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Abstract: A climate-induced extreme flow event such as flooding is one of the most devastating natural hazards, which can 
significantly damage human lives and properties.  This study examined the effects of climate change on the high flow 
conditions in the Great Miami River Watershed in Ohio under two emission scenarios (RCP 4.5 and RCP 8.5).  Streamflow for 
the 21st century was simulated by utilizing a watershed model - SWAT (Soil and Water Assessment Tool) and 10 different 
climate outputs from the Coupled Model Intercomparison Project phase 5 (CMIP5).  The future streamflow was divided into 
three equal periods: 2016-2043 (early century), 2044-2071 (mid-century), and 2072-2099 (late century) and independently 
analyzed to compare high flows of respective intervals with baseline periods (1988-2015).  The analysis predicted that 7-day, 
10-year high-flow (7Q10) would increase by 38% under RCP 4.5 and 44% under RCP 8.5.  Similarly, the annual peak flows 
for study periods were predicted to increase by 26% under RCP 4.5 and 38% under RCP 8.5 from the base period.  However, 
the analysis demonstrated an erratic response for monthly peaks indicating that the peak flow would increase in summer months 
- May and July to October.  Meanwhile, the result did not show any significant increase during the winter season, especially 
from November to April.  The analysis of the four major dams located in the watershed showed that the dam’s peak discharges 
increase in January, May, and September.  Even though increasing peaks were projected in September for the 21st century, the 
monthly peaks from the watershed outlet were found to be lowest in September as compared to other months.  The frequency 
of future flooding compared to the historical record was found to be increasing in the mid-century under RCP 4.5 and the late 
century under RCP 8.5.  As the future flood is projected to increase, this study finds the reasonable impact of climate change 
on flood regulating reservoirs/dams in monthly flows.  However, daily high flows (90th percentile flow) would be increasing 
significantly (44% to 250%) under RCP 8.5. 
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1  Introduction1 

Climate change can alter the hydrologic cycle and may have 
negative effects on water resource availability and sustainability[1,2].  
Human activities are responsible for altering the global atmospheric 
composition including greenhouse gases to accelerate 
anthropogenic climate change[3-5].  As a result, significant changes 
in temperature and precipitation are expected in the 21st century[6].  
An increasing amount of greenhouse gas concentrations in the 
atmosphere causes subsequent global warming and changes the 
Earth’s hydrologic cycle in multiple ways over different geographic 
regions at various temporal scales[7].  Such changes in the 
hydrological cycle lead to more precipitation and extreme rainfall, 
which eventually results in increased runoff and flood risks[8].  
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Several studies in the past have reported the changes in 
hydrological regimes due to climate change using large-scale 
hydrological models[9-12]. 

Researches from all over the world including the United States 
have shown that the average streamflow is projected to increase in 
the future[9,10,13-17].  Increased flood risk in the future due to 
climate change is also reported in various research articles[18-24].  
Similarly, extreme rainfall events and flooding in the Midwest 
USA, where this study area is located, have increased during the 
last century up to 20% in some locations[25].  The increasing trend 
of precipitation in the Midwestern USA is reported by various 
scientists[26-32]. 

Furthermore, the impacts of climate change in streamflow were 
investigated in various watersheds of the Midwestern United 
States[16,33-38].  A study conducted by Milly et al.[39] in 2005 who 
utilized an ensemble of 12 climate models, showed that total runoff 
is expected to increase by 10%-40% in high-latitude North 
America by the end of 2050.  In the Midwestern United States, 
flooding occurred in 2008 after months of extreme precipitation 
causing 24 deaths and damage of billions of dollars in terms of 
agricultural products and disruption of transportation systems[40].  
Therefore, it is crucial to assess the extreme storm events and high 
flows due to climate change in order to mitigate its impacts and 
build a resilient society. 

The impact of climate change on hydrology is typically conducted 
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using climate data in a hydrological model or a watershed model.  
For example, Soil and Water Assessment Tool (SWAT) model has 
been widely used to study climate change impact on 
streamflow[15,17,19,22,41-47].  Although studies related to climate 
change impact were conducted in the past, the vast majority of the 
studies were focused on the average increase in streamflow.  
Studies exploring whether or not the flood regulating reservoirs 
capable to serve the purpose of retaining the increased runoff in the 
future due to climate change were reviewed[48-54].  Nonetheless, 
there were limited studies conducting a comprehensive analysis of 
extreme high flows in a watershed, where flood protection 
reservoirs are primarily developed.  Moreover, based on our 
review, no adequate studies have been conducted exploring the 
comprehensive investigation of high flows in the watershed in the 
Midwest USA.  

