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Abstract: Rice straw is a major kind of biomass that can be utilized as lignocellulosic materials and renewable energy.  Rapid 

prediction of the lignocellulose (cellulose, hemicellulose, and lignin) and organic elements (carbon, hydrogen, nitrogen, and 

sulfur) of rice straw would help to decipher its growth mechanisms and thereby improve its sustainable usages.  In this study, 

364 rice straw samples featuring different rice subspecies (japonica and indica), growing seasons (early-, middle-, and 

late-season), and growing environments (irrigated and rainfed) were collected, the differences among which were examined by 

multivariate analysis of variance.  Statistic results showed that the cellulose content exhibited significant differences among 

different growing seasons at a significant level (p < 0.01), and the contents of cellulose and nitrogen had significant differences 

between different growing environments (p < 0.01).  Near infrared reflectance spectroscopy (NIRS) models for predicting the 

lignocellulosic and organic elements were developed based on two algorithms including partial least squares (PLS) and 

competitive adaptive reweighted sampling-partial least squares (CARS-PLS).  Modeling results showed that most CARS-PLS 

models are of higher accuracy than the PLS models, possibly because the CARS-PLS models selected optimal combinations of 

wavenumbers, which might have enhanced the signal of chemical bonds and thereby improved the predictive efficiency.  As a 

major contributor to the applications of rice straw, the nitrogen content was predicted precisely by the CARS-PLS model.  

Generally, the CARS-PLS models efficiently quantified the lignocellulose and organic elements of a wide variety of rice straw.  

The acceptable accuracy of the models allowed their practical applications. 
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1  Introduction

 

As an important biomass that can be utilized as fertilizers, feed, 

renewable energy, and lignocellulosic materials, approximately 

1.11 billion tons of rice straw was produced annually across the 

world.  China is one of the largest rice straw producers who 

accounts for more than 28% of the total production[1].  

Quantification of the most important compositions of rice straw, 

such as lignocellulose and organic elements, could help to decipher 

the inherent nature of rice straw during its growth and thereby 

benefit to breeding programs and crop yields.  Furthermore, an 

illustration of the variations in these compositions among different 

rice straw varieties would contribute to establish animal feed 

formulas, precisely assess greenhouse gas emissions from rice 

fields, and promote renewable energy[2-5]. 
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The lignocellulose of rice straw contains cellulose (Cel), 

hemicellulose (Hem), and lignin (Lig), while the organic elements 

mainly include carbon (C), hydrogen (H), nitrogen (N), and sulphur 

(S).  They might vary significantly with different rice subspecies, 

growing seasons, and growing environments.  In China, the major 

rice subspecies are Japonica rice and Indica rice.  Japonica rice is 

often found in the cooler areas of subtropics and temperate zones.  

Indica rice is usually grown in the hot climates of tropics and 

subtropics.  The growing seasons of rice include early-season, 

middle-season, and late-season.  The growing environments of 

rice can be classified as irrigated and rain fed based on water 

sources.   

Traditionally, the contents of lignocellulose and organic 

elements are analyzed by wet-chemical analysis methods.  For 

example, National Renewable Energy Laboratory (NREL) and Van 

Soest methods were used to examine the lignocellulosic contents of 

crops[6].  The Van Soest method is an indirect method to calculate 

the lignocellulosic contents from neutral detergent fiber (NDF), 

acid detergent fiber (ADF), and acid detergent lignin (ADL), while 

the NREL method is considered a direct measurement by 

determining the carbohydrate content after hydrolysis[6].  However, 

both of these conventional methods are time-consuming, 

labour-intensive, expensive, and destructive.  Therefore, near 

infrared reflectance spectroscopy (NIRS), as a rapid, cost-effective, 

and non-destructive analytical strategy, has become a hotspot.  Its 

principle is based on the correlation between the vibration of 
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chemical bonds and the absorption of electromagnetic radiation at 

different wavenumbers.  However, the lignocellulosic data for the 

existing NIRS models for rice straw were obtained by the indirect 

calculation of the Van Soest method rather than the NREL 

method[2-5].  Additionally, there is litter literature concerning the 

development of NIRS models for a wide variety of rice straw. 

