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Abstract: Water stress status of plants is very important for irrigation scheduling.  However, plant water stress status 

monitoring has become the bottleneck of irrigation scheduling.  In this study, an automatic water stress status monitoring 

method for strawberry plant was proposed and realized using combined RGB and infrared image information.  RGB image 

and infrared images were obtained using RGB digital camera and infrared thermal camera, which were placed in a fixed shell in 

parallel.  In the first experimental stage, three kinds of water stress treatments were carried out on three groups of strawberry 

plants, and each group includes three repetitions.  Single point plant temperature, dry surface temperature, wet surface 

temperature were measured.  In the second experimental stage, the infrared and visible light images of the canopy leaves were 

obtained.  Meanwhile, plant temperature, dry surface temperature, wet surface temperature, and stomatal conductance were 

measured not only for single point but also for plant area temperature measurement.  Fusion information of infrared image and 

visible light image was analyzed using image processing technology, to calculate the average temperature of plant areas.  

Based on single point temperature, area temperature, dry surface temperature and wet surface temperature of the plant, single 

point crop water stress index (CWSI) and area CWSI were calculated.  Through analysis of variance (ANOVA), the 

experimental results showed that CWSI measured for plants under different treatments, were significantly different.  Through 

correlation analysis, the experimental results showed that, determination coefficient between area CWSI and the corresponding 

stomatal conductance of three strawberry groups were 0.8834, 0.8730 and 0.8851, respectively, which were larger than that of 

single-point CWSI and stomatal conductance.  The results showed that area CWSI is more suitable to be used as the criteria 

for automatic diagnosis of plants. 
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1  Introduction

 

Water resource shortage has become the primary factor 

limiting agricultural development.  Controlling irrigation 

throughout the growth season of plants is a requisite for the 

sustainable development of the agriculture.  

Irrigation scheduling can be made based on at least three 

methodologies[1].  The soil water content based approach is based 

on the direct measurement of soil moisture content.  This method 

can start and stop the irrigation according to the current water 

content in the soil, which is widely applied in automation system 

due to its easy application and practice[2-5].  However, because it is 

difficult to put the water content measurement sensor at the plant 

root position where can respond the water status of it, the accuracy 
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of this method usually cannot meet the requirement.   

A second method is soil water balance based method, which 

uses meteorological information to calculate the water need of the 

plant.  This method calculates plant water evaporation (ETC) 

according to the meteorological information, and controls the 

irrigation amount based on ETC
[6].  Since this method needs 

rainfall, solar radiation, wind speed, wind direction, air humidity, 

atmosphere as input, and the plant coefficient needs to be estimated 

through the whole growth season, it is easy to cumulate large error.  

This method also requires professional personal to calculate and 

maintain the measurement device regularly, which limited its 

application. 

The third approach is to calculate the water need of the plant 

indirectly based on the plant water stress induction.  This method 

measures the stress of plant itself, using its physical reaction to 

water stress to calculate water need of the plant, and then make 

irrigation decision, which is promising for precise irrigation 

scheduling[7].  Methods developed for water stress reaction of 

plant can be classified into two categories, which were plant tissue 

water status detection and plant physiological reaction detection.  

Stomatal conductance (Gs) and leaf temperature are two kinds of 

mostly used indicator for plant physiological reaction detection.  

However, the detection process of Gs is complicated, time 

consuming, easily to damage the plant and can only detect single 

leaf per measurement.  Compared with Gs detection, plant 
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temperature detection is much more flexible, especially when using 

thermal infrared camera, which makes the remote and rapid 

measurement of the plant water stress possible.  Thermal infrared 

camera has become an ideal tool for temperature measurement for 

not only single point of a plant, but also crop parts within the 

thermal infrared image.  Temperature measurement based on 

thermal infrared camera for plant water stress monitoring has 

become research focus over the past 30 years.  

The direct measurement of the leaf temperature is sensitive to 

environment change, which will result in error when analyze the 

plant water stress status.  Idso et al.[8] proposed the crop water 

stress index (CWSI), which is a kind of normalized quantization 

parameter for plant water stress.  To some extent, it overcomes the 

environmental change problem, and could reflect the water stress 

status of the plant.  CWSI can be determined using three 

approaches.  The first one is “empirical model”, which is based on 

the relationship between canopy–air temperature difference (Tc − 

Ta) and air vapour pressure deficit (VPD) of a ‘non-water-stressed 

baseline’ (NWSB)[8].  The second approach is energy balance 

based, which requires net radiation and aerodynamic resistance 

factor as input, which made this method difficult to apply in 

practice[9,10].  The third approach is reference based.  This 

method directly use natural leaves[11,12] or artificial reference[13,14] 

to estimate the minimum and maximum temperatures, which 

reduces the error induced from wind speed, radiation and solar 

radiation change, and Gs the stomatal conductance (mmol/m2·s).   