In order to investigate the impacts of climate change on 
extreme events such as future flooding, projected climate models 
have been developed from the Global Circulation Models 
(GCMs)[55,56].  Many studies in the past examined the impacts of 
future climate projections downscaled from GCM simulations on 
water resources[13,18,34,57].  The major focus of this study is to 
predict the impact of climate change based on 10 climate models 
from CMIP5 dataset and two greenhouse gas emission scenarios - 
RCP 4.5 and RCP 8.5 using a widely accepted watershed model, 
SWAT.  As a case study, the Great Miami River Watershed was 
selected to explore the responses of climate change on high flows. 

2  Methods 

2.1  Study area 
The Great Miami River is one of the major tributaries of the 

Ohio River, which drains approximately 10 023 km2 in 
southwestern Ohio including 224 km2 in Indiana.  Great Miami 
River originates from Indian Lake in Logan County, Ohio and 
flows southwest approximately 274 km before emptying into the 
Ohio River near Cincinnati.  The Great Miami River watershed 
surrounds a portion of Ohio and Indiana extending within the 
latitude of 39.15°N to 40.64°N and longitude of 83.55°W to 
84.9°W.  The elevation of the watershed ranges from 140.6 m to 
471.4 m with an average hillslope of 2.86%.  The 36-year (1980–
2015) average annual precipitation for the entire watershed was 
1035 mm and the average maximum and minimum temperature 
were 16.65°C and 5.28°C, respectively.  The vast majority of the 
watershed is covered by agricultural land (70%) and urbanized area 
(18%) followed by forest (11%), and water bodies and wetlands 
(1%).  Readers can refer to Shrestha et al. for detail spatial 
information and description of the watershed[58].  

All major cities in the watershed are situated close to the Great 
Miami River and its tributaries.  Consequently, these cities are 
more vulnerable to increased river flooding in the Miami River.  
The watershed has already experienced several destructive flood 
events in the past.  For example, the great flood of 1913 which 
was occurred due to heavy snowmelt and intense precipitation that 
overflowed the Great Miami River as well as its tributaries.  The 
aftermath of this flooding incurred losses of over 300 lives and 
property damages of $2 billion worth in today’s currency[59].  
Thus, flooding is still considered to be one of the biggest 
challenges in the Great Miami River watershed.  The watershed 
has 2 natural lakes (Indian and Loramie) and 6 major artificial 
dams (Clarence J Brown Dam, Englewood Dam, Germantown 
Dam, Huffman Dam, Lockington Dam, and Taylorsville Dam).  
These dams were built primarily as flood protection reservoirs to 

store floodwater, especially after heavy and prolonged storm 
events. 

 
Figure 1  Location of USGS gage stations, climate stations, and 
reservoirs/dams in the Great Miami River Watershed, OH, USA 

 

2.2  SWAT model inputs 
The spatial and hydrological inputs used in SWAT model 

simulation consist of Digital Elevation Model (DEM), land-use 
land cover data, soil type, and climate data.  A 30-m DEM 
obtained from USGS National Elevation Dataset was used to 
delineate the Great Miami River watershed with 114 sub-basins.  
Seven reservoirs and 28 major point sources were added to the 
respective sub-basins while delineating the watersheds.  
Reservoirs data including maximum discharge, storage capacity, 
and drainage area were obtained from the Miami Conservancy 
District and the United States Army Corps of Engineers (USACE).  
Point sources data from wastewater treatment facilities and other 
industries were downloaded from the Ohio Environmental 
Protection Agency (OEPA).  The National Land Cover Dataset of 
2011 and STATSGO soil data from USDA have been utilized for 
land-use and soil, respectively to create hydrologic response units 
(HRUs).  The watershed was then discretized into 2676 HRUs 
using the threshold values of 5%, 15%, and 15% for land-use, soil, 
and slope, respectively.  

The daily climate data for 36 years (1980-2015) from the 
National Climatic Data Center (NCDC) were applied in the model 
(Figure 1) from 19 climate stations.  Other meteorological data 
such as humidity, solar radiation, and wind speed were 
incorporated from a weather generator tool built-in SWAT model. 
2.3  Reservoir simulation in SWAT 

Reservoirs are the structures in a watershed that collect water 
and store it for some time.  SWAT treats the reservoir as a water 
body located on the stream network of the watershed.  Any water 
bodies located outside of the main channel network are considered 
as ponds.  The water balance equation for each reservoir 
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comprises five major hydrologic components: inflow, outflow, 
precipitation, evaporation, seepage from the reservoir, and 
diversions (Equation (1)).  The outflow from a subbasin, where 
the reservoir is situated, becomes the inflow for the reservoir.  The 
evaporation, seepage, and precipitation volumes depend on the 
surface area of the waterbody in the reservoir. 