The purpose of current study was to investigate the variation of 

lignocellulose and organic elements of rice straw related to 

different rice subspecies, growing seasons, and growing 

environments, and explore the feasibility of using NIRS to  

quantify and predict the lignocellulose and organic elements of a 

wide variety of rice straw.  The results of the study were expected 

to benefit the scientific understanding and utilization of rice  

straw.   

2  Materials and methods 

2.1  Wet-chemical analysis  

2.1.1  Lignocellulose 

The contents of Cel, Hem, and Lig of the milled samples were 

measured in duplicate according to the NREL methods[6].  Briefly, 

each sample (0.30 g) and deionized water (10 mL) were fully 

mixed and extracted in a boiling water bath to remove soluble 

sugar, then hydrolysed with 72% sulphuric acid.  The mixture was 

diluted with deionized water and placed at 121°C for 1 h.  A 

portion of the supernatant was neutralized and filtered.  The 

filtered liquid was detected by high performance liquid 

chromatography using a polymer column (Aminex HPX-87P, 

Bio-Rad, USA) with a refractive index detector (L-2490, Hitachi, 

Japan) to calculate the Cel and Hem contents, while the precipitate 

was used to detect the Lig content.  

2.1.2  Organic elements 

The contents of C, H, N, and S of the milled samples were 

determined in duplicate by an elemental analyzer (Vario EL II, 

Elementar, Germany).    

2.2  Collection and preparation of rice straw samples  

All rice crops were grown from April 2013 to November 2014 

in Yacheng town and Sanya City of Hainan province in South 

China.  A total of 364 rice straw samples (roots and husk were not 

included) were collected just after harvesting.  Among them, 208 

samples were recorded with all information including rice 

subspecies, growing seasons, and growing environments.  

Another 156 samples were recorded with partial information or no 

information.  

All the samples were cut to nearly 50 mm in length using a 

rubbing and cutting machine, thoroughly blended, oven-dried at 

45°C for 24 h, milled by a hammer mill (RT-34, Rong Tsong 

Precision Technology Co., Taiwan), sieved through a 2 mm sieve, 

and stored in zipper bags.  All the bags were stored in a dry and 

shaded location for wet-chemical and spectral analysis.  

2.3  Statistical analysis 

The differences in Cel, Hem, Lig, C, H, N, and S among 

different rice straw were quantified by multivariate analysis of 

variance with statistical software (SPSS 17.0, SPSS Inc., USA).  

The significance level was noted as p.   

2.4  Near infrared reflectance spectroscopy (NIRS) analysis   

The milled rice straw sample (15 g) was placed in a standard 

sample cup and then scanned in a reflection mode using a Fourier 

transform infrared spectrometer (Spectrum 400, PerkinElmer, 

USA).  The spectra were collected from 10 000 cm-1 to 4000 cm-1 

at a resolution of 8 cm-1.  Each spectrum was the average of 32 

scans.  Each sample was analyzed three times, and the three 

spectra were averaged for further analysis.  

2.5  NIRS modelling 

2.5.1  Model development 

Firstly, mathematical pretreatments were applied to the raw 

spectra, including standard normal variate (SNV), detrend, 

smoothing, multiple scatter correction (MSC), and autoscale[7].  

SNV was applied to correct the effects of multiplicative 

interferences of scatter and particle size.  Detrend would remove 

the linear and quadratic curvature of each spectrum.  Smoothing 

would filter out noise interference.  MSC was conducted for 

normalization.  Autoscale was used for scaling and centering.  

Subsequently, a common algorithm, partial least-squares (PLS) 

regression, was used to develop NIRS models[8].  During 

calibration, leave-one-out cross-validation was performed.  