CWSI can be calculated through Equation (1): 

leaf wet

dry wet

T T
CWSI

T T





                 (1) 

where, Tdry and Twet are surface temperature of the dry and wet 

reference targets (K or °C), and Tleaf is the temperature of the 

measured leaf.  Compared with other two methods, this method is 

easier to practice.  The reference based method is widely studied 

because it does not require environmental information as 

input[15-18]. 

To automatically extract area plant temperature, thermal 

infrared and visible information should be combined.  Möller et 

al.[19] manually chose control points in obtained thermal infrared 

and visible images using Matlab R13 software, and extracted area 

temperature of the grape plant after image matching, and CWSI of 

the plant area was then calculated.  Raza et al.[20] also used image 

processing software to process the thermal infrared and visible 

spinach images after they were obtained.  Through using points 

manually chosen, thermal infrared image and visible image were 

successfully matched, which was a key step for the following water 

stress detection of the plant.  To date, this reference based 

approach has not been widely applied in the field and help with the 

automatic irrigation scheduling yet.  Major reasons are that plant 

area temperature cannot be automatically extracted from the 

thermal infrared image and it is unknown that how the area 

temperature of the canopy is superior to single point measurement 

of the leaf temperature.  

In this article, a reference based automatic diagnosis method 

for plants was presented and evaluated.  The specific objectives of 

this paper are as follows:  

(1) to achieve automatic plant area temperature detection based 

on infrared image and visible light image, 

(2) to conduct a comparative study on the correlation between 

single point water stress index and stomatal conductance, area 

water stress index and stomatal conductance, exploring how CWSI 

can be used in automatic diagnosis of crop water stress status. 

2  Materials and methods 

2.1  Experiment design 

The experiment was conducted in Laboratory of National 

Engineering Research Center for Information Technology in 

Agriculture (NERCITA).  The variety of strawberry was “Beijing 

Spring”.  The sample plants used in this study were planted in 

September 20th in Institute of Forestry and Pomology, Beijing 

Academy of Forestry Sciences.  Before the experiment, the 

strawberry samples were fertilized and managed uniformly.  Each 

strawberry plant was planted in a pot, the size of which is 12 cm× 

15 cm, the substrates in it was peat and chicken manure, with a mix 

proportion of 5 :1 . 

The whole experiment includes two stages.  The first stage is 

to validate that if the leaf temperature could be used to detect 

strawberry water stress.  Nine strawberry plants were transplanted 

to NERCITA in April 15th.  These nine strawberry plants were 

divided into three groups.  Group 1 was treated with standard 

watering, which means the soil moisture content was maintained at 

35% to 45%.  Group 2 was treated with mild water stress watering, 

which means the soil moisture content was maintained at 25% to 

35%.  Group 3 was treated with severe water stress watering, which 

means the soil moisture content was maintained at 15% to 25%.  

After the first 5 days of different water treatment, they were used 

for data collection from April 20th to April 27th.  From 9 :00 am 

to 5 :00 pm every day in the experimental period, soil moisture 

content, and single point leaf temperature of leaves were recorded 

hourly.  In order to calculate the crop water stress index (CWSI) 

of leaves, beside actual leaf temperature, which was obtained using 

average temperature of three leaves of each plant, procedures were 

taken to detect temperatures of a wet leaf and a dry leaf.  Wet leaf 

was made by spraying water on both sides of a leaf of the plant, 

then the temperature of this wet leaf was collected after 10 s.  Dry 

leaf was made by smearing a leaf with Vaseline on both sides, then 

the temperature of this dry leaf was collected after 10 s. 

In the second stage, another three strawberry plants were 

transplanted to NERCITA on June 12th.  These three strawberry 

plants were used for data collection from June 17th to June 22nd.  

The difference between the second stage and the first stage was that, 

on June 22nd, stomatal conductance, both thermal infrared and 

visible images were obtained every hour between 9:00 am to 5:00 

pm when collecting other data (soil moisture content, single point 

leaf temperature, wet leaf temperature and dry leaf temperature), to 

compare the water stress performance of area temperature and 

single point temperature, and develop an automatic diagnosis 

method for strawberry plant.  