V = Vstored + Vflowin + Vpcp – Vflowout – Vevap – Vseep      (1) 
where, V is the volume of water stored in the reservoir at the end of 
the day, m3; Vstored is the volume of water stored in the water body 
at the beginning of the day, m3; Vflowin is the volume of water 
entering the water body during the day, m3; Vpcp is the volume of 
precipitation falling on the water body during the day, m3; Vflowout is 
the volume of water flowing out of the water body during the day, 
m3; Vevap is the volume of water removed from the water body by 
evaporation during the day, m3; Vseep is the volume of water lost 
from the water body by seepage, m3. 

The SWAT model has four options to estimate the outflow 
volume from the reservoir.  The first option is executed by using 
the average annual release rate, which is best suited for small and 
uncontrolled reservoirs.  The second option is executed by 
specifying a controlled target release of the reservoir, which is 
designed for larger and managed reservoirs.  Option three and 
four require time-series data of daily outflow and monthly outflow 
from the reservoir.  Further details can be found in the SWAT 
theoretical documentation[60].  For this study, outflow simulation 
for the reservoir was performed by the average annual release rate.  
The average daily principal spillway release rate was provided in 
the SWAT model. 
2.4  Model calibration and validation 

The SWAT model was run to simulate streamflow for 28 years 
(1988-2015) in daily time steps, with a 3-year warm-up period 
(1985-1987).  SWAT model was calibrated and validated using 
daily observed streamflow data at nine USGS gage stations, which 
were spatially distributed within the watershed.  The simulation 
period was divided into two separate periods for calibration and 
validation each comprising 10 years.  The model calibration was 
carried out by using flows from 2005 to 2014, whereas validation 
was accomplished using independent datasets from 1995 to 2004, 
which was not utilized for model calibration. 

Calibration of the model was accomplished both manually as 
well as automatically using SWAT-CUP[61].  The model simulated 
flow hydrographs were compared against the observed flow 
hydrographs by using statistical measures as well as through the 
visual inspection by comparing high peaks and low flows of 
simulated with observed flows.  In the next step, model calibration 
was performed using Sequential Uncertainty Fitting version 2 
(SUFI-2) in SWAT-CUP, which works under a semi-automatic 
inverse modeling procedure algorithm[61].  Various SWAT model 
parameters, reasonably appropriate in this region based on the 
climate and land-use characteristics, were selected for the 
calibration process.  The suggested parameters from SWAT-CUP 
were utilized for model validation. 
2.5  Model evaluation criteria 

The performance of the SWAT model was evaluated by using 
four statistical indicators including Nash-Sutcliffe Efficiency 
(NSE)[62], Percentage Bias (PBIAS), Coefficient of Determination 
(R2) and the Ratio of Root Mean Square Error to the Standard 
Deviation (RSR)[63].  The NSE typically varies from −∞ to 1, 
whereas R2 ranges from 0 to 1.  Model performance is generally 
considered good provided that the NSE value ranges between 0.5 
and 1[63].  Similarly, a model is considered to be good if the 

simulated data has a PBIAS value close to 0.  A positive PBIAS 
indicates the model underestimation, whereas a negative PBIAS 
represents the model overestimation.  Likewise, RSR value 0 
indicates the perfect simulated model indicating the close 
agreement of simulated result with the observed data.  Readers 
can refer to Shrestha et al. for a detailed description of these 
statistical indicators.  
2.6  Future climate scenarios 

In this study, the projected future climate data (precipitation 
and temperature) were derived from Global Climate Models 
(GCMs) based on the Intergovernmental Panel on Climate Change 
(IPCC), Fifth Assessment Report (AR5).  Ten climate models 
from the Coupled Model Intercomparison Project Phase 5 (CMIP5) 
have been selected for the simulation of future climate data[64].  
The CMIP5 climate data were downscaled under four emission 
scenarios to account for increasing greenhouse gas concentrations 
as the amount of greenhouse gas is the key variable to climate 
change[65].  The four emission scenarios are Representative 
Concentration Pathways RCP 2.6, RCP 4.5, RCP 6.0, and RCP 8.5.  
RCP 8.5 is considered to be the highest emission scenario, whereas 
RCP 2.6 is the lowest emission scenario.  Similarly, RCP 4.5 and 
RCP 6.0 are two intermediate stabilization emission scenarios.  In 
this study, only two emission scenarios, RCP 4.5 and RCP 8.5 have 
been applied in the model in order to assess the effects of climate 
change on streamflow.  The CMIP5 climate projection uses the 
daily Bias Correction Constructed Analogs (BCCA) downscaled 
technique to obtain finer resolution climate data[66].  In order to 
further fine-tune the downscaled climate data at the local scale, 
biases present in the data have been additionally corrected utilizing 
a quantile mapping approach described by Ines and Hansen for 
precipitation[67] and Li et al.[68] for temperature. 
2.8  Scenario analysis 

