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Visual tracking for underwater sea cucumber via correlation filters

Honglei Wei, Xiangzhi Kong, Xianyi Zhai, Qiang Tong, Guibing Pang”
(School of Mechanical Engineering and Automation, Dalian Polytechnic University, Dalian 116038, Liaoning, China)

Abstract: One of the essential techniques for using underwater robots to fish sea cucumbers is that the robots must track sea
cucumbers using computer vision technology. Tracking underwater targets is a challenging task due to suspension, water
absorption, and light scattering. This study proposed a simple but effective algorithm for sea cucumber tracking based on
Kernelized Correlation Filters (KCF) framework. This method tracked the head and tail of the sea cucumber respectively and
calculated the scale change according to the distance between the head and tail. The KCF method was improved on three
strategies. First of all, the target was searched at the predicted position to improve accuracy. Secondly, an adaptive learning rate
updating method based on the detection score of each frame was proposed. Finally, the adaptive size of the histogram of the
oriented gradient (HOG) feature was used to balance the accuracy and efficiency. Experimental results showed that the

algorithm had good tracking performance.
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1 Introduction

Sea cucumber is a kind of aquatic product with high nutritional
value and economic value. Sea cucumbers live on the bottom of the
sea and are mainly fished by diving. The traditional method of
fishing is low in yield, high in cost, and seriously harmful to divers’
health. Intelligent underwater robots have been widely used in
search and rescue, salvage, and other marine activities. The most
viable alternative is to capture sea cucumbers using an autonomous
underwater vehicle (AUV), such as the underwater robot shown in
Figure 1. One of the critical technologies for the AUV is to
accurately track sea cucumbers, which is the target tracking subject
of computer vision.
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Figure 1 Schematic of fishing sea cucumber using a robot

The goal of a visual tracking algorithm is to train a classifier to
distinguish between objects and environments. There are many
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research achievements in visual tracking, which can be divided into
discriminative methods or generative methods. Discriminative
methods model target tracking as a classification problem!'". The
generative techniques take target tracking as a template matching
problem!*"*,

The process starts with visual tracking to determine the location
of the sea cucumber and suck it into the storage tank through a
straw.

In the comprehensive evaluation of online target tracking based
on benchmark!"®, those trackers!*'” based on correlation filtering
show good performance in estimating target translation at the fastest
speed. Compared with the model-based method, these tracking
algorithms based on correlation filters calculate spatial correlation
in the form of wise product in the Fourier domain to obtain higher
tracking speed. Since they take into account environmental
information, they can provide better tracking results. Bolme et al'“.
initially proposed the minimum output sum of squared error
(MOSSE) filter for tracking, which could process hundreds of
frames per second (FPS) due to the efficiency of the correlation
filter. Henriques et al.”” proposed a circulant structure tracker
(CSK), which used a circulant matrix to obtain larger training
samples. Kernel Correlation Filter (KCF) presented by Henriques et
al. was adopted to improve the CSK method by utilizing the
features of HOG. Liu et al.® conducted tracking in multiple parts
based on the KCF method. In the study of Xia et al.'™"), an
improved algorithm based on Unscented Rauch-Tung-Striebel
Smoother had been added to the Kernel Correlation Filter
algorithm, and the sparse representation method has been
introduced into the training process to heighten the stability of the
proposed object tracking algorithm. Guo et al.”” based on the
original histogram of oriented gradient features, integrated the hue,
saturation, value, and grayscale information to construct a new
descriptor to represent the target appearance. Yan et al.”" used the
gray area growth method to detect the candidate small target region
and segment the final small target by the threshold value. Du et al.??!
proposed a kernel-correlation filtered target tracking algorithm that
introduces a target block model and the algorithm is more robust in
dealing with lighting changes, scale changes, occlusions, and
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background noises.

Due to the low contrast and poor quality of underwater images
caused by underwater light, suspended matter, light absorption, and
scattering, it is more difficult for robots to capture sea cucumbers
than target tracking on land. In addition, the relative position
between the robot and the sea cucumber constantly changes during
the capture process, resulting in constant changes in scale. Some
approaches methods"*"® use the scale pyramid method to calculate
the scale change, estimating the scale change reasonably. Still, the
calculation is considerable, and it is not suitable for real-time
application. This study proposed a simple and effective tracking
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method based on the KCF framework", which has high
computational efficiency and robustness to scale changes. The flow
chart of the proposed method is shown in Figure 2. The main
contributions of this study can be summarized as three strategies.
First of all, the method tracks the head and tail of the sea cucumber,
respectively, calculates the change in the distance between the two
ends of the sea cucumber, and estimates the scale change. Secondly,
the KCF method!" is improved by tracking the image blocks
cropped on the predicted position. According to the detection score,
a way of adjusting the learning rate is proposed to update the filter
template of each frame.