 
Figure 1  Experiment setup architecture: Imaging module with visible 

camera on the left, and the thermal infrared camera on the right 
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The experiment setup is shown in Figure 1.  A visible 

network camera and a thermal infrared camera were fixed in a shell 

in parallel, so that both visible image and thermal infrared image 

can contain overlapped field of view.  The camera on the left is 

the visible light camera, and the one on the right is the thermal 

infrared camera.  The visible network camera model is 

JA-791HRC (Jooan Science and Technology Co., Ltd., China), 

with resolution of 1280×720, power supply of 12V/2A, operating 

temperature of –30°C-60°C.  The thermal infrared camera is Tau2 

336 (FLIR systems, Inc., USA), with resolution of 256×336.  The 

sensitivity of TauTM 336 camera is 0.05°C (50 mK), and the 

accuracy of TAU2-336 camera is ±2°C after calibration.  Each 

strawberry plant pot had a soil water content sensor in it, the model 

of which is FDS100 (Beijing Lianchuang Siyuan technology Co., 

Ltd., China).  The obtained images were analyzed using Visual 

Studio 2010.  The stomatal conductance was measured using SC - 

1 steady state porometer (Meter Group, Inc., USA).   

The water treatment of the strawberry plants was shown in 

Table 1.  The soil moisture content change of strawberry plants is 

shown in Figure 2.  
 

Table 1  Three water stress treatments of Strawberry plants 

Degree of water treatment Sample name Treatment Date 

Standard watering 

Stage1-Group1-Strawberry1 (S1G1S1) 

Stage1-Group1-Strawberry2 (S1G1S2) 

Stage1-Group1-Strawberry3 (S1G1S3) 

Soil moisture content was maintained at 35%-45% 

April 20-27 Mild water stress 

Stage1-Group2-Strawberry1 (S1G2S1) 

Stage1-Group2-Strawberry2 (S1G2S2) 

Stage1-Group2-Strawberry3 (S1G2S3) 

Soil moisture content was maintained at 25%-35% 

Severe water stress 

Stage1-Group3-Strawberry1 (S1G3S1) 

Stage1-Group3-Strawberry2 (S1G3S2) 

Stage1-Group3-Strawberry3 (S1G3S3) 

Soil moisture content was maintained at 15%-25% 

Standard watering Stage2-Strawberry1(S2S1) Soil moisture content was maintained at 35%-45% 

June 17-22 Mild water stress Stage2-Strawberry2 (S2S2) Soil moisture content was maintained at 25%-35% 

Severe water stress Stage2-Strawberry3 (S2S3) Soil moisture content was maintained at 15%-25% 

 
a. Soil water content change during stage1for nine strawberry plants               b. Soil water content change during stage2 for three strawberry plants 

Figure 2  Changes in water content of Strawberry during two experiment stage 
 

2.2  Phase consistency based automatic crop area temperature 

extraction method 

A phase consistency based automatic crop area temperature 

extraction method was developed and used in this study.  The 

main challenge was automatically matching of the infrared image 

and visible image.  Flow chart of the proposed automatic crop 

area temperature is shown in Figure 3.  This paper firstly carried 

out phase consistency based edge detection for the two images[21].  

Calculation of SURF feature descriptors is mainly divided into two 

steps: feature point detection and formation of feature point 

descriptor[22,23].  After obtaining feature points of the image and 

its descriptors by the method of SURF, the next step was to match 

feature points.  Feature point match is divided into two steps.  

The first step is called “rough matching”, which uses Euclidean 

distance as the similarity measure.  It takes one interest point in 

thermal infrared image, and find out which point in visible image 

had nearest Euclidean distance, then it is flagged as a match point.  

The second step is to filter out the wrong matching points by the 

method of RANSAC (random sampling consensus)[24].  Affine 

transformation parameters can be calculated when the matching of 

the two images is more than 3.  After affine transformation is 

carried out on the visible light image, the transformed infrared 

image is fused with the original visible image.  