10 GCMs and two scenarios of RCP 4.5 and RCP 8.5 of the 
CMIP5 were utilized.  The output from each model includes daily 
precipitation and temperature (maximum and minimum) for the 
baseline (1988-2015) and the future periods (2016-2099).  The 
observed datasets of monthly precipitation at Dayton International 
Airport, OH US (station GHCND: USW00093815) were used to 
evaluate the model performance.  Out of 19 CMIP5 models only 
10 models were selected based on their squared correlation 
coefficients (R2) for monthly mean precipitations.  A climate 
change study was conducted in Muskingum Watershed, which is 
near to the Great Miami River Watershed by Sharma et al., 2016[72].  
using similar sets of models.  To compare the hydrologic 
conditions from the future to the historical period, the future period 
from 2016 through 2099 was subdivided into three equal periods: 
early century, mid-century, and late-century as 2035s (2016-2043), 
2055s (2044-2071) and 2085s (2072-2099), respectively. 
2.9  High flows analysis 

The SWAT model was utilized to generate long-term daily 
streamflow from each subbasin in the watershed.  High flows 
from the simulated and observed discharge at USGS gage station 
#03274000 in Hamilton, OH were analyzed (SWAT subbasin 137).  
In order to evaluate the impact of climate change on high flows, the 
five high-flows variables were examined by utilizing the ensemble 
of 10 climate models and 2 emission scenarios in the SWAT model.  
The high-flow variables incorporated in this analysis include 7-day 
high flows, 7Q10 high flows, annual and monthly peak discharges, 
90th percentile flow, and flood frequency analysis with return 
periods of 2-, 5-, 10-, 25-, 50-, 100-, 200-, and 500-year.  The 
7-day high flows are the maximum flow from the average of seven 
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days of consecutive flows in a year.  Similarly, 7Q10 high flows 
are defined as the maximum 7-day high flows that have a 
probability of occurring once in every 10-year[69].  The annual and 
monthly peak discharges were analyzed to report the extremely 
high flow events.  The PeakFQ program was used for the flood 
frequency analysis of streamflow data.  The PeakFQ program uses 
Bulletin 17B and Expected Moments Algorithm to estimate flood 
magnitudes with different recurrence intervals[70].  For this, the 
streamflow series simulated by the SWAT model for 2035s, 2055s, 
and 2085s were separately fed into the program and results were 
compared against the historical records.  The 90th percentile 
exceedance flows and monthly peak flows were analyzed in the 
outlet of four major dams located in the watershed based on the 
SWAT simulated flows from observed climate data (1988-2015) 
and projected climate data (2016-2099). 

3  Results 

3.1  Model simulation 
Since the SWAT model was previously set up, calibrated, and  

validated by Shrestha et al. [58], this study would not provide the 
detailed model set-up, calibration, and validation processes, but 
briefly summarize the methods.  The SWAT model calibration 
and validation were performed on a daily and monthly time scale.  
The model performance was satisfactory during the calibration and 
validation period with reasonable accuracy, which was assessed 
through a visual inspection and statistical parameters.  The model 
performance to simulate the daily streamflow in calibration and 
validation period is shown in Figure 2.  The statistical criteria 
NSE, R2, PBIAS, and RSR on a daily and monthly scale from 
different stations throughout the watershed were good[58].  
Additionally, the model performances on high flows were also 
evaluated by comparing the 75th percentile exceedance from 
simulated and observed flows.  The statistical measures to 
evaluate the model performance including NSE (0.96), R2 (0.99) 
and Pbias (−11%) during the calibration period for 75th percentile 
high flows were promising.  Similarly, the model performance 
during the validation period in terms of NSE (0.93), R2 (0.99) and 
Pbias (−6.8%) were good. 