Croped patch A from frame ¢

Frame ¢

[l Original position

Croped patch B from frame ¢

B Tracked position

Frame ¢

New box for scale estimaion

Note: Kernelized Correlation Filters.

Figure 2 Flowchart of the proposed scale estimation method.

Furthermore, adaptive HOG size is adopted to achieve the
balance of computational accuracy and efficiency. An experimental
study was carried out on a typical sea cucumber video data set.
Experimental results show that the algorithm has good performance.

The method of this study tracks two parts located at two ends of
sea cucumber (A and B) separately by KCF tracker!"! and estimates
the scale according to the distance between two positions.

2 Materials and methods

2.1 Kernelized correlation filter
KCF tracker!" trains a filter w by minimizing the squared error
over samplesx;and their regression targets y;.

min’y (e (o). w) =) + Al M

where, 4 is a regularization parameter; the training examples (x;, y;)
are cyclic shifts of the basic sample (x, y); ¢(x;) represents mapping
x; to kernel space.

The solution w of Equation (1) can be expressed as:

w= Za’i‘/’ (x) (2)

According to Equation (2), the optimization variable changes
from wto ;. The objective function can be minimized if o; is
defined as:

. Yy

0= 3)
where, & is the Gaussian kernel of dot-product g(x)p(x;), and the
hat ~ denotes the Discrete Fourier Transformation (DFT) of a vector.

During the tracking process, a patch was cropped in the new
frame to calculate the kernel&*, and then the correlation response
mapping f(z) was generated by convolving the filter o with the
kernel, as shown in the following equation:

f@=F"' (& 0a) 4)

where, ois the element-wise product; F' denotes the inverse of
Fourier transforms.

In the response map f(z), the location with the maximum value
was the target location.
2.2 Method for sea cucumber tracking

This section researches the strategies for sea cucumber
tracking, including improved translation estimation of KCF" and
scale estimation by tracking head and tail.
2.2.1 Translation estimation

In order to reduce computation and improve the robustness,
three methods were proposed, including adaptive HOG algorithm,
predictive location detection algorithm, and adaptive learning rate
algorithm.

1) Adaptive HOG

In the traditional KCF method", the size of HOG was fixed to
4, which led to the slow tracking speed of large objects. The size of
the HOG proportional was set to the size of the target, as shown in
Equation (5):

b SiZCuna )
where, ris the adaptive HOG size; Siz€ g is the smaller one of the
length and the width; m is the fixed value (set as 25 in this study). If
ris less than 2, set r to 2.

m

2) Location prediction

In the KCF method", the cropped patch used for tracking needs
to be processed by the cosine window to process the wrapped-
around edges, causing the center to be enhanced and the rest to be
weakened. The further away the target is from the original location,
the more difficult it is to find the target, which usually happens
when the target moves fast. To solve this problem, the position of
the current frame was predicted according to the tracking position
of the last three frames, and then the filter was performed on the
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clipped image block on the predicted position to improve the
tracking stability. Equation (6) can calculate the predicted position.

pr — pr—l +y (pzfl _prfz) (6)
where, y is the step coefficient, which can be calculated by Equation
).

pt_plfl
LA sl

! |

pz—l _pFZH <5

In Equations (6) and (7), p*' is the position of the prediction
point, and p', p"', p"* are the tracking positions of ¢, 7—1, 2 frames,
respectively.

When the target changes direction or speed rapidly, the
prediction Equation (6) may give the wrong position. To solve this
problem, the distance between the predicted location and the
tracked location was checked.

If the distance was less than the threshold (20 pixels in the
experiment), the tracked result would have been accepted.
Otherwise, the tracked location patch is cropped and traced again.

3) Model Update

In the KCF method™, the model is updated at a fixed learning
rate and is not adjusted according to the specific situation. The
learning rate was adjusted according to the maximum value of the
response mapping. That is, the frames with higher detection scores
will be learned more. Therefore, the update scheme is defined as:

H =pH +(1-p)H""
{ (8)

i-1

X =pxX+(1-p)x
where, the learning rate p is calculated as

p=nmax(f () 9

The 7 is a constant parameter; f{z) is the response mapping.
2.2.2  Scale estimation

In the process of using underwater robots to catch sea
cucumbers, the scale changes constantly due to the changing
distance between the robot and the sea cucumber. Scale estimation
not only makes the tracking process more robust but also can be
used to estimate the relative distance between the underwater robot
and the target. In this section, a scale estimation method was
developed, and the flowchart is shown in Figure 3.