During cross-validation, one sample was kept out of the calibration 

dataset and used for prediction.  Finally, the competitive adaptive 

reweighted sampling (CARS) algorithm was applied to select key 

wavenumbers from the full spectrum, extract pertinent signals, and 

minimize irrelevant signals from the spectra, which would help to 

establish a clearer correlation between the contents and the 

absorbance of chemical compositions.  The number of Monte 

Carlo Sampling, the maximum number of partial least square 

components to extract, the number of folds for cross validation, and 

the method of data pretreatment were set to 50, 10, 5, and auto 

scaling, respectively.  All spectral pretreatments were performed 

using mathematical software (MATLAB 2013b, MathWorks, MA, 

USA) with a PLS toolbox (version 8.0, Eigenvector Research, WA, 

USA).  

2.5.2  Model evaluation  

The NIRS models were run with calibration and validation 

datasets.  The following evaluation parameters were calculated: 

coefficient of determination for calibration (R2
cal), root mean 

squared error of calibration (RMSEC), coefficient of determination 

for cross-validation (R2
cv), root mean squared error of 

cross-validation (RMSECV), root mean squared error of prediction 

(RMSEP), and the ratio of RMSECV to the mean content (RSD). 

3  Results 

3.1  Statistics of wet-chemical analysis 

The contents of lignocellulose and organic elements of 364 rice 

straw samples were examined by wet-chemical analysis.  The 

statistic results of lignocellulose and organic elements of 364 rice 

straw samples, 208 samples for variance analysis and NIRS 

calibration and 156 samples for NIRS outside validation are shown 

in Table 1. 

As listed in Table 2, the differences of lignocellulose and 

organic elements related to different subspecies, growing seasons, 

and growing environments were tested by multivariate analysis of 

variance.  Only the Cel content had significant differences among 

different growing seasons and between different growing 

environments.  The N content had significant differences between 

different growing environments.  For different growing seasons, 

the Cel content in the late-season rice straw (409.4±37.0 mg/g) is 

significantly higher than that in the early-season rice straw 

(397.1±27.5 mg/g) (p<0.01).  For different growing environments, 

the Cel content in rain fed rice straw (421.7±32.6 mg/g) is higher 

than that in irrigated rice straw (399.7±32.3 mg/g) (p<0.01).  

However, the N content in rain fed rice straw (13.2±2.0 mg/g) is 

lower than that in irrigated rice straw (15.3±2.5 mg/g) (p<0.01).  
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Table 1  Contents of the lignocellulose and organic elements of rice straw 

Samples 
Lignocellulose/mg·g

-1
 Organic elements/mg·g

-1
 

Cel Hem Lig C H N S 

All samples (n = 364) 398.9±30.6 147.5±19.3 154.4±20.8 398.4±10.2 49.6±2.8 15.3±2.5 3.8±0.5 

For variance analysis and NIRS calibration (n = 208) 401.9±32.9 147.6±20.8 154.8±15.5 398.1±9.5 48.9±1.8 15.1±2.5 3.7±0.4 

For NIRS outside validation (n = 156) 395.0±26.9 147.4±17.2 153.9±26.4 398.7±11.1 50.6±3.5 15.5±2.4 3.9±0.4 

Note: Cel, cellulose; Hem, hemicellulose; Lig, lignin; C, carbon; H, hydrogen; N, nitrogen; S, sulphur; n, sample quantity; each value represents mean±standard error. 

 

Table 2  Significant level (p) of multivariate analysis of variance for the contents of lignocellulose and organic elements  

of rice straw 

  Cel Hem Lig C H N S 

Homogeneity of variance test 0.074 0.232 0.181 0.249 0.012
a 

0.077 0.150 

Multivariate analysis of variance 

Main effects 

Rice subspecies 0.463 0.797 0.882 0.875 / 0.991 0.420 

Growing seasons 0.008
** 

0.222 0.167 0.425 / 0.078 0.411 

Growing environments 0.032
* 

0.913 0.238 0.602 / 0.021
* 

0.280 

Interaction effects 

Rice subspecies × Growing seasons 0.206 0.680 0.802 0.940 / 0.681 0.901 

Rice subspecies × Growing environments 0.225 0.644 0.166 0.509 / 0.595 0.286 

Growing seasons × Growing environments 0.019
* 

0.186 0.483 0.889 / 0.294 0.269 

Rice subspecies × Growing seasons × Growing environments 0.387 0.294 0.908 0.995 / 0.841 0.455 