 

 
a. Calibration 

 

 
b. Validation 

Figure 2  Calibration and validation of daily streamflow at USGS station #03274000 at Hamilton, OH 
 

3.2  Change in streamflow 
The simulated streamflow for the entire 21st century was 

generated on a daily scale at a subbasin outlet 137 (USGS gage 
station #03274000) using 10 CMIP5 climate data in the calibrated 
SWAT model.  The results of average annual streamflow from 10 
climate models under two emission scenarios for three reference 
periods have been presented in Table 1.  The annual streamflow 
recorded at the outlet gage location for the baseline period 
(1988-2015) was 117.98 m3/s.  The analysis suggested that the 
streamflow in the Great Miami River would increase in future 
periods; however, the increasing trends were not consistent through  

all climate models.  Approximately, 77.29% increase in annual 
flow was projected from the CSIRO-Mk3.6.0 model under RCP 4.5 
in 2085s, which is the highest increase realized under RCP 4.5 in 
the analysis.  Similarly, the annual average flow would increase 
by 81.6% under RCP 8.5 from CANSEM2 in 2085s.  In general, 
the predicted annual flow was higher in RCP 8.5 compared to RCP 
4.5 for all future periods except using some climate models 
(MIROC-ESM, CNRM-CM5, CSIRO-MK3-6.5, and CCSM4).  
Overall, average annual flows were projected to be increasing in 
later years of the 21st century (2085s) except using some climate 
models including MIROC5, CNRM-CM5, and MIROC-ESM. 
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Table 1  Change in average annual flows from the ensemble of 
10 climate models with respect to the observed streamflow at 

USGS station #03274000 under RCP 4.5 and RCP 8.5 

Emission Scenarios  RCP 4.5 RCP 8.5 

Models Period 
Flows 
/m3·s−1 

Change 
/% 

Flows 
/m3·s−1 

Change 
/% 

Observed (Baseline) 1988-2015 117.98 - 117.98 - 

CANSEM2 

2016-2043 140.35 18.96 151.43 28.35 

2044-2071 158.67 34.48 190.42 61.40 

2072-2099 162.90 38.07 214.23 81.58 

CCSM4 

2016-2043 157.12 33.17 153.00 29.68 

2044-2071 137.43 16.48 164.29 39.25 

2072-2099 161.00 36.46 170.38 44.41 

CNRM-CM5 

2016-2043 149.94 27.09 153.88 30.43 

2044-2071 173.97 47.46 150.71 27.74 

2072-2099 156.26 32.45 148.15 25.57 

CSIRO-MK3-6 

2016-2043 159.78 35.43 167.91 42.32 

2044-2071 199.53 69.12 161.74 37.09 

2072-2099 209.17 77.29 197.42 67.33 

GFDL-ESM2M 

2016-2043 146.51 24.18 157.71 33.68 

2044-2071 171.10 45.02 181.27 53.65 

2072-2099 168.26 42.61 179.67 52.28 

MIROC5 

2016-2043 162.25 37.52 151.56 28.46 

2044-2071 156.32 32.49 159.71 35.37 

2072-2099 134.84 14.28 136.91 16.04 

MIROC-ESM 

2016-2043 187.19 58.66 172.32 46.06 

2044-2071 166.10 40.78 152.03 28.86 

2072-2099 170.60 44.60 157.19 33.23 

MPI-ESM-LR 

2016-2043 138.11 17.06 118.30 0.27 

2044-2071 135.10 14.51 140.50 19.09 

2072-2099 134.65 14.13 154.13 30.64 

MPI-ESM-MR 

2016-2043 145.15 23.03 179.18 51.87 

2044-2071 161.29 36.71 176.57 49.65 

2072-2099 160.32 35.89 206.43 74.97 

NORESM1-M 

2016-2043 139.57 18.30 150.29 27.38 

2044-2071 124.34 5.39 137.60 16.62 

2072-2099 130.90 10.95 157.11 33.16 
 

3.3  Impact of climate change on high flows 
In order to analyze the characteristics of high flows from the 

watershed, the ensemble 7-day high flows from 10 climate model 
outputs were analyzed with the help of box and whisker plots and 
compared with the historical 7-day high flows at USGS gage 
station #03274000 (Figure 3).  The 7-day high flow was 
determined by considering the highest value from the average of 
consecutive 7-day flow from each year.  Our analysis suggested 
that the 7-day high flows would increase for the early and 
mid-century for both scenarios, whereas late century flow is 
expected to be slightly lower than that of mid-century for RCP 4.5.  
However, a clear and consistent increasing trend of 7-day high 
flows was observed under RCP 8.5.  It is interesting to report that 
the interquartile range of the early century was relatively less 
compared to other periods in both scenarios.  

