as shown in Table 5. 
 

Table 5  Classification results of the eight rice varieties based on different models 

Models Fengkang 30 Zajiaodao Tianyou 673 Huajing 7 Liannuo 1 Nanjing 9108 Guiyu11 Liandao 1 Average accuracy 

Improved PointNet 98.3% 98.3% 83.3% 86.7% 86.7% 91.7% 95.0% 75.0% 89.4% 

PointNet 98.2% 98.2% 73.2% 85.7% 78.6% 89.3% 94.6% 87.5% 88.2% 

PointNet++ 100% 93.3% 66.7% 85.0% 80.0% 91.7% 98.3% 96.7% 89.0% 

DGCNN 98.3% 38.3% 16.7% 98.3% 93.3% 70.0% 98.3% 75.0% 73.5% 
 

Comparing the classification results of rice varieties, it can be 

seen that: 

1) The improved PointNet model was better than the PointNet 

model in the classification of rice varieties.  Compared with the 

PointNet model, the improved PointNet model had higher recognition 

accuracy for seven rice varieties except Liandao 1.  In particular, 

the recognition rate of the improved PointNet model of Tianyou 

673 increased from 73.2% to 83.3%, and the recognition rate of 
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Liannuo 1 increased from 78.6% to 86.7%, a huge improvement.  

The average accuracy rate was 1.2% higher than that of PointNet. 

2) The performance of the improved PointNet model in the 

classification of rice varieties was similar to that of PointNet++.  

The improved PointNet model had higher recognition rates for 

Zajiaodao, Tianyou 673, Huajing 7 and Liannuo 1 than PointNet++, 

but PointNet++ had higher recognition rates for Fengkang 30, 

Guiyu 11 and Liandao 1.  The average classification accuracies of 

the two models were close to each other. 

3) The classification accuracy of the DGCNN model for 

Huajing 7, Liannuo 1 and Guiyu 11 was the highest among the four 

models, while the classification accuracy for Zajiaodao, Tianyou 

673 and Liandao 1 were lower.  Among the four models, the 

average classification accuracy of rice seeds was the lowest. 

The above results showed that the performance of the 

improved PointNet model proposed in this study was better than 

that of PointNet and DGCNN, comparable to PointNet++, and 

could be used in rice variety classification tasks with 

three-dimensional point cloud data as input. 

4  Conclusions 

This study classifies rice varieties based on 3D point cloud data 

and deep learning algorithms.  In the experiment, a Raytrix light 

field camera was used to collect the original 3D point cloud data of 

eight varieties of rice seeds.  The 3D model of the rice seeds 

obtained after preprocessing with RxLive software completely and 

accurately expresses the shape characteristics of the rice seeds.  The 

construction method of a three-dimensional point cloud dataset for 

rice variety identification was studied, including point cloud 

segmentation, downsampling, translation and normalization 

processing algorithms.  An improved PointNet model was proposed: 

by adding a cross-level feature connection structure to PointNet, 

low-level features and high-level features were connected, feature 

fusion was realized, and the utilization of features by the network 

was improved.  Finally, testing on the test set shows that the 

improved PointNet model had an accuracy rate of 1.2% higher than 

that of the PointNet model, which was 89.4%, and the accuracy rate 

of the seven varieties was higher than that of the PointNet.  

Compared with PointNet++ and DGCNN, the average classification 

accuracy of the improved PointNet model was also higher.  

Regarding future work, it is planned to expand the dataset to achieve 

more classification and identification of rice varieties and to ensure 

the accuracy of the classification. 
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