Note: The red squares indicate the divided blocks.
Figure 3  Searching for the location of two ends from the image
patches in the first frame.

1) Selection of tracking points

The proposed method was realized by tracking the head and tail
of the sea cucumber, respectively. The first step was to select the
block in the head and tail of the target in the first frame that was
most suitable for tracking.

The target image block x is divided into nine equal parts x; in

the first frame, as shown in Figure 3, where i, j € (1,2,3). The part
X, was used to calculate filter &, The image block x; and center
block x,, were used to calculate the kernel k%, and Equation 4
was used to calculate the response map f(z;). Let s; denotes the
maximum value of response map f{z;), and [; denotes the
corresponding location. The pairs (/;, 33), ({12, 132), (13, 131), (a1, 13)
were checked and the pair with the maximum value of the sum of
two s; were selected as the initial tracking points.

The target object was split into nine smaller image patches, and
each window shares one-third of the size of the target. The ends of
the sea cucumber were image patches with an appearance most
similar to the center patch.

2) Scale calculation

The new position p (xj‘, y;) of the head and the new
positionpi, (xg,y;) of the tail could be tracked in frame ¢ based on
the KCF method!"! starting from the two starting positions selected
in the first frame.

Unlike the KCF method, the image patch was not cropped
directly on p/'andp}' but the image patch was cut in the predicted
positions p', and pj;calculated by Equation (6), and the Equation (10)
can calculate the scale.

o pi=pl }

5! (10)

3) Scale Verification

It was necessary to verify the results to avoid tracking failure
caused by scale estimation error. As shown in Figure 4, the
algorithm in this study tracks the two endpoints of sea cucumber, as
shown in Figure 4a. In order to compare with ground truth, the
central point of the target must be calculated, which requires two
steps: scaling and rotation, as shown in Figure 4b, and the target
position pg in frame ¢ can be calculated by the following equation:

Pl = AR (py—p,) + Pl (€9))

where, / is the scale conversion parameter, which can be calculated
by the following equation:

1 _ ol
A= ||p]G p/[‘” (12)
lps = pall
where, the p;; is the block center provided by the ground truth in the
first frame; R is the rotation matrix, and it takes the form as follows:
cosf —sinf
R= 13
{ sinf  cosé } (13)
To compute the rotation matrix R, Equation (13) was rewritten
in a detailed form:

(14)

X| = Xy€0860 —y,sinf
V1 = Yoc086+ x,8ind

where, [xg,y,]" =4 (p}, —pL), and [x,,y,]" = p;, — p}. The cosf and
sinf can be solved by the following equation:
0= XoXi + YoY

Ccos
XoXo + YoYo (15)
. XoY1 — X1)o
sinf = ———
XoXo + YoYo

According to Equation (13) and Equation (15), the rotation
matrix R can be calculated. Eventually, the pj, in frame ¢ was
calculated by Equation (11).

If pisatisfies condition Equation (16), the scale s’ is calculated
by Equation (10). Otherwise, the calculation of ¢ is not reliable, so it
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stays the same s' = s"".

|ps-p], <& (16)

where, |||,is to compute the 2-norm; p; is the target center
calculated by Equation (11) according to p/, and pj, and p' is the

target center obtained by tracking the sea cucumber according to
Equation (6).

Ps
\ ht
Scale \
\ Rotate
y,, Rotate
P Do

b.

Figure 4 Illustration of the method for computing the center
of the target

2.2.3 Framework of method

A brief outline of our method is given in Algorithm 1.

Algorithm 1. Proposed method: iteration at frame ¢ Input the
image /,, previous target position p”' and scale s"', the model o'
and x".

First make the Translation estimation: Extract samples from J,
at p"'and s, compute the correlation score using Equation (4), and
set p' to the target position that maximizes translation estimation.

Secondly, make a scale estimation: If /=1, select tracking points
p, and pj by the method introduced in Section 2.2.2, otherwise
predict location p!, and p), using Equation (10).