In addition to 7-day high flows, actual 7-day, 10-year high 
flows (7Q10) were estimated by conducting statistical analysis.  
Figure 4 shows the graphical representation of computed 7Q10 
high flows for the historical and future periods using climate output 
from 10 climate models.  The analysis suggested that the 
CSIRO-MK3-6 model under the RCP 8.5 scenario predicted 
significantly higher 7Q10 in the early century (104%), whereas it 
significantly predicted higher flows for the late century under RCP 
4.5 (130%).  Similarly, MIROC5 and MPI-ESM-LR revealed 

relatively smaller 7Q10 values compared to other climate models 
under both scenarios.  As a result, the ensemble 7Q10 from the 
simulated flows from 10 climate models did not significantly 
increase in the late century especially under RCP 4.5.  However, 
the ensemble average 7Q10 for early and mid-century was found to 
be increasing by 42% under the RCP 4.5 scenario with a slightly 
decreasing trend in the late century (29.4%).  On the contrary, the 
7Q10 flows computed using the RCP 8.5 scenario showed a 
consistently rising trend of 7Q10 for the 21st century (early 
century- 43.1%, mid-century- 49.8%, and late-century- 65%) with 
an average increase of 44.28%. 

 
 1988-2015    2016-2043    2044-2071    2072-2099 

 
             a. RCP 4.5    b. RCP 8.5 

Figure 3  7-day high flows from the ensemble of 10 climate 
models and observed flows at USGS station #03274000 under RCP 

4.5 and RCP 8.5 
 
 

 
a. RCP 4.5 

 

 
 

b. RCP 8.5 

Figure 4  7Q10 high flows from 10 climate models and observed 
streamflow at USGS station #03274000 under RCP 4.5 and RCP 8.5 
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The annual peak flows (Figure 5) from the ensemble simulated 
flow from the SWAT model using 10 climate model outputs were 
analyzed.  The analysis suggested that the annual peak flow would 
significantly increase in the late century compared to the historical 
period in both scenarios.  While early and mid-century flows are 
not significantly different in both scenarios, RCP 8.5 revealed the 
increasing trend of annual peak compared to the historical period.  
This is not a surprising outcome as the RCP 8.5 is the highest 
emission scenario leading to the increased precipitation trend.  
Regardless, it is worthwhile to report that the interquartile range of 
future periods was less compared to the historical period indicating 
that the variability of climate output predicted by climate models 
was within a narrow range.  
       1988-2015    2016-2043    2044-2071    2072-2099 

 
             a. RCP 4.5      b. RCP 8.5 

Figure 5  Annual peak flows from the ensemble of 10 climate 
models and observed streamflow at USGS station #03274000 

under RCP 4.5 and RCP 8.5 
In addition, the monthly peak flow was computed for the entire 

simulation period, which is reported in Figure 6.  The peak of 
each month from various years across the simulation period of the 
early, mid, and late-century were plotted using a box plot.  No 
consistent pattern of monthly peak flows could be identified in the 
results.  For example, there was a slightly increasing trend in the 
monthly peak in April and a distinct increasing trend in May, July, 
and August.  Similarly, there was a slightly decreasing trend in 
January but the trend in February and March is somewhat vague 
and indistinct.  The analysis revealed that variability, as shown 
through the box plots in Figure 6, is relatively less compared to the 
historical period in RCP 4.5 except for August and September. 

This trend was consistent for RCP 8.5 (Figure 7) with 
additional amplification of monthly peak flows, especially during 
summer months including May, August, September, and October.  
Broadly, there are two patterns.  One from May to October as an 
increasing trend except in June and the other is from November to 
April, which is constant.  In fact, the increased flow in September 
concurs with the study conducted by Lettenmaier et al.[71] who 
reported the increased historical precipitation from 1948 to 1988.  

Flooding events with return periods 2-, 5-, 10-, 25-, 50-, 100-, 
200-, and 500-year were computed using the simulated streamflow 
at the basin outlet.  Simulated flooding events from 10 climate 
models under RCP 4.5 and RCP 8.5 were compared against 
observed flooding events and percentage change was reported in 
box plots (Figure 8 and Figure 9).  The median of the percentage 
change in each return period in the early century was comparable to 
the late century in RCP 4.5.  However, the median percentage 
change in flooding events would be significantly higher in 
mid-century than that of other periods.  It is worthwhile to 

mention that this increase in flow was computed based on median 
peak flow from the respective periods, which was computed 
through the streamflow using climate data from 10 climate models.  
In the RCP 8.5 scenario, the mid-century flood would increase for 
2-, 5-, and 10-year return periods and decrease for 100-, 200-, and 
500-year.  The late century flood change would be maximum with 
a significant increase in variability except for 25-year return periods.  

In order to realize how the peak flows in late century compares 
with the historical periods including early and mid-century, the 
peak flows taken average from 10 climate models for various return 
period under RCP 4.5 and RCP 8.5 were plotted in Figure 10 and 
Figure 11, respectively.  The analyses of peak flows for respective 
return periods suggested that the early century peak would be 
higher than that of the baseline period, whereas the mid and late 
century peak flows would be almost similar but much higher than 
baseline and early peaks especially under RCP 4.5.  It is 
interesting to note that the trends of peak flow on each return 
period were different under RCP 4.5 than RCP 8.5.  In RCP 8.5, 
the peak flows in mid-century were very close to the peak flows in 
the early century and even smaller in return periods 50-, 100-, 200-, 
and 500-year.  Nevertheless, the late century peak flow was 
expected to be significantly higher than the early and mid-century.  