Note: Cel, cellulose; Hem, hemicellulose; Lig, lignin; C, carbon; H, hydrogen; N, nitrogen; S, sulphur; 
a
the

 
error variance of the dependent variables was not equal for H, 

so the variance test for H was not run; 
*
p < 0.05; 

**
p < 0.01. 

 

3.2  NIR spectra of rice straw samples 

The raw NIRS spectra of 364 rice straw samples are given in 

Figure 1.  The spectra in the region of 10 000-9000 cm–1 were 

nearly flat, indicating that the baseline shift was effectively 

corrected by the mathematical pretreatments.  The main 

absorption peaks of rice straw are also marked in Figure 1.  

 
Figure 1  Raw near infrared spectra of rice straw samples 

 

3.3  NIRS modelling 

PLS models were performed on full spectra with 3001 

wavenumbers for lignocellulose and organic elements and the 

modelling results are presented in Table 3.  Rice straw is a 

complex natural matrix, and the spectra of rice straw include rich 

compound information.  Furthermore, there were a lot of 

influencing factors during scanning the spectra.  Therefore, the 

spectra had many redundant and interferential information.  To 

address this problem and improve the precision of NIRS models, 

the CARS method was used to select optimal combinations of 

wavenumbers, and then combined with PLS to build CARS-PLS 

models based on the optimal combinations.   

The optimal combinations of wavenumbers selected by CARS 

and the results of the CARS-PLS models for lignocellulose are 

shown in Figure 2.  The Cel content in the rain fed rice straw is 

significantly higher than that of the irrigated rice straw.  The Cel 

content in the early-season rice straw is significantly lower than in 

late-season rice straw.  The rain fed rice straw distributed in the 

higher range, while the irrigated rice straw distributed in the lower 

range.  

The optimal combinations of wavenumbers selected by CARS 

and the results of the CARS-PLS model for organic elements are 

shown in Figure 3.  It can be seen that the N content in the rain fed 

rice straw is significantly lower than that in the irrigated rice straw.  
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Table 3  Calibration and validation results of the NIRS models for the lignocellulose and organic elements of rice straw 

Contents Models Pretreatment methods 
Wavenumber 

quantity 

PLS 

factors 
2

calR  
RMSEC 

/mg·g
-1

 
2

cvR  
RMSECV 

/mg·g
-1

 

RMSEP 

/mg·g
-1

 

Cel 
PLS SNV, smoothing, autoscale 3001 8 0.43 24.9 0.26 28.7 26.0 

CARS-PLS SNV, smoothing, autoscale 62 6 0.36 26.3 0.27 28.2 25.4 

Hem 
PLS SNV, smoothing, autoscale 3001 5 0.10 19.7 0.03 20.6 17.9 

CARS-PLS SNV, smoothing, autoscale 131 9 0.35 16.7 0.23 18.3 22.7 

Lig 
PLS SNV, smoothing, autoscale 3001 8 0.31 12.8 0.18 14.2 13.0 

CARS-PLS SNV, smoothing, autoscale 53 14 0.61 9.7 0.48 11.3 14.1 

C 
PLS SNV, detrend, smoothing, autoscale 3001 8 0.64 5.7 0.48 6.9 7.7 

CARS-PLS SNV, detrend, smoothing, autoscale 53 8 0.77 4.5 0.72 5.0 8.1 

H 
PLS SNV, smoothing, autoscale 3001 7 0.43 1.2 0.33 1.3 3.6 

CARS-PLS SNV, smoothing, autoscale 72 11 0.57 1.1 0.44 1.2 3.4 

N 
PLS SNV, detrend, smoothing, autoscale 3001 8 0.82 1.0 0.75 1.3 1.5 

CARS-PLS SNV, detrend, smoothing, autoscale 83 10 0.86 0.9 0.83 1.0 1.4 

S 
PLS MSC, autoscale 3001 5 0.19 0.4 0.06 0.4 0.5 

CARS-PLS MSC, autoscale 113 12 0.64 0.3 0.35 0.4 0.5 

Note: NIRS, near infrared reflectance spectroscopy; Cel, cellulose; Hem, hemicellulose; Lig, lignin; C, carbon; H, hydrogen; N, nitrogen; S, sulphur; PLS, partial least 