Then extract the sample 7, and I}, from [, at p!, p,, s, and
compute the correlation score y, and y} using (4). Set p/, and pj, to
the target position that maximizes scale estimation, calculate the s’
using Equation (11) and verify the s' using Equation (17). And then
made the model update: Extract samples /,, I}, and I, at p', p',, p}
and s, compute the filter using Equation (3), and update the model
using Equation (8).

Finally, output the estimated target position p' and scale s, the
model o' and x'.

3 Experiments and results

3.1 Experimental setup and methods
The algorithms used in the experiment were all implemented in
MATLAB on a PC with an Intel 17 2.67 GHz CPU. Center location
error (CLE), overlap success plot (OP), and distance precision plot
(DP) were used as evaluation criteria. CLE is the average distance
from the ground truth to the location being tracked. The success plot
showed the percentage of frames with overlapping rates S >,
among all thresholds 7, € [0, 1]. The overlap ratio can be calculated
Area(Br N Bg)
by S =

" Area (B;UB)’
tracking algorithm, and B is the actual ground boundary box. The

distance precision plot indicates the percentage of frames that

where, By is the boundary box given by the

satisfy the condition S<n and the distance of the tracking position
from the ground truth within the whole threshold range » €[0, 100].

When the robot grabs the underwater sea cucumber, the
distance and relative angle of the robot approaching the target sea
cucumber will change significantly, so the experiment mainly tests
the robustness of visual tracking with large-scale change and

rotation change. Five sea cucumber videos with large-scale changes
and five sea cucumber videos with significant rotation changes were
collected for the robustness test of the visual tracking algorithm.
The specific information on videos is listed in Table 1.

Table 1 Videos information for the experiment

No. Video Frame number Image size Attribute
1 S 1100 640%360 Scale change
2 S, 1800 640x360 Scale change
3 S 1600 640x360 Scale change
4 S4 900 640x360 Scale change
5 Ss 900 640x360 Scale change
6 Se 1100 640x360 Scale change
7 Ry 1600 640x360 Rotation change
8 R, 1400 640x360 Rotation change
9 Ry 1000 640x360 Rotation change
10 R, 1100 640x360 Rotation change
11 Rs 1000 640x360 Rotation change
12 Ry 1000 640x360 Rotation change

Note: In Table 1, S, represents significant scale changes of the tracking target in
the video n; R, represents significant rotation changes of the tracking target in the
video n.

3.2 Features and parameters

The standard deviation o of the expected relevant output is set
to 1/16 of the target size, the learning rate # is set to 0.025, the
regularization parameter 4 is set to 0.01, and the overlap rate p is set
to 1.5 for translation estimation and 1.0 for scale estimation.

For the translation and scale filter in the proposed method, the
adaptive cell size described in Section 2.2.1 was used to extract
HOGY features. Each feature channel in the extracted samples of
both translation filters and scale filters is multiplied by a cosine
window
3.3 Comparison with baseline tracker

The experiments are implemented on the tracking objects with
significant rotation change and scale changes. In the experimental
results, the baseline corresponds to KCF trackers!". The Update is
the algorithm that adds the model update algorithm given in Section
2.2.1 to the Baseline, and Predict is the algorithm that adds the
location prediction method given in Section 2.2.1 to the Baseline.
Scale is the algorithm that adds the scale estimation method given in
Section 2.2.2 to the Baseline, and Joint is the algorithm that adds the
methods of Updating, predicting, and scaling to the Baseline.

1) Scale variation

The experimental studies on six videos (S5,-S;) are conducted
and compared the results of proposed trackers with those of baseline
trackers. Table 2 lists that the baseline trackers obtained a mean DP
of 62.2%, and the update, predict, scale achieves a mean DP of
64.5%, 67.5%, and 72.9%, respectively. The best results were
achieved by the Joint method with a significant gain of 14% over

Table 2 Comparison of experimental results between the
proposed algorithm and the baseline on videos with significant
scale variation

Algorithm DP OP CLE/pixels FPS/frames's™
Baseline 0.622 0.508 18.2 36.9
Update 0.645 0.538 16.9 36.6
Predict 0.675 0.557 15.2 36.1
Scale 0.729 0.805 13.2 24.7
Joint 0.762 0.854 11.1 24.2

Note: DP: Distance Precision Plot; OP: Overlap Success Plot; CLE: Center
Location Error; FPS: Frames per second. Same below.
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the baseline tracker. Similarly, the proposed methods also provide
improved performance in mean OP compared to the baseline
tracker. Table 2 also shows that the baseline achieves a mean OP of
50.8%. The Update, Predict, Scale method improved the median OP
by 3.8%, 4.9%, 29.7%, and 34.6% compared with the baseline
tracker. Figures 5 and 6 are the experimental results of the distance
accuracy and overlap success rate, which shows that the proposed
trackers are effective.