Since the Great Miami River Watershed comprises several 
dams and levees for flood protection, monthly high flows at the 
outlet of 4 major dams including Taylorsville, Germantown, 
Huffman, and Englewood were analyzed.  The monthly peak 
outflows from each dam for historical and three future periods are 
presented in Figure 12 and Figure 13 for RCP 4.5 and RCP 8.5, 
respectively.  In order to assess the reservoir response for the 
increased flow in the future,  dams performances for the historical 
and future periods with the simulated flow using equal time 
intervals were assessed for apple to apple comparison.  Among 10 
climate models, our investigation depicted that model CISRO-MK 
3.6 predicted mostly increased flows in the future, whereas models 
including MPI-ESM-LR and MIROC5 relatively predicted 
decreased flow.  It was clearly noted from Figures 12 and 13 that 
the higher flows predicted from CISRO-MK 3.6 were in the 
summer period from May to September, especially in the late 
century.  Similarly, monthly peak flow from each dam was 
projected to be higher in future periods, especially in January and May.  

Since the increased daily flow due to climate change could be 
crucial in case the flow exceeds the dam and reservoir capacity, the 
frequency analysis of the increased daily peak flows was performed 
for future periods.  To see the trend of outflow from the dams the 
90th percentile of daily flows based on 10 climate models for the 
months of January, May, and September were analyzed.  Since it 
is voluminous and inconvenient to report outflow from each 
climate model, only ensemble average streamflow using all climate 
model outputs was reported for conciseness.  The results showed 
the 90th percentile flows would not show any consistent trend 
across the entire century under RCP 4.5.  However, it was 
predicted that the 90th percentile flows would increase for all dams 
throughout the 21st century.  The 90th percentile flow is 
maximum during the 2035s period for all dams in the range of 19% 
to 43% during January under RCP 4.5 (not shown).  Similarly, the 
study showed that the 90th percentile daily flows under RCP 4.5 
would be highest in September during 2055s for all major dams in 
the increased range from 52% to 223%.  However, the flow would 
be maximum in May in the increased range of 45% to 72% during 
the period of 2085s (not shown).  
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1988-2015 2016-2043 2044-2071 2072-2099 

 

 
Figure 6  Monthly peak flows from the ensemble of 10 climate models and observed streamflow at USGS station #03274000  

under RCP 4.5 for various months  
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Figure 7  Monthly peak flows from the ensemble of 10 climate models and observed streamflow at USGS station #03274000 under RCP 8.5 
 

 2016-2043 2044-2071 2072-2099 

 
Figure 8  Change in flood magnitudes for recurrence intervals of 2-, 5-, 10-, 25-, 50-, 100-, 200-, and 500-year from the ensemble of  

10 climate models with respect to the observed period at USGS station #03274000 under RCP 4.5 
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 2016-2043 2044-2071 2072-2099 

 

 
Figure 9  Change in flood magnitudes for recurrence intervals of 2-, 5-, 10-, 25-, 50-, 100-, 200-, and 500-year from the ensemble of  

10 climate models with respect to the observed period at USGS station #03274000 under RCP 8.5 
 

 
Figure 10  Mean peak flows for recurrence intervals of 2-, 5-, 10-, 25-, 50-, 100-, 200-, and 500-year after averaged from  

10 climate models under RCP 4.5 for early, mid-, and late century with respect to the baseline period 

 

 
Figure 11  Mean peak flows for recurrence intervals of 2-, 5-, 10-, 25-, 50-, 100-, 200-, and 500-year after averaged from  

10 climate models under RCP 8.5 for early, mid-, and late century with respect to the baseline period 
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a. Englewood Dam 

 

 
b. Taylorsville Dam 

 

 
c. Huffman Dam 

 

 
d. Germantown Dam 

Figure 12  Monthly peak flows from 10 climate models under RCP 4.5 at Englewood Dam (a), Taylorsville Dam (b),  
Huffman Dam (c), and Germantown Dam (d) 
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a. Englewood Dam 