squares; CARS, competitive adaptive reweighted sampling; SNV, standard normal variate; MSC, multiple scatter correction; R
2
cal, coefficient of determination for 

calibration; RMSEC, root mean squared error of calibration; R
2
cv, coefficient of determination for cross-validation; RMSECV, root mean squared error of cross-validation; 

RMSEP, root mean squared error of prediction.    

 
a. Cellulose 

 
b. Hemicellulose 

 
c. Lignin 

Note: CARS, competitive adaptive reweighted sampling; PLS, partial least squares; the blue and red colours represent Japonica and Indica rice straw, respectively; the 

shapes of circle, triangle, and square represent early-season, middle-season, and late-season rice straw, respectively; the solid and hollow symbols represent irrigated and 

rain fed rice straw, respectively. 

Figure 2  Optimal combinations of wavenumbers selected by CARS and the results of the CARS-PLS models for lignocellulose 
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a. Carbon 

 
b. Hydrogen 

 
c. Nitrogen 

 

d. Sulphur 

Note: CARS, competitive adaptive reweighted sampling; PLS, partial least squares; the blue and red colours represent Japonica and Indica rice straw, respectively; the 

shapes of circle, triangle, and square represent early-season, middle-season, and late-season rice straw, respectively; the solid and hollow symbols represent irrigated and 

rain fed rice straw, respectively. 

Figure 3  Optimal combinations of wavenumbers selected by CARS and the results of the CARS-PLS models for organic elements 
 

4  Discussion 

According to the results of the wet-chemical analysis, the mean 

contents of the lignocellulose and organic elements of 364 rice 

straw samples were Cel (398.9 mg/g), Hem (147.5 mg/g), Lig 

(154.4 mg/g), C (398.4 mg/g), H (49.6 mg/g), N (15.3 mg/g) and S 

(3.8 mg/g), which are comparable with those of American rice 

straw[9], e.g., Cel (320-470 mg/g), Hem (190-270 mg/g), and Lig 

(50-240 mg/g).  The contents of organic elements lie within the 

average range of Chinese biomass[10], i.e., C (385.2-501.5 mg/g),  

H (61.3-83.6 mg/g), N (1.1-20.6 mg/g), and S (0.2-3.9 mg/g).  

The S content of the rice straw involved in the current study is 

higher than the average level in the U.S. (1.0 mg/g), Thailand 

(1.0-2.9 mg/g), and Egypt (1.0 mg/g)[11-13].  

In terms of the spectral results of rice straw, a weak and broad 

absorption peak around 8223 cm–1 has been assigned to C–H 

stretching (2nd overtone), and the absorption in the region 

7042-6250 cm-1 has been associated with O–H stretching for 

Hem/Cel, C–H stretching for Lig, and N–H stretching for 

protein[14].  The signal in the region of 6172-5617 cm–1 has been 
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attributed to C–H stretching (1st overtone) for Lig/Cel/Hem[15,16].  

The noticeable peak at approximately 5200 cm–1 has been 

attributed to O–H stretching and C=O stretching (2nd overtone) for 

Cel/Hem[17].  The signal at around 4743 cm–1 has been ascribed to 

the combination band of O–H stretching and C–O stretching for 

Hem[18,19].  The peak at 4386 cm–1 has been proved to belong to 

C–H stretching and CH2 deformation[17].  The range of 5500- 

4000 cm-1 contains rich information of N–H[20]. 