 
Figure 3  Flow chart of automatic matching algorithm for infrared 

image and visible image 
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The purpose of automatic fusion of infrared and visible light 

images was to recognize the crop area in infrared image (Figure 4a) 

using the color information of visible image (Figure 4b).  After 

the visible image was transformed based on Affine parameter 

(Figure 4c), the area of strawberry plant was segmented from the 

transformed image.  As thermal infrared image and the visible 

image were matched, the plant area of the infrared image was 

extracted, according to the corresponding locations of the plant in 

visible light image, as shown in Figure 4d.  Based on the infrared 

image, the temperature of the plant was analyzed, and the mean 

value of canopy temperature was obtained. 

 

    

a. Visible light image b. Infrared image c. Transformed image based on Affine parameter d. Extracted plant area from infrared image 

Figure 4  Plant area extraction from thermal infrared image 
 

3  Results and discussion 

Figure 5 shows the comparison of the daily mean temperature 

of the strawberry plants, which indicates that, with the increase of 

the water stress, the mean temperature value of the plants increases.  

Table 2 shows results of single factor ANOVA of single point 

temperature of three groups of strawberries in stage 1 (values in the 

same column with the same letter are not significantly different at 

p=0.05).  During the test, different water treatment resulted in 

significant differences in crop canopy temperature.  There was 

significant difference between group 1 (standard watering 

strawberries 1-3) and group2 (mild stress of strawberry 4-6), and 

significant difference between group 1 and group 3 (the strawberry 

7-9).  However, the difference between group 2 and group 3 was 

not very significant.  On April 27th, all three groups demonstrated 

significant difference. 

 
Figure 5  Daily mean temperature comparison of the strawberry 

canopies 
 

Table 2  Results of single factor ANOVA of crop canopy temperature 

Process 

Temperature/°C 

April 20th April 21st April 22nd April 23rd April 24th April 25th April 26th April 27th 

Sample number 

(63) 

Sample number 

(45) 

Sample number 

(63) 

Sample number 

(36) 

Sample number 

(45) 

Sample number 

(45) 

Sample number 

(45) 

Sample number 

(81) 

Standard watering 23.1 a 23.5 a 23.1 a 22.1 a 22.7 a 24.4 a 23.1 a 22.6 a 

Mild stress 23.6 b 24.2 b 23.6 b 22.9 b 23.5 b 25 b 23.6 b 22.9 b 

Severe stress 23.9 b 24.1 b 23.9 b 23.3 b 23.6 b 25.6 b 24.0 b 23.5 c 

 

Compared with the absolute value of the temperature of the 

crop, crop water stress index (CWSI) more reliable due to that it 

can remove the influence of ambient change.  CWSI was 

calculated using Equation (1), by calculating the difference 

between the crop canopy temperature and the wet reference surface 

temperature, then divided by the dry and wet reference surface 

temperature, the CWSI of different plants were obtained.  The 

results of single factor ANOVA analysis of CWSI is shown in 

Table 3 (values in the same column with the same letter are not 

significantly different at p=0.05).  As can be seen from Table 3, 

with the increase of stress, the mean value of CWSI becomes 

higher.  By single factor ANOVA analysis, it is found that there 

was significant difference between group 1 and group 3 on all the 

experiment days.  Also Figure 6 shows the determinate coefficient 

(determinate coefficient can be expressed by R2) between CWSI 

and soil water content measured at 3 pm on April 20th, 24th, and 

27th was between 0.6074 and 0.8, which proved that CWSI could 

reflect the state of crop water stress.  On April 20th, 23rd, 25th, 

26th, 27th, there was a significant difference in CWSI between the 

three group 1 and the group 2.  However, on the April 21st, 22nd 

and 24th, there were no obvious significant difference.  Between 

group 2 and group 3, there was no obvious significant difference on 

April 20th, 23rd, 25th and 26th.  The reason might be that 

individual plant sampling of the sample was not enough, the three 

leaf temperature could not represent the whole plant temperature 

conditions, the problem could be solved by increasing the number 

of sample methods to solve through extracting the plant area using 

thermal infrared image and visible image. 