 

 
b. Taylorsville Dam 

 

 
c. Huffman Dam 

 

 
d. Germantown Dam 

Figure 13  Monthly peak flows from 10 climate models under RCP 8.5 at Englewood Dam (a), Taylorsville Dam (b),  
Huffman Dam (c), and Germantown Dam (d) 
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On the contrary, 90th percentile daily flows under RCP 8.5 
showed a clear increasing trend in January, May, and September.  
In all dams, the biggest increase in the 90th percentile flow would 
occur in the late century.  The 90th percentile flow in dams for 
January (Figure 14) during the late century ranged from 44% to 
70%.  While the 90th percentile daily flows in some dams during 
mid-century decreased by 2.5% and 3.5% from the early century 
(Figure 15), the maximum 90th percentile daily flows would occur 
in the late century for all dams varying from 45% to 107%.  The 
considerable increase in the 90th percentile daily flow was found to 
be in September varying in the range of 66% to 250% (Figure 16).   
Regardless, the month of September is the low flow period in Ohio; 
therefore, an additional increase of the flows in September of the 
late century would safely be accommodated in the reservoir as it is 
well below the reservoir capacity. 

Overall, the findings of the research are consistent with the 
previous research[1] suggesting that high flows would increase in 
the future especially in RCP 8.5.  Even though the impact of 
climate change on streamflow is not consistent across the globe, the 
earlier findings[11] also suggested the increase in flows in the USA.  
Regardless, the research findings, especially increasing peak flows 
and the frequency of peak flows, agree with the documented 
literature[49]. 

 
Figure 14  90th percentile flows from the ensemble of 10 climate 

models in January under RCP 8.5 

 
Figure 15  90th percentile flows from the ensemble of 10 climate 

models in May under RCP 8.5 

 
Figure 16  90th percentile flows from the ensemble of 10 climate 

models in September under RCP 8.5 
 

4  Conclusions 

This study presented a comprehensive investigation of high 
flows through the systematic analysis of climate change's impact on 
a basin-scale study.  The 10 CMIP5 climate models under two 
emission scenarios (RCP 4.5 and RCP 8.5) were utilized in order to 
drive the SWAT model and illustrate the impact of climate change 
on streamflow regimes, especially during high flow periods in the 
Great Miami River Watershed.  The SWAT model, which 
adequately simulated streamflow, was utilized to simulate 
streamflow for the future after multi-sites calibration and validation.  
The coupling of hydrologic models with GCM projections was 
utilized to estimate streamflow in the subbasin outlets for the 21st 
century. 

The average annual streamflow at the watershed outlet from 10 
climate models was projected to increase for all simulation periods 
(2035s, 2055s, and 2085s) under two emission scenarios – RCP 4.5 
and RCP 8.5.  The 7-day high flows from the ensemble of 10 
climate models were estimated to increase in the future with 
reduced variability.  The significant increase in peak flow as 
compared to the historical period was expected to occur in May, 
July, August, September, and October.  Similarly, 7Q10 high 
flows showed a significant upward trend in the future especially for 
RCP 8.5.  The analysis was also conducted to investigate the 
possible increase in the flood frequency in the future for various 
return periods including 2-, 5-, 10-, 50-, 100-, 200-, and 500-year 
compared to historical flood frequency.  Under RCP 4.5, the 
change in flood magnitude will be higher during mid-century, 
whereas under RCP 8.5, the change in flood magnitude will be 
more in the late century. 

The climate change effects in reservoirs were quantified in 
terms of monthly peak flows.  Four major dams-Taylorsville, 
Germantown, Huffman, and Englewood in the watershed showed 
increased monthly peak flow during each simulation period.  The 
change in peak flows varied depending on the climate models.  
The CISRO-MK 3.6 showed generally increased peak flows, 
whereas MPI-ESM-LR and MIROC5 projected the decreased peak 
flows.  In addition, the 90th percentile exceedance flow from the 
reservoir outlets also increased in the future even though it was not 
consistent across all months.  A significant increase in the 90th 
percentile flow was projected in Englewood dam in September in 
the mid- and late-century compared to the historical and early 
century flow.  While a distinct trend was not detected under RCP 
4.5, the increase in flows from the dam was detected under RCP 
8.5 especially during January, May, and September.  While this 
study found a modest increase in reservoir discharge, especially for 
monthly averages flows, the daily flow from each dam significantly 
exceeded in the future period. 

Even though it is expected to increase high flows in the 21st 
century, the projected streamflow presented in this analysis can 
inherit some degree of uncertainty due to various reasons.  For 
example, the likelihood of flooding due to sedimentation in the 
reservoir was not considered for this study.  In general, the 
findings indicate that the increase of high flows is anticipated for 
the 21st century.  These long-term hydrologic predictions using 
projected climate data may provide the basis for the water 
resources managers or decision-makers to develop flood regulating 
strategies, especially when there is a likelihood of overflow of the 
flood regulating reservoir. 
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