1.0 ; : : ‘ ‘ . ‘ ‘ .
09} :
08}
8
=
,g 0.5 F i B L]
8 04ty —a— [0.762]Proposed
RPN ISR/ SO0 T S ~ - [0.729]Scale
' & [0.675]Predict
024 ——- [0.642]Update
0.1 [0.622]Baseline
0 .

0 5 10 15 20 25 30 35 40 45 50
Location error threshold/pixels
Note: The legend of distance precision contains threshold scores at 20 pixels.
Figure 5 Distance precision plots over all the 7 sequences showing
the performance of the proposed methods compared to the baseline

.. —e— [0.854]Proposed ...
—.—- [0.805]Scale

Success rate
o
W

031 . [0.557]Predict |
0.2 ___10.538]Update ANE
0.1} [0.508]Baseling «weoeioeos e .

0 L L i L i L i i i
0 01 02 03 04 05 06 07 0.8 09 1.0
Overlap threshold

Note: The AUC score is reported in the legend of the overlap precision plot for
each tracker.
Figure 6 Success plot over all the 7 sequences showing the
performance of the proposed methods compared to the baseline

2) Rotation change

The experimental research on videos R6-R10 is carried out and
compared its performance with the baseline tracker with a
significant target rotation. Table 3 lists the comparison between the
method and the baseline. Figures 7 and 8 are the experimental
results of the distance accuracy and overlap success rate. The best
performance was again achieved using Joint. Compared with the
baseline, the mean DP of Joint improved by 12.9% and the mean
OP by 17.4%.

Table 3 Comparison of experimental results between the
proposed algorithm and the baseline on videos with significant
rotation variation

Algorithm DP (0)3 CLE/pixels FPS/frames-s™
Baseline 0.537 0.578 232 36.3
Update 0.555 0.607 20.8 364
Predict 0.587 0.626 19.1 30.1

Scale 0.633 0.706 16.7 242

Proposed 0.666 0.754 14.5 24.1

In summary, the three proposed methods effectively improve
the tracking accuracy, and the Joint of the three methods showed the
best effect. As can be seen from the results of frames per second in
Tables 2 and 3, the disadvantage of the proposed methods is that
they require more computation than the baseline.

1.0 ———————
0.9 : '
08}
07}

o :
506' : TP PP TP R PRI
=} o .
205} o
;_E 0_4_. "'f'—e—[0.666]Pr0posed'
03} ; L1 —.—..[0.633]Scale
o2l © o [0.587]Predict
& : ¢ © ——=-[0.555]Update
Ol _ ...... ........ e [0_537]Base]ine .

0 L 1 L i 1 L L L i
0 5 10 15 20 25 30 35 40 45 50

Location error threshold/pixels

Note: The legend of distance precision contains threshold scores at 20 pixels.
Figure 7 Distance precision plots over all the 7 sequences showing
the performance of our methods compared to the baseline
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Note: The AUC score is reported in the legend of the overlap precision plot for
each tracker.
Figure 8 Success plot over all the 7 sequences showing the
performance of the proposed methods compared to the baseline

3.4 Robustness comparison with State-of-the-Art trackers

The robustness of the proposed algorithm is compared with
KCF",  CSK™
Discriminative Scale Space Tracker (DSST)", and Spatio-

four state-of-the-art  trackers, including
Temporal Context (STC)!". All trackers were tested under the same
experimental conditions.

1) Scale variation

In this part, the experimental research results of the proposed
algorithm on videos 1-6 were presented with large target scale
variation and compared with the state-of-the-art trackers. Figures 9
and 10 illustrate the variation curves of distance accuracy and
overlap success rate under different thresholds. Figure 11 shows a
visual comparison of several algorithms on thirteen video
sequences.