During experiment stage 2, single factor ANOVA analysis of 

single point CWSI was also conducted for three strawberries, the 

results of which is shown in Table 4 (values in the same column 

with the same letter are not significantly different at p=0.05).  By 

single factor ANOVA analysis, it is found that there is significant 

difference between strawberry 1 and strawberry 3 on all the 

experiment days.  This result is consistent with stage1.  
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Table 3  Results of single factor ANOVA of CWSI 

Process 

CWSI 

April 20th April 21st April 22nd April 23rd April 24th April 25th April 26th April 27th 

Sample number 
(63) 

Sample number 
(45) 

Sample number 
(63) 

Sample number 
(36) 

Sample number 
(45) 

Sample number 
(45) 

Sample number 
(45) 

Sample number 
(81) 

Standard watering 0.56 a 0.59 a 0.70 a 0.76 a 0.78 a 0.65 a 0.74 a 0.64 a 

Mild stress 0.66 b 0.65 ac 0.76 ac 0.85 b 0.82 ac 0.75 b 0.80 b 0.89 b 

Severe stress 0.70 b 0.70 bc 0.79 bc 0.88 b 0.85 bc 0.82 b 0.83 b 0.90 c 

 
a. April 20

th
 b. April 24

th
 c. April 27th 

 

Figure 6  Correlation between CWSI and soil water content measured at 3 pm on April 20th, 24th, and 27th 

 

Table 4  Results of single factor ANOVA of CWSI 

Process 

CWSI 

June 17th June 18th June 19th June 20th June 21st June 22nd 

Sample number (27) Sample number (27) Sample number (27) Sample number (27) Sample number (27) Sample number (27) 

Enough water 0.81 a 0.73 a 0.68 a 0.80a 0.74a 0.72a 

Mild stress 0.87 ac 0.79 ac 0.77b 0.87b 0.83b 0.79b 

Severe stress 0.91 bc 0.84 bc 0.88c 0.92c 0.93c 0.88c 
 

In order to increase the number of samples, this paper studied 

automatic temperature acquisition method of the entire crop canopy 

area based on the infrared and visible images.  Between 

9:00-17:00 in June 22, 2016, nine infrared images and nine visible 

light images of each strawberry canopy were collected every hour.  

And through automatic matching algorithm based on phase 

consistency, crop canopy area at different time and the 

corresponding average temperature were obtained.  Stomatal 

conductance was also measured immediately after images were 

obtained.  The relationships between CWSI and stomatal 

conductance were shown for single point and area temperature, are 

shown in Figure 7.  It could be observed that the determinate 

coefficient between area CWSI and stomatal conductance (stomatal 

conductance was expressed using “Gs”) is higher than that between  

 
a. Correlation between single point CWSI and Gs of 

Strawberry 1 

b. Correlation between area CWSI and Gs of 

Strawberry 1 

c. Correlation between single point CWSI and Gs 

of Strawberry 2 

 
d. Correlation between area CWSI and Gs of 

Strawberry 2 

e. Correlation between single point CWSI and Gs of 

Strawberry 3 

f. Correlation between area CWSI and Gs of 

Strawberry3 
 

Figure 7  Relationship between water stress index (CWSI) and stomatal conductance in strawberry plants 
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single point CWSI and stomatal conductance in general.  

Compared of strawberry 1 and strawberry canopy area 1, 

strawberry 2 and strawberry canopy area 2, strawberry 3 and 

strawberry canopy area 3, it is found that determinate coefficient of 

single strawberry leaf is relatively lower compared with that of 

plant area.  But overall, the correlation of R2 is larger than 0.8 for 

both single strawberry leaf and canopy area.  And in general, from 

the relationship graph of CWSI and stomatal conduction, it can be 

seen that determination coefficient of plant area is larger than that 

of single point of strawberry leaf.  This result demonstrated that 

both single point and area CWSI could reflect the water stress 

status of strawberry plant.  Using plant area CWSI based on 

infrared image and visible light image, the result was more 

accurate.  

4  Conclusions 

In this research, the automatic diagnosis method of crop water 

stress has been studied.  The main results were summarized as 

following:  

(1) The infrared image and visible light image information 

were fused based on machine vision technology, and the automatic 

acquisition of the crop area temperature was realized.  

(2) The experimental results showed that the temperature and 

corresponding CWSI of strawberry crops, with different water 

treatments, had significant differences.  The correlation between 

single point CWSI and stomatal conductance, area CWSI and 

stomatal conductance was further studied.  The results showed 

that the correlation value between area CWSI and the stomatal 

conductance was higher than that of the single point CWSI and the 

stomatal conductance.  It shows that area CWSI is feasible for 

crop water stress status monitoring, and it can be used as an 

important reference index for crop water stress assessment. 

The system can be used to monitor the plant growth status 

easily and quickly.  It can also acquire temperature continuously, 

non-destructively and automatically.  The realization of automatic 

diagnosis of water stress detection based on machine vision is 

helpful to improve accuracy of the irrigation decision.  
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