The evaluation parameters of the NIRS models showed, in 

terms of lignocellulose, the R2
cal of Lig is the highest, implying a 

good prediction of the Lig content, while the R2
cal of Hem is the 

lowest.  The standard error of the laboratory (SEL) for Cel was 

15.3 mg/g.  The RMSECV of the CARS-PLS model for Cel was 

28.2 mg/g.  The RMSECV is less than two times SEL, meaning an 

accurate prediction for Cel[21].  The modelling result of Hem was 

the worst, but the RSD value was still satisfactory (12.40%).  In 

the case of validation, the RMSEP values of Cel, Hem, and Lig 

were 25.4 mg/g, 22.7 mg/g, and 14.1 mg/g, respectively, while the 

RSD of Cel, Hem, and Lig were 6.43%, 15.40%, and 9.16%, 

respectively.  These results are similar to the reported studies[2,4,5].  

However, the lignocellulosic data for the reported NIRS models 

were obtained by the Van Soest method that is an indirect 

calculation method, while the NIRS models for lignocellulose 

developed in the current study were based on the data from the 

direct NREL measurements.  In terms of organic elements, the R2
cal 

values for N and C were 0.86 and 0.77, respectively, identifying the 

effectiveness of the developed models.  The RSD for H was 

2.37%, implying a good prediction.  The modelling result for S 

was the poorest, but the RSD was not too bad (10.26%).  In the 

case of validation, the RMSEP values of C, H, N, and S were    

8.1 mg/g, 3.4 mg/g, 1.4 mg/g, and 0.5 mg/g respectively.  These 

results are similar to the reported studies[3].  Either for 

lignocellulose or for organic elements, given a wide variety of rice 

straw involved in the current study, the performances of all the 

models are considered satisfactory.  

Comparison between the CARS-PLS and PLS models showed 

that the accuracy of the CARS-PLS models for Hem, Lig, C, H, N, 

and S is much higher than that of the PLS models, and the accuracy 

of the CARS-PLS model for Cel is similar with that of the PLS 

model.  The reason for the higher accuracy of the CARS-PLS 

models might be that the selection of the optimal combinations of 

wavenumbers by CARS enhanced the signal of chemical bonds and 

thereby improved the predictive efficiency.  Given the high 

accuracy of the CARS-PLS models, they could be used for 

predicting the contents of the lignocellulose and organic elements 

of a wide variety of rice straw, which featured different rice 

subspecies, growing seasons, and growing environments. 

Additionally, the N content was predicted precisely by the 

CARS-PLS model.  The N content of rice straw is always a major 

concern, because it would dramatically affect the nutrient profiles 

of soil[22], greenhouse gas emissions from rice fields[23], and biogas 

production that uses rice straw as a feedstock[24] .  Therefore, the 

good performance of the CARS-PLS model for modelling the N 

content enabled it a considerable potential in practice.  

5  Conclusions   

First, the differences of lignocellulose and organic elements of 

rice straw related to different rice subspecies, growing seasons, and 

environments were tested by multivariate analysis of variance.  

Statistic results showed that the Cel content had significant 

differences among different growing seasons (p<0.01), and the 

contents of Cel and N had significant differences between different 

growing environments (p<0.01).  Secondly, NIRS models were 

built by the PLS algorithm to analyse the contents of the 

lignocellulose and organic elements of rice straw.  However, these 

NIRS models were not satisfactory because there was redundant 

and interferential information in the spectra.  Subsequently, the 

CARS algorithm was used to select optimal combinations of 

wavenumbers, and then combined with PLS to build CARS-PLS 

models based on the optimal combinations.  The modelling results 

showed that the accuracy of the CARS-PLS models for Hem, Lig, 

C, H, N, and S is much higher than that of the PLS models, 

possibly because the selection of the optimal combinations of 

wavenumbers by CARS enhanced the signal of chemical bonds and 

thereby improved the predictive efficiency.  As a major 

contributor to the applications of rice straw, the N content was 

predicted precisely by the CARS-PLS model.  Generally, the 

CARS-PLS models efficiently quantified the lignocellulose and 

organic elements of a wide variety of rice straw that featured 

different rice subspecies, growing seasons, and growing 

environments.  The acceptable accuracy of the models allowed 

their further applications.   
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