Table 4 lists that the proposed method achieves a median DP of
76.2%, which is 2.7% higher than the second-highest tracker
(DSST), and a median OP of 85.4%, which is 5.0% higher second-
highest tracker (DSST). The method has a running speed of 24.5
frames/s, which is relatively slow compared with KCF, CSK, and
STC because scale estimation requires a great deal of computation,
but the proposed method is much better than the DSST method
(running speed was 3.88 frames/s), which also has scale estimation.
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Figure 9 Distance precision plots show the proposed method's
performance compared to several state-of-the-art methods over all

seven sequences
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Figure 10  Success plots showing the performance of our method
compared to several state-of-the-art approaches overall 7 sequences
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Figure 11 Distance precision plots show our method's
performance compared to several state-of-the-art approaches over

all 7 sequences

2) Rotation changing

In this part, the experimental research results of the proposed
algorithm on videos 7-12 with large target rotation variation are
presented and compared with the state-of-the-art trackers. Figures 11
and 12 illustrate the variation curves of distance accuracy and

overlap success rate under different thresholds.

Table 5 lists that the proposed method achieves a median DP of
66.6%, which is 3.4% higher than the second-highest tracker
(DSST), and a median OP of 75.4%, which is 1.7% higher second-
highest tracker (DSST). For the same reason as scale estimation, the
proposed method run at 25.9 frames per second, which is slower
than KCF, CSK, and STC without scale estimation. However, the
proposed method is much better than the DSST method with scale
estimation (running speed is 3.01 frames/s).

Table 4 Comparison of experimental results between the
proposed algorithm and the state-of-the-art trackers on videos
with significant scale variation

Algorithm DP OoP CLE/pixels FPS/fames-s™
Proposed 0.762 0.854 14.5 24.5
DSST 0.735 0.804 15.3 3.88
KCF 0.622 0.508 20.8 36.9
CSK 0.593 0.489 21.1 54.7
STC 0.527 0.419 23.4 37.8

Note: Proposed means the method proposed in this study; DSST: Discriminative
Scale Space Tracker; KCF: Kernelized Correlation Filters; CSK: Circulant
Structure Tracker; STC: Spatio-Temporal Context. Same below.
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Note: The area-under-the-curve (AUC) score for each tracker is reported in the
legend.

Figure 12 Success plots showing the performance of our method
compared to several state-of-the-art approaches over all 7 sequences

Table 5 Comparison of experimental results between the
proposed algorithm and the state-of-the-art trackers on videos
with significant rotation variation

Algorithm DP OP CLE/pixels FPS/fames-s™
Proposed 0.666 0.754 17.2 259
DSST 0.632 0.737 18.1 3.01
KCF 0.537 0.578 232 39.2
CSK 0.503 0.558 245 61.1
STC 0.433 0.488 28.7 39.5

3) Evaluation of experimental results

The above experimental results show that the algorithm can
accurately and effectively estimate the scale and location of
challenging sequences. Figure 13 shows a visual comparison of
several algorithms on 13 video sequences, where for clarity, only
representative frames of seven sequences are given. The reasons can
be summarized as follows. First of all, the algorithm used the
tracking results of the critical components of the target to estimate
the scale change of the target, which is more robust and effective.
Second, on the new frame, the new tracking is started from the
predicted position rather than the traced position on the last frame,
which is very effective for fast-moving targets. Finally, the adaptive
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DSST
— — STC

— — Ground truth  —— Ours

— — CSK — —KCF

Note: Ours: The proposed method in this study; DSST: Discriminative Scale
Space Tracker; CSK: Circulant Structure Tracker; KCF: Kernelized Correlation
Filters; STC: Spatio-Temporal Context (STC).
Figure 13 Qualitative evaluation of the Ground Truth, Proposed
algorithm, DSST, KCF, CSK, and STC methods

HOG size is adopted to reduce the computation, which is more
efficient than the fixed size methods.

In conclusion, the proposed method improves performance over
standard trackers in sea cucumber harvesting, which shows that
accurate scale estimation is crucial for the robustness of the tracker.
For the current best scale-adaptive tracker DSST, the experimental
results clearly show that the method provides a significant speed
gain while maintaining competitive performance.

4 Discussion

In this study, a target tracking method based on an improved
kernelized correlation filters algorithm was proposed to capture sea
cucumbers under underwater conditions. The proposed scale
estimation method tracked two parts of the target simultaneously
and calculated the scale change effectively according to these two
parts. This study also improved the method in two aspects. One was
to track the image patch of the predicted position to improve
accuracy. The other was to update the filter and model according to
the maximum value of the response graph, and the adaptive HOG
size was adopted to reduce the computation of scale estimation. The
proposed scale estimation method is designed for underwater sea
cucumber tracking, but it is universal and can be used in any
underwater tracking framework, such as fish tracking, diver
tracking, underwater vehicle tracking, and so on.
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